Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
/*
 * refclock_wwv - clock driver for NIST WWV/H time/frequency station
 */
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#if defined(REFCLOCK) && defined(CLOCK_WWV)

#include "ntpd.h"
#include "ntp_io.h"
#include "ntp_refclock.h"
#include "ntp_calendar.h"
#include "ntp_stdlib.h"
#include "audio.h"

#include <stdio.h>
#include <ctype.h>
#include <math.h>
#ifdef HAVE_SYS_IOCTL_H
# include <sys/ioctl.h>
#endif /* HAVE_SYS_IOCTL_H */

#define ICOM 1

#ifdef ICOM
#include "icom.h"
#endif /* ICOM */

/*
 * Audio WWV/H demodulator/decoder
 *
 * This driver synchronizes the computer time using data encoded in
 * radio transmissions from NIST time/frequency stations WWV in Boulder,
 * CO, and WWVH in Kauai, HI. Transmissions are made continuously on
 * 2.5, 5, 10 and 15 MHz from WWV and WWVH, and 20 MHz from WWV. An
 * ordinary AM shortwave receiver can be tuned manually to one of these
 * frequencies or, in the case of ICOM receivers, the receiver can be
 * tuned automatically using this program as propagation conditions
 * change throughout the weasons, both day and night.
 *
 * The driver requires an audio codec or sound card with sampling rate 8
 * kHz and mu-law companding. This is the same standard as used by the
 * telephone industry and is supported by most hardware and operating
 * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
 * implementation, only one audio driver and codec can be supported on a
 * single machine.
 *
 * The demodulation and decoding algorithms used in this driver are
 * based on those developed for the TAPR DSP93 development board and the
 * TI 320C25 digital signal processor described in: Mills, D.L. A
 * precision radio clock for WWV transmissions. Electrical Engineering
 * Report 97-8-1, University of Delaware, August 1997, 25 pp., available
 * from www.eecis.udel.edu/~mills/reports.html. The algorithms described
 * in this report have been modified somewhat to improve performance
 * under weak signal conditions and to provide an automatic station
 * identification feature.
 *
 * The ICOM code is normally compiled in the driver. It isn't used,
 * unless the mode keyword on the server configuration command specifies
 * a nonzero ICOM ID select code. The C-IV trace is turned on if the
 * debug level is greater than one.
 *
 * Fudge factors
 *
 * Fudge flag4 causes the debugging output described above to be
 * recorded in the clockstats file. Fudge flag2 selects the audio input
 * port, where 0 is the mike port (default) and 1 is the line-in port.
 * It does not seem useful to select the compact disc player port. Fudge
 * flag3 enables audio monitoring of the input signal. For this purpose,
 * the monitor gain is set to a default value.
 *
 * CEVNT_BADTIME	invalid date or time
 * CEVNT_PROP		propagation failure - no stations heard
 * CEVNT_TIMEOUT	timeout (see newgame() below)
 */
/*
 * General definitions. These ordinarily do not need to be changed.
 */
#define	DEVICE_AUDIO	"/dev/audio" /* audio device name */
#define	AUDIO_BUFSIZ	320	/* audio buffer size (50 ms) */
#define	PRECISION	(-10)	/* precision assumed (about 1 ms) */
#define	DESCRIPTION	"WWV/H Audio Demodulator/Decoder" /* WRU */
#define WWV_SEC		8000	/* second epoch (sample rate) (Hz) */
#define WWV_MIN		(WWV_SEC * 60) /* minute epoch */
#define OFFSET		128	/* companded sample offset */
#define SIZE		256	/* decompanding table size */
#define	MAXAMP		6000.	/* max signal level reference */
#define	MAXCLP		100	/* max clips above reference per s */
#define MAXSNR		40.	/* max SNR reference */
#define MAXFREQ		1.5	/* max frequency tolerance (187 PPM) */
#define DATCYC		170	/* data filter cycles */
#define DATSIZ		(DATCYC * MS) /* data filter size */
#define SYNCYC		800	/* minute filter cycles */
#define SYNSIZ		(SYNCYC * MS) /* minute filter size */
#define TCKCYC		5	/* tick filter cycles */
#define TCKSIZ		(TCKCYC * MS) /* tick filter size */
#define NCHAN		5	/* number of radio channels */
#define	AUDIO_PHI	5e-6	/* dispersion growth factor */
#define	TBUF		128	/* max monitor line length */

/*
 * Tunable parameters. The DGAIN parameter can be changed to fit the
 * audio response of the radio at 100 Hz. The WWV/WWVH data subcarrier
 * is transmitted at about 20 percent percent modulation; the matched
 * filter boosts it by a factor of 17 and the receiver response does
 * what it does. The compromise value works for ICOM radios. If the
 * radio is not tunable, the DCHAN parameter can be changed to fit the
 * expected best propagation frequency: higher if further from the
 * transmitter, lower if nearer. The compromise value works for the US
 * right coast.
 */
#define DCHAN		3	/* default radio channel (15 Mhz) */
#define DGAIN		5.	/* subcarrier gain */

/*
 * General purpose status bits (status)
 *
 * SELV and/or SELH are set when WWV or WWVH have been heard and cleared
 * on signal loss. SSYNC is set when the second sync pulse has been
 * acquired and cleared by signal loss. MSYNC is set when the minute
 * sync pulse has been acquired. DSYNC is set when the units digit has
 * has reached the threshold and INSYNC is set when all nine digits have
 * reached the threshold. The MSYNC, DSYNC and INSYNC bits are cleared
 * only by timeout, upon which the driver starts over from scratch.
 *
 * DGATE is lit if the data bit amplitude or SNR is below thresholds and
 * BGATE is lit if the pulse width amplitude or SNR is below thresolds.
 * LEPSEC is set during the last minute of the leap day. At the end of
 * this minute the driver inserts second 60 in the seconds state machine
 * and the minute sync slips a second.
 */
#define MSYNC		0x0001	/* minute epoch sync */
#define SSYNC		0x0002	/* second epoch sync */
#define DSYNC		0x0004	/* minute units sync */
#define INSYNC		0x0008	/* clock synchronized */
#define FGATE		0x0010	/* frequency gate */
#define DGATE		0x0020	/* data pulse amplitude error */
#define BGATE		0x0040	/* data pulse width error */
#define	METRIC		0x0080	/* one or more stations heard */
#define LEPSEC		0x1000	/* leap minute */

