Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
/*
 * refclock_irig - audio IRIG-B/E demodulator/decoder
 */
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#if defined(REFCLOCK) && defined(CLOCK_IRIG)

#include "ntpd.h"
#include "ntp_io.h"
#include "ntp_refclock.h"
#include "ntp_calendar.h"
#include "ntp_stdlib.h"

#include <stdio.h>
#include <ctype.h>
#include <math.h>
#ifdef HAVE_SYS_IOCTL_H
#include <sys/ioctl.h>
#endif /* HAVE_SYS_IOCTL_H */

#include "audio.h"

/*
 * Audio IRIG-B/E demodulator/decoder
 *
 * This driver synchronizes the computer time using data encoded in
 * IRIG-B/E signals commonly produced by GPS receivers and other timing
 * devices. The IRIG signal is an amplitude-modulated carrier with
 * pulse-width modulated data bits. For IRIG-B, the carrier frequency is
 * 1000 Hz and bit rate 100 b/s; for IRIG-E, the carrier frequenchy is
 * 100 Hz and bit rate 10 b/s. The driver automatically recognizes which
 & format is in use.
 *
 * The driver requires an audio codec or sound card with sampling rate 8
 * kHz and mu-law companding. This is the same standard as used by the
 * telephone industry and is supported by most hardware and operating
 * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
 * implementation, only one audio driver and codec can be supported on a
 * single machine.
 *
 * The program processes 8000-Hz mu-law companded samples using separate
 * signal filters for IRIG-B and IRIG-E, a comb filter, envelope
 * detector and automatic threshold corrector. Cycle crossings relative
 * to the corrected slice level determine the width of each pulse and
 * its value - zero, one or position identifier.
 *
 * The data encode 20 BCD digits which determine the second, minute,
 * hour and day of the year and sometimes the year and synchronization
 * condition. The comb filter exponentially averages the corresponding
 * samples of successive baud intervals in order to reliably identify
 * the reference carrier cycle. A type-II phase-lock loop (PLL) performs
 * additional integration and interpolation to accurately determine the
 * zero crossing of that cycle, which determines the reference
 * timestamp. A pulse-width discriminator demodulates the data pulses,
 * which are then encoded as the BCD digits of the timecode.
 *
 * The timecode and reference timestamp are updated once each second
 * with IRIG-B (ten seconds with IRIG-E) and local clock offset samples
 * saved for later processing. At poll intervals of 64 s, the saved
 * samples are processed by a trimmed-mean filter and used to update the
 * system clock.
 *
 * An automatic gain control feature provides protection against
 * overdriven or underdriven input signal amplitudes. It is designed to
 * maintain adequate demodulator signal amplitude while avoiding
 * occasional noise spikes. In order to assure reliable capture, the
 * decompanded input signal amplitude must be greater than 100 units and
 * the codec sample frequency error less than 250 PPM (.025 percent).
 *
 * Monitor Data
 *
 * The timecode format used for debugging and data recording includes
 * data helpful in diagnosing problems with the IRIG signal and codec
 * connections. The driver produces one line for each timecode in the
 * following format:
 *
 * 00 00 98 23 19:26:52 2782 143 0.694 10 0.3 66.5 3094572411.00027
 *
 * If clockstats is enabled, the most recent line is written to the
 * clockstats file every 64 s. If verbose recording is enabled (fudge
 * flag 4) each line is written as generated.
 *
 * The first field containes the error flags in hex, where the hex bits
 * are interpreted as below. This is followed by the year of century,
 * day of year and time of day. Note that the time of day is for the
 * previous minute, not the current time. The status indicator and year
 * are not produced by some IRIG devices and appear as zeros. Following
 * these fields are the carrier amplitude (0-3000), codec gain (0-255),
 * modulation index (0-1), time constant (4-10), carrier phase error
 * +-.5) and carrier frequency error (PPM). The last field is the on-
 * time timestamp in NTP format.
 *
 * The error flags are defined as follows in hex:
 *
 * x01	Low signal. The carrier amplitude is less than 100 units. This
 *	is usually the result of no signal or wrong input port.
 * x02	Frequency error. The codec frequency error is greater than 250
 *	PPM. This may be due to wrong signal format or (rarely)
 *	defective codec.
 * x04	Modulation error. The IRIG modulation index is less than 0.5.
 *	This is usually the result of an overdriven codec, wrong signal
 *	format or wrong input port.
 * x08	Frame synch error. The decoder frame does not match the IRIG
 *	frame. This is usually the result of an overdriven codec, wrong
 *	signal format or noisy IRIG signal. It may also be the result of
 *	an IRIG signature check which indicates a failure of the IRIG
 *	signal synchronization source.
 * x10	Data bit error. The data bit length is out of tolerance. This is
 *	usually the result of an overdriven codec, wrong signal format
 *	or noisy IRIG signal.
 * x20	Seconds numbering discrepancy. The decoder second does not match
 *	the IRIG second. This is usually the result of an overdriven
 *	codec, wrong signal format or noisy IRIG signal.
 * x40	Codec error (overrun). The machine is not fast enough to keep up
 *	with the codec.
 * x80	Device status error (Spectracom).
 *
 *
 * Once upon a time, an UltrSPARC 30 and Solaris 2.7 kept the clock
 * within a few tens of microseconds relative to the IRIG-B signal.
 * Accuracy with IRIG-E was about ten times worse. Unfortunately, Sun
 * broke the 2.7 audio driver in 2.8, which has a 10-ms sawtooth
 * modulation.
 *
 * Unlike other drivers, which can have multiple instantiations, this
 * one supports only one. It does not seem likely that more than one
 * audio codec would be useful in a single machine. More than one would
 * probably chew up too much CPU time anyway.
 *
 * Fudge factors
 *
 * Fudge flag4 causes the dubugging output described above to be
 * recorded in the clockstats file. Fudge flag2 selects the audio input
 * port, where 0 is the mike port (default) and 1 is the line-in port.
 * It does not seem useful to select the compact disc player port. Fudge
 * flag3 enables audio monitoring of the input signal. For this purpose,
 * the monitor gain is set t a default value. Fudgetime2 is used as a
 * frequency vernier for broken codec sample frequency.
 *
 * Alarm codes
 *
 * CEVNT_BADTIME	invalid date or time
 * CEVNT_TIMEOUT	no IRIG data since last poll
 */
/*
 * Interface definitions
 */
#define	DEVICE_AUDIO	"/dev/audio" /* audio device name */
#define	PRECISION	(-17)	/* precision assumed (about 10 us) */
#define	REFID		"IRIG"	/* reference ID */
#define	DESCRIPTION	"Generic IRIG Audio Driver" /* WRU */
#define	AUDIO_BUFSIZ	320	/* audio buffer size (40 ms) */
#define SECOND		8000	/* nominal sample rate (Hz) */
#define BAUD		80	/* samples per baud interval */
#define OFFSET		128	/* companded sample offset */
#define SIZE		256	/* decompanding table size */
#define CYCLE		8	/* samples per bit */
#define SUBFLD		10	/* bits per frame */
#define FIELD		100	/* bits per second */
#define MINTC		2	/* min PLL time constant */
#define MAXTC		10	/* max PLL time constant max */
#define	MAXAMP		3000.	/* maximum signal amplitude */
#define	MINAMP		2000.	/* minimum signal amplitude */
#define DRPOUT		100.	/* dropout signal amplitude */
#define MODMIN		0.5	/* minimum modulation index */
#define MAXFREQ		(250e-6 * SECOND) /* freq tolerance (.025%) */