/*
 * Station scoreboard bits
 *
 * These are used to establish the signal quality for each of the five
 * frequencies and two stations.
 */
#define SELV		0x0100	/* WWV station select */
#define SELH		0x0200	/* WWVH station select */

/*
 * Alarm status bits (alarm)
 *
 * These bits indicate various alarm conditions, which are decoded to
 * form the quality character included in the timecode.
 */
#define CMPERR		0x1	/* digit or misc bit compare error */
#define LOWERR		0x2	/* low bit or digit amplitude or SNR */
#define NINERR		0x4	/* less than nine digits in minute */
#define SYNERR		0x8	/* not tracking second sync */

/*
 * Watchcat timeouts (watch)
 *
 * If these timeouts expire, the status bits are mashed to zero and the
 * driver starts from scratch. Suitably more refined procedures may be
 * developed in future. All these are in minutes.
 */
#define ACQSN		6	/* station acquisition timeout */
#define DATA		15	/* unit minutes timeout */
#define SYNCH		40	/* station sync timeout */
#define PANIC		(2 * 1440) /* panic timeout */

/*
 * Thresholds. These establish the minimum signal level, minimum SNR and
 * maximum jitter thresholds which establish the error and false alarm
 * rates of the driver. The values defined here may be on the
 * adventurous side in the interest of the highest sensitivity.
 */
#define MTHR		13.	/* minute sync gate (percent) */
#define TTHR		50.	/* minute sync threshold (percent) */
#define AWND		20	/* minute sync jitter threshold (ms) */
#define ATHR		2500.	/* QRZ minute sync threshold */
#define ASNR		20.	/* QRZ minute sync SNR threshold (dB) */
#define QTHR		2500.	/* QSY minute sync threshold */
#define QSNR		20.	/* QSY minute sync SNR threshold (dB) */
#define STHR		2500.	/* second sync threshold */
#define	SSNR		15.	/* second sync SNR threshold (dB) */
#define SCMP		10 	/* second sync compare threshold */
#define DTHR		1000.	/* bit threshold */
#define DSNR		10.	/* bit SNR threshold (dB) */
#define AMIN		3	/* min bit count */
#define AMAX		6	/* max bit count */
#define BTHR		1000.	/* digit threshold */
#define BSNR		3.	/* digit likelihood threshold (dB) */
#define BCMP		3	/* digit compare threshold */
#define	MAXERR		40	/* maximum error alarm */

/*
 * Tone frequency definitions. The increments are for 4.5-deg sine
 * table.
 */
#define MS		(WWV_SEC / 1000) /* samples per millisecond */
#define IN100		((100 * 80) / WWV_SEC) /* 100 Hz increment */
#define IN1000		((1000 * 80) / WWV_SEC) /* 1000 Hz increment */
#define IN1200		((1200 * 80) / WWV_SEC) /* 1200 Hz increment */

/*
 * Acquisition and tracking time constants
 */
#define MINAVG		8	/* min averaging time */
#define MAXAVG		1024	/* max averaging time */
#define FCONST		3	/* frequency time constant */
#define TCONST		16	/* data bit/digit time constant */

/*
 * Miscellaneous status bits (misc)
 *
 * These bits correspond to designated bits in the WWV/H timecode. The
 * bit probabilities are exponentially averaged over several minutes and
 * processed by a integrator and threshold.
 */
#define DUT1		0x01	/* 56 DUT .1 */
#define DUT2		0x02	/* 57 DUT .2 */
#define DUT4		0x04	/* 58 DUT .4 */
#define DUTS		0x08	/* 50 DUT sign */
#define DST1		0x10	/* 55 DST1 leap warning */
#define DST2		0x20	/* 2 DST2 DST1 delayed one day */
#define SECWAR		0x40	/* 3 leap second warning */

/*
 * The on-time synchronization point is the positive-going zero crossing
 * of the first cycle of the 5-ms second pulse. The IIR baseband filter
 * phase delay is 0.91 ms, while the receiver delay is approximately 4.7
 * ms at 1000 Hz. The fudge value -0.45 ms due to the codec and other
 * causes was determined by calibrating to a PPS signal from a GPS
 * receiver. The additional propagation delay specific to each receiver
 * location can be  programmed in the fudge time1 and time2 values for
 * WWV and WWVH, respectively.
 *
 * The resulting offsets with a 2.4-GHz P4 running FreeBSD 6.1 are
 * generally within .02 ms short-term with .02 ms jitter. The long-term
 * offsets vary up to 0.3 ms due to ionosperhic layer height variations.
 * The processor load due to the driver is 5.8 percent.
 */
#define PDELAY	((.91 + 4.7 - 0.45) / 1000) /* system delay (s) */

/*
 * Table of sine values at 4.5-degree increments. This is used by the
 * synchronous matched filter demodulators.
 */
double sintab[] = {
 0.000000e+00,  7.845910e-02,  1.564345e-01,  2.334454e-01, /* 0-3 */
 3.090170e-01,  3.826834e-01,  4.539905e-01,  5.224986e-01, /* 4-7 */
 5.877853e-01,  6.494480e-01,  7.071068e-01,  7.604060e-01, /* 8-11 */
 8.090170e-01,  8.526402e-01,  8.910065e-01,  9.238795e-01, /* 12-15 */
 9.510565e-01,  9.723699e-01,  9.876883e-01,  9.969173e-01, /* 16-19 */
 1.000000e+00,  9.969173e-01,  9.876883e-01,  9.723699e-01, /* 20-23 */
 9.510565e-01,  9.238795e-01,  8.910065e-01,  8.526402e-01, /* 24-27 */
 8.090170e-01,  7.604060e-01,  7.071068e-01,  6.494480e-01, /* 28-31 */
 5.877853e-01,  5.224986e-01,  4.539905e-01,  3.826834e-01, /* 32-35 */
 3.090170e-01,  2.334454e-01,  1.564345e-01,  7.845910e-02, /* 36-39 */
-0.000000e+00, -7.845910e-02, -1.564345e-01, -2.334454e-01, /* 40-43 */
-3.090170e-01, -3.826834e-01, -4.539905e-01, -5.224986e-01, /* 44-47 */
-5.877853e-01, -6.494480e-01, -7.071068e-01, -7.604060e-01, /* 48-51 */
-8.090170e-01, -8.526402e-01, -8.910065e-01, -9.238795e-01, /* 52-55 */
-9.510565e-01, -9.723699e-01, -9.876883e-01, -9.969173e-01, /* 56-59 */
-1.000000e+00, -9.969173e-01, -9.876883e-01, -9.723699e-01, /* 60-63 */
-9.510565e-01, -9.238795e-01, -8.910065e-01, -8.526402e-01, /* 64-67 */
-8.090170e-01, -7.604060e-01, -7.071068e-01, -6.494480e-01, /* 68-71 */
-5.877853e-01, -5.224986e-01, -4.539905e-01, -3.826834e-01, /* 72-75 */
-3.090170e-01, -2.334454e-01, -1.564345e-01, -7.845910e-02, /* 76-79 */
 0.000000e+00};						    /* 80 */

/*
 * Decoder operations at the end of each second are driven by a state
 * machine. The transition matrix consists of a dispatch table indexed
 * by second number. Each entry in the table contains a case switch
 * number and argument.
 */
struct progx {
	int sw;			/* case switch number */
	int arg;		/* argument */
};

/*
 * Case switch numbers
 */
#define IDLE		0	/* no operation */
#define COEF		1	/* BCD bit */
#define COEF1		2	/* BCD bit for minute unit */
#define COEF2		3	/* BCD bit not used */
#define DECIM9		4	/* BCD digit 0-9 */
#define DECIM6		5	/* BCD digit 0-6 */
#define DECIM3		6	/* BCD digit 0-3 */
#define DECIM2		7	/* BCD digit 0-2 */
#define MSCBIT		8	/* miscellaneous bit */
#define MSC20		9	/* miscellaneous bit */		
#define MSC21		10	/* QSY probe channel */		
#define MIN1		11	/* latch time */		
#define MIN2		12	/* leap second */
#define SYNC2		13	/* latch minute sync pulse */		
#define SYNC3		14	/* latch data pulse */		

/*
 * Offsets in decoding matrix
 */
#define MN		0	/* minute digits (2) */
#define HR		2	/* hour digits (2) */
#define DA		4	/* day digits (3) */
#define YR		7	/* year digits (2) */

struct progx progx[] = {
	{SYNC2,	0},		/* 0 latch minute sync pulse */
	{SYNC3,	0},		/* 1 latch data pulse */
	{MSCBIT, DST2},		/* 2 dst2 */
	{MSCBIT, SECWAR},	/* 3 lw */
	{COEF,	0},		/* 4 1 year units */
	{COEF,	1},		/* 5 2 */
	{COEF,	2},		/* 6 4 */
	{COEF,	3},		/* 7 8 */
	{DECIM9, YR},		/* 8 */
	{IDLE,	0},		/* 9 p1 */
	{COEF1,	0},		/* 10 1 minute units */
	{COEF1,	1},		/* 11 2 */
	{COEF1,	2},		/* 12 4 */
	{COEF1,	3},		/* 13 8 */
	{DECIM9, MN},		/* 14 */
	{COEF,	0},		/* 15 10 minute tens */
	{COEF,	1},		/* 16 20 */
	{COEF,	2},		/* 17 40 */
	{COEF2,	3},		/* 18 80 (not used) */
	{DECIM6, MN + 1},	/* 19 p2 */
	{COEF,	0},		/* 20 1 hour units */
	{COEF,	1},		/* 21 2 */
	{COEF,	2},		/* 22 4 */
	{COEF,	3},		/* 23 8 */
	{DECIM9, HR},		/* 24 */
	{COEF,	0},		/* 25 10 hour tens */
	{COEF,	1},		/* 26 20 */
	{COEF2,	2},		/* 27 40 (not used) */
	{COEF2,	3},		/* 28 80 (not used) */
	{DECIM2, HR + 1},	/* 29 p3 */
	{COEF,	0},		/* 30 1 day units */
	{COEF,	1},		/* 31 2 */
	{COEF,	2},		/* 32 4 */
	{COEF,	3},		/* 33 8 */
	{DECIM9, DA},		/* 34 */
	{COEF,	0},		/* 35 10 day tens */
	{COEF,	1},		/* 36 20 */
	{COEF,	2},		/* 37 40 */
	{COEF,	3},		/* 38 80 */
	{DECIM9, DA + 1},	/* 39 p4 */
	{COEF,	0},		/* 40 100 day hundreds */
	{COEF,	1},		/* 41 200 */
	{COEF2,	2},		/* 42 400 (not used) */
	{COEF2,	3},		/* 43 800 (not used) */
	{DECIM3, DA + 2},	/* 44 */
	{IDLE,	0},		/* 45 */
	{IDLE,	0},		/* 46 */
	{IDLE,	0},		/* 47 */
	{IDLE,	0},		/* 48 */
	{IDLE,	0},		/* 49 p5 */
	{MSCBIT, DUTS},		/* 50 dut+- */
	{COEF,	0},		/* 51 10 year tens */
	{COEF,	1},		/* 52 20 */
	{COEF,	2},		/* 53 40 */
	{COEF,	3},		/* 54 80 */
	{MSC20, DST1},		/* 55 dst1 */
	{MSCBIT, DUT1},		/* 56 0.1 dut */
	{MSCBIT, DUT2},		/* 57 0.2 */
	{MSC21, DUT4},		/* 58 0.4 QSY probe channel */
	{MIN1,	0},		/* 59 p6 latch time */
	{MIN2,	0}		/* 60 leap second */
};

/*
 * BCD coefficients for maximum-likelihood digit decode
 */
#define P15	1.		/* max positive number */
#define N15	-1.		/* max negative number */

/*
 * Digits 0-9
 */
#define P9	(P15 / 4)	/* mark (+1) */
#define N9	(N15 / 4)	/* space (-1) */

double bcd9[][4] = {
	{N9, N9, N9, N9}, 	/* 0 */
	{P9, N9, N9, N9}, 	/* 1 */
	{N9, P9, N9, N9}, 	/* 2 */
	{P9, P9, N9, N9}, 	/* 3 */
	{N9, N9, P9, N9}, 	/* 4 */
	{P9, N9, P9, N9}, 	/* 5 */
	{N9, P9, P9, N9}, 	/* 6 */
	{P9, P9, P9, N9}, 	/* 7 */
	{N9, N9, N9, P9}, 	/* 8 */
	{P9, N9, N9, P9}, 	/* 9 */
	{0, 0, 0, 0}		/* backstop */
};