/*
 * The on-time synchronization point is the positive-going zero crossing
 * of the first cycle of the second. The IIR baseband filter phase delay
 * is 1.03 ms for IRIG-B and 3.47 ms for IRIG-E. The fudge value 2.68 ms
 * due to the codec and other causes was determined by calibrating to a
 * PPS signal from a GPS receiver.
 *
 * The results with a 2.4-GHz P4 running FreeBSD 6.1 are generally
 * within .02 ms short-term with .02 ms jitter. The processor load due
 * to the driver is 0.51 percent.
 */
#define IRIG_B	((1.03 + 2.68) / 1000)	/* IRIG-B system delay (s) */
#define IRIG_E	((3.47 + 2.68) / 1000)	/* IRIG-E system delay (s) */

/*
 * Data bit definitions
 */
#define BIT0		0	/* zero */
#define BIT1		1	/* one */
#define BITP		2	/* position identifier */

/*
 * Error flags
 */
#define IRIG_ERR_AMP	0x01	/* low carrier amplitude */
#define IRIG_ERR_FREQ	0x02	/* frequency tolerance exceeded */
#define IRIG_ERR_MOD	0x04	/* low modulation index */
#define IRIG_ERR_SYNCH	0x08	/* frame synch error */
#define IRIG_ERR_DECODE	0x10	/* frame decoding error */
#define IRIG_ERR_CHECK	0x20	/* second numbering discrepancy */
#define IRIG_ERR_ERROR	0x40	/* codec error (overrun) */
#define IRIG_ERR_SIGERR	0x80	/* IRIG status error (Spectracom) */

static	char	hexchar[] = "0123456789abcdef";