/*
 * Digits 0-6 (minute tens)
 */
#define P6	(P15 / 3)	/* mark (+1) */
#define N6	(N15 / 3)	/* space (-1) */

double bcd6[][4] = {
	{N6, N6, N6, 0}, 	/* 0 */
	{P6, N6, N6, 0}, 	/* 1 */
	{N6, P6, N6, 0}, 	/* 2 */
	{P6, P6, N6, 0}, 	/* 3 */
	{N6, N6, P6, 0}, 	/* 4 */
	{P6, N6, P6, 0}, 	/* 5 */
	{N6, P6, P6, 0}, 	/* 6 */
	{0, 0, 0, 0}		/* backstop */
};

/*
 * Digits 0-3 (day hundreds)
 */
#define P3	(P15 / 2)	/* mark (+1) */
#define N3	(N15 / 2)	/* space (-1) */

double bcd3[][4] = {
	{N3, N3, 0, 0}, 	/* 0 */
	{P3, N3, 0, 0}, 	/* 1 */
	{N3, P3, 0, 0}, 	/* 2 */
	{P3, P3, 0, 0}, 	/* 3 */
	{0, 0, 0, 0}		/* backstop */
};

/*
 * Digits 0-2 (hour tens)
 */
#define P2	(P15 / 2)	/* mark (+1) */
#define N2	(N15 / 2)	/* space (-1) */

double bcd2[][4] = {
	{N2, N2, 0, 0}, 	/* 0 */
	{P2, N2, 0, 0}, 	/* 1 */
	{N2, P2, 0, 0}, 	/* 2 */
	{0, 0, 0, 0}		/* backstop */
};

/*
 * DST decode (DST2 DST1) for prettyprint
 */
char dstcod[] = {
	'S',			/* 00 standard time */
	'I',			/* 01 set clock ahead at 0200 local */
	'O',			/* 10 set clock back at 0200 local */
	'D'			/* 11 daylight time */
};

/*
 * The decoding matrix consists of nine row vectors, one for each digit
 * of the timecode. The digits are stored from least to most significant
 * order. The maximum-likelihood timecode is formed from the digits
 * corresponding to the maximum-likelihood values reading in the
 * opposite order: yy ddd hh:mm.
 */
struct decvec {
	int radix;		/* radix (3, 4, 6, 10) */
	int digit;		/* current clock digit */
	int count;		/* match count */
	double digprb;		/* max digit probability */
	double digsnr;		/* likelihood function (dB) */
	double like[10];	/* likelihood integrator 0-9 */
};

/*
 * The station structure (sp) is used to acquire the minute pulse from
 * WWV and/or WWVH. These stations are distinguished by the frequency
 * used for the second and minute sync pulses, 1000 Hz for WWV and 1200
 * Hz for WWVH. Other than frequency, the format is the same.
 */
struct sync {
	double	epoch;		/* accumulated epoch differences */
	double	maxeng;		/* sync max energy */
	double	noieng;		/* sync noise energy */
	long	pos;		/* max amplitude position */
	long	lastpos;	/* last max position */
	long	mepoch;		/* minute synch epoch */

	double	amp;		/* sync signal */
	double	syneng;		/* sync signal max */
	double	synmax;		/* sync signal max latched at 0 s */
	double	synsnr;		/* sync signal SNR */
	double	metric;		/* signal quality metric */
	int	reach;		/* reachability register */
	int	count;		/* bit counter */
	int	select;		/* select bits */
	char	refid[5];	/* reference identifier */
};

/*
 * The channel structure (cp) is used to mitigate between channels.
 */
struct chan {
	int	gain;		/* audio gain */
	struct sync wwv;	/* wwv station */
	struct sync wwvh;	/* wwvh station */
};

/*
 * WWV unit control structure (up)
 */
struct wwvunit {
	l_fp	timestamp;	/* audio sample timestamp */
	l_fp	tick;		/* audio sample increment */
	double	phase, freq;	/* logical clock phase and frequency */
	double	monitor;	/* audio monitor point */
	double	pdelay;		/* propagation delay (s) */
#ifdef ICOM
	int	fd_icom;	/* ICOM file descriptor */
#endif /* ICOM */
	int	errflg;		/* error flags */
	int	watch;		/* watchcat */

	/*
	 * Audio codec variables
	 */
	double	comp[SIZE];	/* decompanding table */
 	int	port;		/* codec port */
	int	gain;		/* codec gain */
	int	mongain;	/* codec monitor gain */
	int	clipcnt;	/* sample clipped count */

	/*
	 * Variables used to establish basic system timing
	 */
	int	avgint;		/* master time constant */
	int	yepoch;		/* sync epoch */
	int	repoch;		/* buffered sync epoch */
	double	epomax;		/* second sync amplitude */
	double	eposnr;		/* second sync SNR */
	double	irig;		/* data I channel amplitude */
	double	qrig;		/* data Q channel amplitude */
	int	datapt;		/* 100 Hz ramp */
	double	datpha;		/* 100 Hz VFO control */
	int	rphase;		/* second sample counter */
	long	mphase;		/* minute sample counter */

	/*
	 * Variables used to mitigate which channel to use
	 */
	struct chan mitig[NCHAN]; /* channel data */
	struct sync *sptr;	/* station pointer */
	int	dchan;		/* data channel */
	int	schan;		/* probe channel */
	int	achan;		/* active channel */

	/*
	 * Variables used by the clock state machine
	 */
	struct decvec decvec[9]; /* decoding matrix */
	int	rsec;		/* seconds counter */
	int	digcnt;		/* count of digits synchronized */

	/*
	 * Variables used to estimate signal levels and bit/digit
	 * probabilities
	 */
	double	datsig;		/* data signal max */
	double	datsnr;		/* data signal SNR (dB) */

	/*
	 * Variables used to establish status and alarm conditions
	 */
	int	status;		/* status bits */
	int	alarm;		/* alarm flashers */
	int	misc;		/* miscellaneous timecode bits */
	int	errcnt;		/* data bit error counter */
};

/*
 * Function prototypes
 */
static	int	wwv_start	(int, struct peer *);
static	void	wwv_shutdown	(int, struct peer *);
static	void	wwv_receive	(struct recvbuf *);
static	void	wwv_poll	(int, struct peer *);

/*
 * More function prototypes
 */
static	void	wwv_epoch	(struct peer *);
static	void	wwv_rf		(struct peer *, double);
static	void	wwv_endpoc	(struct peer *, int);
static	void	wwv_rsec	(struct peer *, double);
static	void	wwv_qrz		(struct peer *, struct sync *, int);
static	void	wwv_corr4	(struct peer *, struct decvec *,
				    double [], double [][4]);
static	void	wwv_gain	(struct peer *);
static	void	wwv_tsec	(struct peer *);
static	int	timecode	(struct wwvunit *, char *, size_t);
static	double	wwv_snr		(double, double);
static	int	carry		(struct decvec *);
static	int	wwv_newchan	(struct peer *);
static	void	wwv_newgame	(struct peer *);
static	double	wwv_metric	(struct sync *);
static	void	wwv_clock	(struct peer *);
#ifdef ICOM
static	int	wwv_qsy		(struct peer *, int);
#endif /* ICOM */

static double qsy[NCHAN] = {2.5, 5, 10, 15, 20}; /* frequencies (MHz) */

/*
 * Transfer vector
 */
struct	refclock refclock_wwv = {
	wwv_start,		/* start up driver */
	wwv_shutdown,		/* shut down driver */
	wwv_poll,		/* transmit poll message */
	noentry,		/* not used (old wwv_control) */
	noentry,		/* initialize driver (not used) */
	noentry,		/* not used (old wwv_buginfo) */
	NOFLAGS			/* not used */
};


/*
 * wwv_start - open the devices and initialize data for processing
 */
static int
wwv_start(
	int	unit,		/* instance number (used by PCM) */
	struct peer *peer	/* peer structure pointer */
	)
{
	struct refclockproc *pp;
	struct wwvunit *up;
#ifdef ICOM
	int	temp;
#endif /* ICOM */

	/*
	 * Local variables
	 */
	int	fd;		/* file descriptor */
	int	i;		/* index */
	double	step;		/* codec adjustment */

	/*
	 * Open audio device
	 */
	fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
	if (fd < 0)
		return (0);
#ifdef DEBUG
	if (debug)
		audio_show();
#endif /* DEBUG */

	/*
	 * Allocate and initialize unit structure
	 */
	up = emalloc_zero(sizeof(*up));
	pp = peer->procptr;
	pp->io.clock_recv = wwv_receive;
	pp->io.srcclock = peer;
	pp->io.datalen = 0;
	pp->io.fd = fd;
	if (!io_addclock(&pp->io)) {
		close(fd);
		free(up);
		return (0);
	}
	pp->unitptr = up;

	/*
	 * Initialize miscellaneous variables
	 */
	peer->precision = PRECISION;
	pp->clockdesc = DESCRIPTION;

	/*
	 * The companded samples are encoded sign-magnitude. The table
	 * contains all the 256 values in the interest of speed.
	 */
	up->comp[0] = up->comp[OFFSET] = 0.;
	up->comp[1] = 1.; up->comp[OFFSET + 1] = -1.;
	up->comp[2] = 3.; up->comp[OFFSET + 2] = -3.;
	step = 2.;
	for (i = 3; i < OFFSET; i++) {
		up->comp[i] = up->comp[i - 1] + step;
		up->comp[OFFSET + i] = -up->comp[i];
		if (i % 16 == 0)
			step *= 2.;
	}
	DTOLFP(1. / WWV_SEC, &up->tick);

	/*
	 * Initialize the decoding matrix with the radix for each digit
	 * position.
	 */
	up->decvec[MN].radix = 10;	/* minutes */
	up->decvec[MN + 1].radix = 6;
	up->decvec[HR].radix = 10;	/* hours */
	up->decvec[HR + 1].radix = 3;
	up->decvec[DA].radix = 10;	/* days */
	up->decvec[DA + 1].radix = 10;
	up->decvec[DA + 2].radix = 4;
	up->decvec[YR].radix = 10;	/* years */
	up->decvec[YR + 1].radix = 10;

#ifdef ICOM
	/*
	 * Initialize autotune if available. Note that the ICOM select
	 * code must be less than 128, so the high order bit can be used
	 * to select the line speed 0 (9600 bps) or 1 (1200 bps). Note
	 * we don't complain if the ICOM device is not there; but, if it
	 * is, the radio better be working.
	 */
	temp = 0;
#ifdef DEBUG
	if (debug > 1)
		temp = P_TRACE;
#endif /* DEBUG */
	if (peer->ttl != 0) {
		if (peer->ttl & 0x80)
			up->fd_icom = icom_init("/dev/icom", B1200,
			    temp);
		else
			up->fd_icom = icom_init("/dev/icom", B9600,
			    temp);
	}
	if (up->fd_icom > 0) {
		if (wwv_qsy(peer, DCHAN) != 0) {
			msyslog(LOG_NOTICE, "icom: radio not found");
			close(up->fd_icom);
			up->fd_icom = 0;
		} else {
			msyslog(LOG_NOTICE, "icom: autotune enabled");
		}
	}
#endif /* ICOM */

	/*
	 * Let the games begin.
	 */
	wwv_newgame(peer);
	return (1);
}


/*
 * wwv_shutdown - shut down the clock
 */
static void
wwv_shutdown(
	int	unit,		/* instance number (not used) */
	struct peer *peer	/* peer structure pointer */
	)
{
	struct refclockproc *pp;
	struct wwvunit *up;

	pp = peer->procptr;
	up = pp->unitptr;
	if (up == NULL)
		return;

	io_closeclock(&pp->io);
#ifdef ICOM
	if (up->fd_icom > 0)
		close(up->fd_icom);
#endif /* ICOM */
	free(up);
}


/*
 * wwv_receive - receive data from the audio device
 *
 * This routine reads input samples and adjusts the logical clock to
 * track the A/D sample clock by dropping or duplicating codec samples.
 * It also controls the A/D signal level with an AGC loop to mimimize
 * quantization noise and avoid overload.
 */
static void
wwv_receive(
	struct recvbuf *rbufp	/* receive buffer structure pointer */
	)
{
	struct peer *peer;
	struct refclockproc *pp;
	struct wwvunit *up;