/*
 * IRIG unit control structure
 */
struct irigunit {
	u_char	timecode[2 * SUBFLD + 1]; /* timecode string */
	l_fp	timestamp;	/* audio sample timestamp */
	l_fp	tick;		/* audio sample increment */
	l_fp	refstamp;	/* reference timestamp */
	l_fp	chrstamp;	/* baud timestamp */
	l_fp	prvstamp;	/* previous baud timestamp */
	double	integ[BAUD];	/* baud integrator */
	double	phase, freq;	/* logical clock phase and frequency */
	double	zxing;		/* phase detector integrator */
	double	yxing;		/* cycle phase */
	double	exing;		/* envelope phase */
	double	modndx;		/* modulation index */
	double	irig_b;		/* IRIG-B signal amplitude */
	double	irig_e;		/* IRIG-E signal amplitude */
	int	errflg;		/* error flags */
	/*
	 * Audio codec variables
	 */
	double	comp[SIZE];	/* decompanding table */
	double	signal;		/* peak signal for AGC */
	int	port;		/* codec port */
	int	gain;		/* codec gain */
	int	mongain;	/* codec monitor gain */
	int	seccnt;		/* second interval counter */

	/*
	 * RF variables
	 */
	double	bpf[9];		/* IRIG-B filter shift register */
	double	lpf[5];		/* IRIG-E filter shift register */
	double	envmin, envmax;	/* envelope min and max */
	double	slice;		/* envelope slice level */
	double	intmin, intmax;	/* integrated envelope min and max */
	double	maxsignal;	/* integrated peak amplitude */
	double	noise;		/* integrated noise amplitude */
	double	lastenv[CYCLE];	/* last cycle amplitudes */
	double	lastint[CYCLE];	/* last integrated cycle amplitudes */
	double	lastsig;	/* last carrier sample */
	double	fdelay;		/* filter delay */
	int	decim;		/* sample decimation factor */
	int	envphase;	/* envelope phase */
	int	envptr;		/* envelope phase pointer */
	int	envsw;		/* envelope state */
	int	envxing;	/* envelope slice crossing */
	int	tc;		/* time constant */
	int	tcount;		/* time constant counter */
	int	badcnt;		/* decimation interval counter */

	/*
	 * Decoder variables
	 */
	int	pulse;		/* cycle counter */
	int	cycles;		/* carrier cycles */
	int	dcycles;	/* data cycles */
	int	lastbit;	/* last code element */
	int	second;		/* previous second */
	int	bitcnt;		/* bit count in frame */
	int	frmcnt;		/* bit count in second */
	int	xptr;		/* timecode pointer */
	int	bits;		/* demodulated bits */
};

/*
 * Function prototypes
 */
static	int	irig_start	(int, struct peer *);
static	void	irig_shutdown	(int, struct peer *);
static	void	irig_receive	(struct recvbuf *);
static	void	irig_poll	(int, struct peer *);

/*
 * More function prototypes
 */
static	void	irig_base	(struct peer *, double);
static	void	irig_rf		(struct peer *, double);
static	void	irig_baud	(struct peer *, int);
static	void	irig_decode	(struct peer *, int);
static	void	irig_gain	(struct peer *);

/*
 * Transfer vector
 */
struct	refclock refclock_irig = {
	irig_start,		/* start up driver */
	irig_shutdown,		/* shut down driver */
	irig_poll,		/* transmit poll message */
	noentry,		/* not used (old irig_control) */
	noentry,		/* initialize driver (not used) */
	noentry,		/* not used (old irig_buginfo) */
	NOFLAGS			/* not used */
};


/*
 * irig_start - open the devices and initialize data for processing
 */
static int
irig_start(
	int	unit,		/* instance number (used for PCM) */
	struct peer *peer	/* peer structure pointer */
	)
{
	struct refclockproc *pp;
	struct irigunit *up;

	/*
	 * Local variables
	 */
	int	fd;		/* file descriptor */
	int	i;		/* index */
	double	step;		/* codec adjustment */

	/*
	 * Open audio device
	 */
	fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
	if (fd < 0)
		return (0);
#ifdef DEBUG
	if (debug)
		audio_show();
#endif

	/*
	 * Allocate and initialize unit structure
	 */
	up = emalloc_zero(sizeof(*up));
	pp = peer->procptr;
	pp->io.clock_recv = irig_receive;
	pp->io.srcclock = peer;
	pp->io.datalen = 0;
	pp->io.fd = fd;
	if (!io_addclock(&pp->io)) {
		close(fd);
		pp->io.fd = -1;
		free(up);
		return (0);
	}
	pp->unitptr = up;