	/*
	 * Local variables
	 */
	double	sample;		/* codec sample */
	u_char	*dpt;		/* buffer pointer */
	int	bufcnt;		/* buffer counter */
	l_fp	ltemp;

	peer = rbufp->recv_peer;
	pp = peer->procptr;
	up = pp->unitptr;

	/*
	 * Main loop - read until there ain't no more. Note codec
	 * samples are bit-inverted.
	 */
	DTOLFP((double)rbufp->recv_length / WWV_SEC, &ltemp);
	L_SUB(&rbufp->recv_time, &ltemp);
	up->timestamp = rbufp->recv_time;
	dpt = rbufp->recv_buffer;
	for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
		sample = up->comp[~*dpt++ & 0xff];

		/*
		 * Clip noise spikes greater than MAXAMP (6000) and
		 * record the number of clips to be used later by the
		 * AGC.
		 */
		if (sample > MAXAMP) {
			sample = MAXAMP;
			up->clipcnt++;
		} else if (sample < -MAXAMP) {
			sample = -MAXAMP;
			up->clipcnt++;
		}

		/*
		 * Variable frequency oscillator. The codec oscillator
		 * runs at the nominal rate of 8000 samples per second,
		 * or 125 us per sample. A frequency change of one unit
		 * results in either duplicating or deleting one sample
		 * per second, which results in a frequency change of
		 * 125 PPM.
		 */
		up->phase += (up->freq + clock_codec) / WWV_SEC;
		if (up->phase >= .5) {
			up->phase -= 1.;
		} else if (up->phase < -.5) {
			up->phase += 1.;
			wwv_rf(peer, sample);
			wwv_rf(peer, sample);
		} else {
			wwv_rf(peer, sample);
		}
		L_ADD(&up->timestamp, &up->tick);
	}

	/*
	 * Set the input port and monitor gain for the next buffer.
	 */
	if (pp->sloppyclockflag & CLK_FLAG2)
		up->port = 2;
	else
		up->port = 1;
	if (pp->sloppyclockflag & CLK_FLAG3)
		up->mongain = MONGAIN;
	else
		up->mongain = 0;
}


/*
 * wwv_poll - called by the transmit procedure
 *
 * This routine keeps track of status. If no offset samples have been
 * processed during a poll interval, a timeout event is declared. If
 * errors have have occurred during the interval, they are reported as
 * well.
 */
static void
wwv_poll(
	int	unit,		/* instance number (not used) */
	struct peer *peer	/* peer structure pointer */
	)
{
	struct refclockproc *pp;
	struct wwvunit *up;

	pp = peer->procptr;
	up = pp->unitptr;
	if (up->errflg)
		refclock_report(peer, up->errflg);
	up->errflg = 0;
	pp->polls++;
}


/*
 * wwv_rf - process signals and demodulate to baseband
 *
 * This routine grooms and filters decompanded raw audio samples. The
 * output signal is the 100-Hz filtered baseband data signal in
 * quadrature phase. The routine also determines the minute synch epoch,
 * as well as certain signal maxima, minima and related values.
 *
 * There are two 1-s ramps used by this program. Both count the 8000
 * logical clock samples spanning exactly one second. The epoch ramp
 * counts the samples starting at an arbitrary time. The rphase ramp
 * counts the samples starting at the 5-ms second sync pulse found
 * during the epoch ramp.
 *
 * There are two 1-m ramps used by this program. The mphase ramp counts
 * the 480,000 logical clock samples spanning exactly one minute and
 * starting at an arbitrary time. The rsec ramp counts the 60 seconds of
 * the minute starting at the 800-ms minute sync pulse found during the
 * mphase ramp. The rsec ramp drives the seconds state machine to
 * determine the bits and digits of the timecode. 
 *
 * Demodulation operations are based on three synthesized quadrature
 * sinusoids: 100 Hz for the data signal, 1000 Hz for the WWV sync
 * signal and 1200 Hz for the WWVH sync signal. These drive synchronous
 * matched filters for the data signal (170 ms at 100 Hz), WWV minute
 * sync signal (800 ms at 1000 Hz) and WWVH minute sync signal (800 ms
 * at 1200 Hz). Two additional matched filters are switched in
 * as required for the WWV second sync signal (5 cycles at 1000 Hz) and
 * WWVH second sync signal (6 cycles at 1200 Hz).
 */
static void
wwv_rf(
	struct peer *peer,	/* peerstructure pointer */
	double isig		/* input signal */
	)
{
	struct refclockproc *pp;
	struct wwvunit *up;
	struct sync *sp, *rp;

	static double lpf[5];	/* 150-Hz lpf delay line */
	double data;		/* lpf output */
	static double bpf[9];	/* 1000/1200-Hz bpf delay line */
	double syncx;		/* bpf output */
	static double mf[41];	/* 1000/1200-Hz mf delay line */
	double mfsync;		/* mf output */

	static int iptr;	/* data channel pointer */
	static double ibuf[DATSIZ]; /* data I channel delay line */
	static double qbuf[DATSIZ]; /* data Q channel delay line */

	static int jptr;	/* sync channel pointer */
	static int kptr;	/* tick channel pointer */

	static int csinptr;	/* wwv channel phase */
	static double cibuf[SYNSIZ]; /* wwv I channel delay line */
	static double cqbuf[SYNSIZ]; /* wwv Q channel delay line */
	static double ciamp;	/* wwv I channel amplitude */
	static double cqamp;	/* wwv Q channel amplitude */

	static double csibuf[TCKSIZ]; /* wwv I tick delay line */
	static double csqbuf[TCKSIZ]; /* wwv Q tick delay line */
	static double csiamp;	/* wwv I tick amplitude */
	static double csqamp;	/* wwv Q tick amplitude */

	static int hsinptr;	/* wwvh channel phase */
	static double hibuf[SYNSIZ]; /* wwvh I channel delay line */
	static double hqbuf[SYNSIZ]; /* wwvh Q channel delay line */
	static double hiamp;	/* wwvh I channel amplitude */
	static double hqamp;	/* wwvh Q channel amplitude */

	static double hsibuf[TCKSIZ]; /* wwvh I tick delay line */
	static double hsqbuf[TCKSIZ]; /* wwvh Q tick delay line */
	static double hsiamp;	/* wwvh I tick amplitude */
	static double hsqamp;	/* wwvh Q tick amplitude */