	/*
	 * Initialize miscellaneous variables
	 */
	peer->precision = PRECISION;
	pp->clockdesc = DESCRIPTION;
	memcpy((char *)&pp->refid, REFID, 4);
	up->tc = MINTC;
	up->decim = 1;
	up->gain = 127;

	/*
	 * The companded samples are encoded sign-magnitude. The table
	 * contains all the 256 values in the interest of speed.
	 */
	up->comp[0] = up->comp[OFFSET] = 0.;
	up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
	up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
	step = 2.;
	for (i = 3; i < OFFSET; i++) {
		up->comp[i] = up->comp[i - 1] + step;
		up->comp[OFFSET + i] = -up->comp[i];
		if (i % 16 == 0)
			step *= 2.;
	}
	DTOLFP(1. / SECOND, &up->tick);
	return (1);
}


/*
 * irig_shutdown - shut down the clock
 */
static void
irig_shutdown(
	int	unit,		/* instance number (not used) */
	struct peer *peer	/* peer structure pointer */
	)
{
	struct refclockproc *pp;
	struct irigunit *up;

	pp = peer->procptr;
	up = pp->unitptr;
	if (-1 != pp->io.fd)
		io_closeclock(&pp->io);
	if (NULL != up)
		free(up);
}


/*
 * irig_receive - receive data from the audio device
 *
 * This routine reads input samples and adjusts the logical clock to
 * track the irig clock by dropping or duplicating codec samples.
 */
static void
irig_receive(
	struct recvbuf *rbufp	/* receive buffer structure pointer */
	)
{
	struct peer *peer;
	struct refclockproc *pp;
	struct irigunit *up;

	/*
	 * Local variables
	 */
	double	sample;		/* codec sample */
	u_char	*dpt;		/* buffer pointer */
	int	bufcnt;		/* buffer counter */
	l_fp	ltemp;		/* l_fp temp */

	peer = rbufp->recv_peer;
	pp = peer->procptr;
	up = pp->unitptr;

	/*
	 * Main loop - read until there ain't no more. Note codec
	 * samples are bit-inverted.
	 */
	DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
	L_SUB(&rbufp->recv_time, &ltemp);
	up->timestamp = rbufp->recv_time;
	dpt = rbufp->recv_buffer;
	for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
		sample = up->comp[~*dpt++ & 0xff];

		/*
		 * Variable frequency oscillator. The codec oscillator
		 * runs at the nominal rate of 8000 samples per second,
		 * or 125 us per sample. A frequency change of one unit
		 * results in either duplicating or deleting one sample
		 * per second, which results in a frequency change of
		 * 125 PPM.
		 */
		up->phase += (up->freq + clock_codec) / SECOND;
		up->phase += pp->fudgetime2 / 1e6;
		if (up->phase >= .5) {
			up->phase -= 1.;
		} else if (up->phase < -.5) {
			up->phase += 1.;
			irig_rf(peer, sample);
			irig_rf(peer, sample);
		} else {
			irig_rf(peer, sample);
		}
		L_ADD(&up->timestamp, &up->tick);
		sample = fabs(sample);
		if (sample > up->signal)
			up->signal = sample;
		up->signal += (sample - up->signal) /
		    1000;

		/*
		 * Once each second, determine the IRIG format and gain.
		 */
		up->seccnt = (up->seccnt + 1) % SECOND;
		if (up->seccnt == 0) {
			if (up->irig_b > up->irig_e) {
				up->decim = 1;
				up->fdelay = IRIG_B;
			} else {
				up->decim = 10;
				up->fdelay = IRIG_E;
			}
			up->irig_b = up->irig_e = 0;
			irig_gain(peer);

		}
	}

	/*
	 * Set the input port and monitor gain for the next buffer.
	 */
	if (pp->sloppyclockflag & CLK_FLAG2)
		up->port = 2;
	else
		up->port = 1;
	if (pp->sloppyclockflag & CLK_FLAG3)
		up->mongain = MONGAIN;
	else
		up->mongain = 0;
}


/*
 * irig_rf - RF processing
 *
 * This routine filters the RF signal using a bandass filter for IRIG-B
 * and a lowpass filter for IRIG-E. In case of IRIG-E, the samples are
 * decimated by a factor of ten. Note that the codec filters function as
 * roofing filters to attenuate both the high and low ends of the
 * passband. IIR filter coefficients were determined using Matlab Signal
 * Processing Toolkit.
 */
static void
irig_rf(
	struct peer *peer,	/* peer structure pointer */
	double	sample		/* current signal sample */
	)
{
	struct refclockproc *pp;
	struct irigunit *up;

	/*
	 * Local variables
	 */
	double	irig_b, irig_e;	/* irig filter outputs */

	pp = peer->procptr;
	up = pp->unitptr;

	/*
	 * IRIG-B filter. Matlab 4th-order IIR elliptic, 800-1200 Hz
	 * bandpass, 0.3 dB passband ripple, -50 dB stopband ripple,
	 * phase delay 1.03 ms.
	 */
	irig_b = (up->bpf[8] = up->bpf[7]) * 6.505491e-001;
	irig_b += (up->bpf[7] = up->bpf[6]) * -3.875180e+000;
	irig_b += (up->bpf[6] = up->bpf[5]) * 1.151180e+001;
	irig_b += (up->bpf[5] = up->bpf[4]) * -2.141264e+001;
	irig_b += (up->bpf[4] = up->bpf[3]) * 2.712837e+001;
	irig_b += (up->bpf[3] = up->bpf[2]) * -2.384486e+001;
	irig_b += (up->bpf[2] = up->bpf[1]) * 1.427663e+001;
	irig_b += (up->bpf[1] = up->bpf[0]) * -5.352734e+000;
	up->bpf[0] = sample - irig_b;
	irig_b = up->bpf[0] * 4.952157e-003
	    + up->bpf[1] * -2.055878e-002
	    + up->bpf[2] * 4.401413e-002
	    + up->bpf[3] * -6.558851e-002
	    + up->bpf[4] * 7.462108e-002
	    + up->bpf[5] * -6.558851e-002
	    + up->bpf[6] * 4.401413e-002
	    + up->bpf[7] * -2.055878e-002
	    + up->bpf[8] * 4.952157e-003;
	up->irig_b += irig_b * irig_b;

	/*
	 * IRIG-E filter. Matlab 4th-order IIR elliptic, 130-Hz lowpass,
	 * 0.3 dB passband ripple, -50 dB stopband ripple, phase delay
	 * 3.47 ms.
	 */
	irig_e = (up->lpf[4] = up->lpf[3]) * 8.694604e-001;
	irig_e += (up->lpf[3] = up->lpf[2]) * -3.589893e+000;
	irig_e += (up->lpf[2] = up->lpf[1]) * 5.570154e+000;
	irig_e += (up->lpf[1] = up->lpf[0]) * -3.849667e+000;
	up->lpf[0] = sample - irig_e;
	irig_e = up->lpf[0] * 3.215696e-003
	    + up->lpf[1] * -1.174951e-002
	    + up->lpf[2] * 1.712074e-002
	    + up->lpf[3] * -1.174951e-002
	    + up->lpf[4] * 3.215696e-003;
	up->irig_e += irig_e * irig_e;

	/*
	 * Decimate by a factor of either 1 (IRIG-B) or 10 (IRIG-E).
	 */
	up->badcnt = (up->badcnt + 1) % up->decim;
	if (up->badcnt == 0) {
		if (up->decim == 1)
			irig_base(peer, irig_b);
		else
			irig_base(peer, irig_e);
	}
}

/*
 * irig_base - baseband processing
 *
 * This routine processes the baseband signal and demodulates the AM
 * carrier using a synchronous detector. It then synchronizes to the
 * data frame at the baud rate and decodes the width-modulated data
 * pulses.
 */
static void
irig_base(
	struct peer *peer,	/* peer structure pointer */
	double	sample		/* current signal sample */
	)
{
	struct refclockproc *pp;
	struct irigunit *up;

	/*
	 * Local variables
	 */
	double	lope;		/* integrator output */
	double	env;		/* envelope detector output */
	double	dtemp;
	int	carphase;	/* carrier phase */

	pp = peer->procptr;
	up = pp->unitptr;

	/*
	 * Synchronous baud integrator. Corresponding samples of current
	 * and past baud intervals are integrated to refine the envelope
	 * amplitude and phase estimate. We keep one cycle (1 ms) of the
	 * raw data and one baud (10 ms) of the integrated data.
	 */
	up->envphase = (up->envphase + 1) % BAUD;
	up->integ[up->envphase] += (sample - up->integ[up->envphase]) /
	    (5 * up->tc);
	lope = up->integ[up->envphase];
	carphase = up->envphase % CYCLE;
	up->lastenv[carphase] = sample;
	up->lastint[carphase] = lope;