	static double epobuf[WWV_SEC]; /* second sync comb filter */
	static double epomax, nxtmax; /* second sync amplitude buffer */
	static int epopos;	/* epoch second sync position buffer */

	static int iniflg;	/* initialization flag */
	int	epoch;		/* comb filter index */
	double	dtemp;
	int	i;

	pp = peer->procptr;
	up = pp->unitptr;

	if (!iniflg) {
		iniflg = 1;
		memset((char *)lpf, 0, sizeof(lpf));
		memset((char *)bpf, 0, sizeof(bpf));
		memset((char *)mf, 0, sizeof(mf));
		memset((char *)ibuf, 0, sizeof(ibuf));
		memset((char *)qbuf, 0, sizeof(qbuf));
		memset((char *)cibuf, 0, sizeof(cibuf));
		memset((char *)cqbuf, 0, sizeof(cqbuf));
		memset((char *)csibuf, 0, sizeof(csibuf));
		memset((char *)csqbuf, 0, sizeof(csqbuf));
		memset((char *)hibuf, 0, sizeof(hibuf));
		memset((char *)hqbuf, 0, sizeof(hqbuf));
		memset((char *)hsibuf, 0, sizeof(hsibuf));
		memset((char *)hsqbuf, 0, sizeof(hsqbuf));
		memset((char *)epobuf, 0, sizeof(epobuf));
	}

	/*
	 * Baseband data demodulation. The 100-Hz subcarrier is
	 * extracted using a 150-Hz IIR lowpass filter. This attenuates
	 * the 1000/1200-Hz sync signals, as well as the 440-Hz and
	 * 600-Hz tones and most of the noise and voice modulation
	 * components.
	 *
	 * The subcarrier is transmitted 10 dB down from the carrier.
	 * The DGAIN parameter can be adjusted for this and to
	 * compensate for the radio audio response at 100 Hz.
	 *
	 * Matlab IIR 4th-order IIR elliptic, 150 Hz lowpass, 0.2 dB
	 * passband ripple, -50 dB stopband ripple, phase delay 0.97 ms.
	 */
	data = (lpf[4] = lpf[3]) * 8.360961e-01;
	data += (lpf[3] = lpf[2]) * -3.481740e+00;
	data += (lpf[2] = lpf[1]) * 5.452988e+00;
	data += (lpf[1] = lpf[0]) * -3.807229e+00;
	lpf[0] = isig * DGAIN - data;
	data = lpf[0] * 3.281435e-03
	    + lpf[1] * -1.149947e-02
	    + lpf[2] * 1.654858e-02
	    + lpf[3] * -1.149947e-02
	    + lpf[4] * 3.281435e-03;

	/*
	 * The 100-Hz data signal is demodulated using a pair of
	 * quadrature multipliers, matched filters and a phase lock
	 * loop. The I and Q quadrature data signals are produced by
	 * multiplying the filtered signal by 100-Hz sine and cosine
	 * signals, respectively. The signals are processed by 170-ms
	 * synchronous matched filters to produce the amplitude and
	 * phase signals used by the demodulator. The signals are scaled
	 * to produce unit energy at the maximum value.
	 */
	i = up->datapt;
	up->datapt = (up->datapt + IN100) % 80;
	dtemp = sintab[i] * data / (MS / 2. * DATCYC);
	up->irig -= ibuf[iptr];
	ibuf[iptr] = dtemp;
	up->irig += dtemp;

	i = (i + 20) % 80;
	dtemp = sintab[i] * data / (MS / 2. * DATCYC);
	up->qrig -= qbuf[iptr];
	qbuf[iptr] = dtemp;
	up->qrig += dtemp;
	iptr = (iptr + 1) % DATSIZ;

	/*
	 * Baseband sync demodulation. The 1000/1200 sync signals are
	 * extracted using a 600-Hz IIR bandpass filter. This removes
	 * the 100-Hz data subcarrier, as well as the 440-Hz and 600-Hz
	 * tones and most of the noise and voice modulation components.
	 *
	 * Matlab 4th-order IIR elliptic, 800-1400 Hz bandpass, 0.2 dB
	 * passband ripple, -50 dB stopband ripple, phase delay 0.91 ms.
	 */
	syncx = (bpf[8] = bpf[7]) * 4.897278e-01;
	syncx += (bpf[7] = bpf[6]) * -2.765914e+00;
	syncx += (bpf[6] = bpf[5]) * 8.110921e+00;
	syncx += (bpf[5] = bpf[4]) * -1.517732e+01;
	syncx += (bpf[4] = bpf[3]) * 1.975197e+01;
	syncx += (bpf[3] = bpf[2]) * -1.814365e+01;
	syncx += (bpf[2] = bpf[1]) * 1.159783e+01;
	syncx += (bpf[1] = bpf[0]) * -4.735040e+00;
	bpf[0] = isig - syncx;
	syncx = bpf[0] * 8.203628e-03
	    + bpf[1] * -2.375732e-02
	    + bpf[2] * 3.353214e-02
	    + bpf[3] * -4.080258e-02
	    + bpf[4] * 4.605479e-02
	    + bpf[5] * -4.080258e-02
	    + bpf[6] * 3.353214e-02
	    + bpf[7] * -2.375732e-02
	    + bpf[8] * 8.203628e-03;

	/*
	 * The 1000/1200 sync signals are demodulated using a pair of
	 * quadrature multipliers and matched filters. However,
	 * synchronous demodulation at these frequencies is impractical,
	 * so only the signal amplitude is used. The I and Q quadrature
	 * sync signals are produced by multiplying the filtered signal
	 * by 1000-Hz (WWV) and 1200-Hz (WWVH) sine and cosine signals,
	 * respectively. The WWV and WWVH signals are processed by 800-
	 * ms synchronous matched filters and combined to produce the
	 * minute sync signal and detect which one (or both) the WWV or
	 * WWVH signal is present. The WWV and WWVH signals are also
	 * processed by 5-ms synchronous matched filters and combined to
	 * produce the second sync signal. The signals are scaled to
	 * produce unit energy at the maximum value.
	 *
	 * Note the master timing ramps, which run continuously. The
	 * minute counter (mphase) counts the samples in the minute,
	 * while the second counter (epoch) counts the samples in the
	 * second.
	 */
	up->mphase = (up->mphase + 1) % WWV_MIN;
	epoch = up->mphase % WWV_SEC;