	/*
	 * Phase detector. Find the negative-going zero crossing
	 * relative to sample 4 in the 8-sample sycle. A phase change of
	 * 360 degrees produces an output change of one unit.
	 */ 
	if (up->lastsig > 0 && lope <= 0)
		up->zxing += (double)(carphase - 4) / CYCLE;
	up->lastsig = lope;

	/*
	 * End of the baud. Update signal/noise estimates and PLL
	 * phase, frequency and time constant.
	 */
	if (up->envphase == 0) {
		up->maxsignal = up->intmax; up->noise = up->intmin;
		up->intmin = 1e6; up->intmax = -1e6;
		if (up->maxsignal < DRPOUT)
			up->errflg |= IRIG_ERR_AMP;
		if (up->maxsignal > 0)
			up->modndx = (up->maxsignal - up->noise) /
			    up->maxsignal;
 		else
			up->modndx = 0;
		if (up->modndx < MODMIN)
			up->errflg |= IRIG_ERR_MOD;
		if (up->errflg & (IRIG_ERR_AMP | IRIG_ERR_FREQ |
		   IRIG_ERR_MOD | IRIG_ERR_SYNCH)) {
			up->tc = MINTC;
			up->tcount = 0;
		}

		/*
		 * Update PLL phase and frequency. The PLL time constant
		 * is set initially to stabilize the frequency within a
		 * minute or two, then increases to the maximum. The
		 * frequency is clamped so that the PLL capture range
		 * cannot be exceeded.
		 */
		dtemp = up->zxing * up->decim / BAUD;
		up->yxing = dtemp;
		up->zxing = 0.;
		up->phase += dtemp / up->tc;
		up->freq += dtemp / (4. * up->tc * up->tc);
		if (up->freq > MAXFREQ) {
			up->freq = MAXFREQ;
			up->errflg |= IRIG_ERR_FREQ;
		} else if (up->freq < -MAXFREQ) {
			up->freq = -MAXFREQ;
			up->errflg |= IRIG_ERR_FREQ;
		}
	}

	/*
	 * Synchronous demodulator. There are eight samples in the cycle
	 * and ten cycles in the baud. Since the PLL has aligned the
	 * negative-going zero crossing at sample 4, the maximum
	 * amplitude is at sample 2 and minimum at sample 6. The
	 * beginning of the data pulse is determined from the integrated
	 * samples, while the end of the pulse is determined from the
	 * raw samples. The raw data bits are demodulated relative to
	 * the slice level and left-shifted in the decoding register.
	 */
	if (carphase != 7)
		return;

	lope = (up->lastint[2] - up->lastint[6]) / 2.;
	if (lope > up->intmax)
		up->intmax = lope;
	if (lope < up->intmin)
		up->intmin = lope;

	/*
	 * Pulse code demodulator and reference timestamp. The decoder
	 * looks for a sequence of ten bits; the first two bits must be
	 * one, the last two bits must be zero. Frame synch is asserted
	 * when three correct frames have been found.
	 */
	up->pulse = (up->pulse + 1) % 10;
	up->cycles <<= 1;
	if (lope >= (up->maxsignal + up->noise) / 2.)
		up->cycles |= 1;
	if ((up->cycles & 0x303c0f03) == 0x300c0300) {
		if (up->pulse != 0)
			up->errflg |= IRIG_ERR_SYNCH;
		up->pulse = 0;
	}

	/*
	 * Assemble the baud and max/min to get the slice level for the
	 * next baud. The slice level is based on the maximum over the
	 * first two bits and the minimum over the last two bits, with
	 * the slice level halfway between the maximum and minimum.
	 */
	env = (up->lastenv[2] - up->lastenv[6]) / 2.;
	up->dcycles <<= 1;
	if (env >= up->slice)
		up->dcycles |= 1;
	switch(up->pulse) {

	case 0:
		irig_baud(peer, up->dcycles);
		if (env < up->envmin)
			up->envmin = env;
		up->slice = (up->envmax + up->envmin) / 2;
		up->envmin = 1e6; up->envmax = -1e6;
		break;

	case 1:
		up->envmax = env;
		break;

	case 2:
		if (env > up->envmax)
			up->envmax = env;
		break;

	case 9:
		up->envmin = env;
		break;
	}
}

/*
 * irig_baud - update the PLL and decode the pulse-width signal
 */
static void
irig_baud(
	struct peer *peer,	/* peer structure pointer */
	int	bits		/* decoded bits */
	)
{
	struct refclockproc *pp;
	struct irigunit *up;
	double	dtemp;
	l_fp	ltemp;

        pp = peer->procptr;
	up = pp->unitptr;

	/*
	 * The PLL time constant starts out small, in order to
	 * sustain a frequency tolerance of 250 PPM. It
	 * gradually increases as the loop settles down. Note
	 * that small wiggles are not believed, unless they
	 * persist for lots of samples.
	 */
	up->exing = -up->yxing;
	if (abs(up->envxing - up->envphase) <= 1) {
		up->tcount++;
		if (up->tcount > 20 * up->tc) {
			up->tc++;
			if (up->tc > MAXTC)
				up->tc = MAXTC;
			up->tcount = 0;
			up->envxing = up->envphase;
		} else {
			up->exing -= up->envxing - up->envphase;
		}
	} else {
		up->tcount = 0;
		up->envxing = up->envphase;
	}

	/*
	 * Strike the baud timestamp as the positive zero crossing of
	 * the first bit, accounting for the codec delay and filter
	 * delay.
	 */
	up->prvstamp = up->chrstamp;
	dtemp = up->decim * (up->exing / SECOND) + up->fdelay;
	DTOLFP(dtemp, &ltemp);
	up->chrstamp = up->timestamp;
	L_SUB(&up->chrstamp, &ltemp);

	/*
	 * The data bits are collected in ten-bit bauds. The first two
	 * bits are not used. The resulting patterns represent runs of
	 * 0-1 bits (0), 2-4 bits (1) and 5-7 bits (PI). The remaining
	 * 8-bit run represents a soft error and is treated as 0.
	 */
	switch (up->dcycles & 0xff) {

	case 0x00:		/* 0-1 bits (0) */
	case 0x80:
		irig_decode(peer, BIT0);
		break;

	case 0xc0:		/* 2-4 bits (1) */
	case 0xe0:
	case 0xf0:
		irig_decode(peer, BIT1);
		break;

	case 0xf8:		/* (5-7 bits (PI) */
	case 0xfc:
	case 0xfe:
		irig_decode(peer, BITP);
		break;

	default:		/* 8 bits (error) */
		irig_decode(peer, BIT0);
		up->errflg |= IRIG_ERR_DECODE;
	}
}


/*
 * irig_decode - decode the data
 *
 * This routine assembles bauds into digits, digits into frames and
 * frames into the timecode fields. Bits can have values of zero, one
 * or position identifier. There are four bits per digit, ten digits per
 * frame and ten frames per second.
 */
static void
irig_decode(
	struct	peer *peer,	/* peer structure pointer */
	int	bit		/* data bit (0, 1 or 2) */
	)
{
	struct refclockproc *pp;
	struct irigunit *up;

	/*
	 * Local variables
	 */
	int	syncdig;	/* sync digit (Spectracom) */
	char	sbs[6 + 1];	/* binary seconds since 0h */
	char	spare[2 + 1];	/* mulligan digits */
	int	temp;

	syncdig = 0;
	pp = peer->procptr;
	up = pp->unitptr;

	/*
	 * Assemble frame bits.
	 */
	up->bits >>= 1;
	if (bit == BIT1) {
		up->bits |= 0x200;
	} else if (bit == BITP && up->lastbit == BITP) {

		/*
		 * Frame sync - two adjacent position identifiers, which
		 * mark the beginning of the second. The reference time
		 * is the beginning of the second position identifier,
		 * so copy the character timestamp to the reference
		 * timestamp.
		 */
		if (up->frmcnt != 1)
			up->errflg |= IRIG_ERR_SYNCH;
		up->frmcnt = 1;
		up->refstamp = up->prvstamp;
	}
	up->lastbit = bit;
	if (up->frmcnt % SUBFLD == 0) {

		/*
		 * End of frame. Encode two hexadecimal digits in
		 * little-endian timecode field. Note frame 1 is shifted
		 * right one bit to account for the marker PI.
		 */
		temp = up->bits;
		if (up->frmcnt == 10)
			temp >>= 1;
		if (up->xptr >= 2) {
			up->timecode[--up->xptr] = hexchar[temp & 0xf];
			up->timecode[--up->xptr] = hexchar[(temp >> 5) &
			    0xf];
		}
		if (up->frmcnt == 0) {

			/*
			 * End of second. Decode the timecode and wind
			 * the clock. Not all IRIG generators have the
			 * year; if so, it is nonzero after year 2000.
			 * Not all have the hardware status bit; if so,
			 * it is lit when the source is okay and dim
			 * when bad. We watch this only if the year is
			 * nonzero. Not all are configured for signature
			 * control. If so, all BCD digits are set to
			 * zero if the source is bad. In this case the
			 * refclock_process() will reject the timecode
			 * as invalid.
			 */
			up->xptr = 2 * SUBFLD;
			if (sscanf((char *)up->timecode,
			   "%6s%2d%1d%2s%3d%2d%2d%2d", sbs, &pp->year,
			    &syncdig, spare, &pp->day, &pp->hour,
			    &pp->minute, &pp->second) != 8)
				pp->leap = LEAP_NOTINSYNC;
			else
				pp->leap = LEAP_NOWARNING;
			up->second = (up->second + up->decim) % 60;

			/*
			 * Raise an alarm if the day field is zero,
			 * which happens when signature control is
			 * enabled and the device has lost
			 * synchronization. Raise an alarm if the year
			 * field is nonzero and the sync indicator is
			 * zero, which happens when a Spectracom radio
			 * has lost synchronization. Raise an alarm if
			 * the expected second does not agree with the
			 * decoded second, which happens with a garbled
			 * IRIG signal. We are very particular.
			 */
			if (pp->day == 0 || (pp->year != 0 && syncdig ==
			    0))
				up->errflg |= IRIG_ERR_SIGERR;
			if (pp->second != up->second)
				up->errflg |= IRIG_ERR_CHECK;
			up->second = pp->second;

			/*
			 * Wind the clock only if there are no errors
			 * and the time constant has reached the
			 * maximum.
			 */
			if (up->errflg == 0 && up->tc == MAXTC) {
				pp->lastref = pp->lastrec;
				pp->lastrec = up->refstamp;
				if (!refclock_process(pp))
					refclock_report(peer,
					    CEVNT_BADTIME);
			}
			snprintf(pp->a_lastcode, sizeof(pp->a_lastcode),
			    "%02x %02d %03d %02d:%02d:%02d %4.0f %3d %6.3f %2d %6.2f %6.1f %s",
			    up->errflg, pp->year, pp->day,
			    pp->hour, pp->minute, pp->second,
			    up->maxsignal, up->gain, up->modndx,
			    up->tc, up->exing * 1e6 / SECOND, up->freq *
			    1e6 / SECOND, ulfptoa(&pp->lastrec, 6));
			pp->lencode = strlen(pp->a_lastcode);
			up->errflg = 0;
			if (pp->sloppyclockflag & CLK_FLAG4) {
				record_clock_stats(&peer->srcadr,
				    pp->a_lastcode);
#ifdef DEBUG
				if (debug)
					printf("irig %s\n",
					    pp->a_lastcode);
#endif /* DEBUG */
			}
		}
	}
	up->frmcnt = (up->frmcnt + 1) % FIELD;
}


/*
 * irig_poll - called by the transmit procedure
 *
 * This routine sweeps up the timecode updates since the last poll. For
 * IRIG-B there should be at least 60 updates; for IRIG-E there should
 * be at least 6. If nothing is heard, a timeout event is declared. 
 */
static void
irig_poll(
	int	unit,		/* instance number (not used) */
	struct peer *peer	/* peer structure pointer */
	)
{
	struct refclockproc *pp;

	pp = peer->procptr;

	if (pp->coderecv == pp->codeproc) {
		refclock_report(peer, CEVNT_TIMEOUT);
		return;

	}
	refclock_receive(peer);
	if (!(pp->sloppyclockflag & CLK_FLAG4)) {
		record_clock_stats(&peer->srcadr, pp->a_lastcode);
#ifdef DEBUG
		if (debug)
			printf("irig %s\n", pp->a_lastcode);
#endif /* DEBUG */
	}
	pp->polls++;
	
}


/*
 * irig_gain - adjust codec gain
 *
 * This routine is called at the end of each second. It uses the AGC to
 * bradket the maximum signal level between MINAMP and MAXAMP to avoid
 * hunting. The routine also jiggles the input port and selectively
 * mutes the monitor.
 */
static void
irig_gain(
	struct peer *peer	/* peer structure pointer */
	)
{
	struct refclockproc *pp;
	struct irigunit *up;

	pp = peer->procptr;
	up = pp->unitptr;

	/*
	 * Apparently, the codec uses only the high order bits of the
	 * gain control field. Thus, it may take awhile for changes to
	 * wiggle the hardware bits.
	 */
	if (up->maxsignal < MINAMP) {
		up->gain += 4;
		if (up->gain > MAXGAIN)
			up->gain = MAXGAIN;
	} else if (up->maxsignal > MAXAMP) {
		up->gain -= 4;
		if (up->gain < 0)
			up->gain = 0;
	}
	audio_gain(up->gain, up->mongain, up->port);
}


#else
int refclock_irig_bs;
#endif /* REFCLOCK */