	/*
	 * WWV
	 */
	i = csinptr;
	csinptr = (csinptr + IN1000) % 80;

	dtemp = sintab[i] * syncx / (MS / 2.);
	ciamp -= cibuf[jptr];
	cibuf[jptr] = dtemp;
	ciamp += dtemp;
	csiamp -= csibuf[kptr];
	csibuf[kptr] = dtemp;
	csiamp += dtemp;

	i = (i + 20) % 80;
	dtemp = sintab[i] * syncx / (MS / 2.);
	cqamp -= cqbuf[jptr];
	cqbuf[jptr] = dtemp;
	cqamp += dtemp;
	csqamp -= csqbuf[kptr];
	csqbuf[kptr] = dtemp;
	csqamp += dtemp;

	sp = &up->mitig[up->achan].wwv;
	sp->amp = sqrt(ciamp * ciamp + cqamp * cqamp) / SYNCYC;
	if (!(up->status & MSYNC))
		wwv_qrz(peer, sp, (int)(pp->fudgetime1 * WWV_SEC));

	/*
	 * WWVH
	 */
	i = hsinptr;
	hsinptr = (hsinptr + IN1200) % 80;

	dtemp = sintab[i] * syncx / (MS / 2.);
	hiamp -= hibuf[jptr];
	hibuf[jptr] = dtemp;
	hiamp += dtemp;
	hsiamp -= hsibuf[kptr];
	hsibuf[kptr] = dtemp;
	hsiamp += dtemp;

	i = (i + 20) % 80;
	dtemp = sintab[i] * syncx / (MS / 2.);
	hqamp -= hqbuf[jptr];
	hqbuf[jptr] = dtemp;
	hqamp += dtemp;
	hsqamp -= hsqbuf[kptr];
	hsqbuf[kptr] = dtemp;
	hsqamp += dtemp;

	rp = &up->mitig[up->achan].wwvh;
	rp->amp = sqrt(hiamp * hiamp + hqamp * hqamp) / SYNCYC;
	if (!(up->status & MSYNC))
		wwv_qrz(peer, rp, (int)(pp->fudgetime2 * WWV_SEC));
	jptr = (jptr + 1) % SYNSIZ;
	kptr = (kptr + 1) % TCKSIZ;

	/*
	 * The following section is called once per minute. It does
	 * housekeeping and timeout functions and empties the dustbins.
	 */
	if (up->mphase == 0) {
		up->watch++;
		if (!(up->status & MSYNC)) {

			/*
			 * If minute sync has not been acquired before
			 * ACQSN timeout (6 min), or if no signal is
			 * heard, the program cycles to the next
			 * frequency and tries again.
			 */
			if (!wwv_newchan(peer))
				up->watch = 0;
		} else {

			/*
			 * If the leap bit is set, set the minute epoch
			 * back one second so the station processes
			 * don't miss a beat.
			 */
			if (up->status & LEPSEC) {
				up->mphase -= WWV_SEC;
				if (up->mphase < 0)
					up->mphase += WWV_MIN;
			}
		}
	}

	/*
	 * When the channel metric reaches threshold and the second
	 * counter matches the minute epoch within the second, the
	 * driver has synchronized to the station. The second number is
	 * the remaining seconds until the next minute epoch, while the
	 * sync epoch is zero. Watch out for the first second; if
	 * already synchronized to the second, the buffered sync epoch
	 * must be set.
	 *
	 * Note the guard interval is 200 ms; if for some reason the
	 * clock drifts more than that, it might wind up in the wrong
	 * second. If the maximum frequency error is not more than about
	 * 1 PPM, the clock can go as much as two days while still in
	 * the same second.
	 */
	if (up->status & MSYNC) {
		wwv_epoch(peer);
	} else if (up->sptr != NULL) {
		sp = up->sptr;
		if (sp->metric >= TTHR && epoch == sp->mepoch % WWV_SEC)
 		    {
			up->rsec = (60 - sp->mepoch / WWV_SEC) % 60;
			up->rphase = 0;
			up->status |= MSYNC;
			up->watch = 0;
			if (!(up->status & SSYNC))
				up->repoch = up->yepoch = epoch;
			else
				up->repoch = up->yepoch;
			
		}
	}

	/*
	 * The second sync pulse is extracted using 5-ms (40 sample) FIR
	 * matched filters at 1000 Hz for WWV or 1200 Hz for WWVH. This
	 * pulse is used for the most precise synchronization, since if
	 * provides a resolution of one sample (125 us). The filters run
	 * only if the station has been reliably determined.
	 */
	if (up->status & SELV)
		mfsync = sqrt(csiamp * csiamp + csqamp * csqamp) /
		    TCKCYC;
	else if (up->status & SELH)
		mfsync = sqrt(hsiamp * hsiamp + hsqamp * hsqamp) /
		    TCKCYC;
	else
		mfsync = 0;

	/*
	 * Enhance the seconds sync pulse using a 1-s (8000-sample) comb
	 * filter. Correct for the FIR matched filter delay, which is 5
	 * ms for both the WWV and WWVH filters, and also for the
	 * propagation delay. Once each second look for second sync. If
	 * not in minute sync, fiddle the codec gain. Note the SNR is
	 * computed from the maximum sample and the envelope of the
	 * sample 6 ms before it, so if we slip more than a cycle the
	 * SNR should plummet. The signal is scaled to produce unit
	 * energy at the maximum value.
	 */
	dtemp = (epobuf[epoch] += (mfsync - epobuf[epoch]) /
	    up->avgint);
	if (dtemp > epomax) {
		int	j;

		epomax = dtemp;
		epopos = epoch;
		j = epoch - 6 * MS;
		if (j < 0)
			j += WWV_SEC;
		nxtmax = fabs(epobuf[j]);
	}
	if (epoch == 0) {
		up->epomax = epomax;
		up->eposnr = wwv_snr(epomax, nxtmax);
		epopos -= TCKCYC * MS;
		if (epopos < 0)
			epopos += WWV_SEC;
		wwv_endpoc(peer, epopos);
		if (!(up->status & SSYNC))
			up->alarm |= SYNERR;
		epomax = 0;
		if (!(up->status & MSYNC))
			wwv_gain(peer);
	}
}


/*
 * wwv_qrz - identify and acquire WWV/WWVH minute sync pulse
 *
 * This routine implements a virtual station process used to acquire
 * minute sync and to mitigate among the ten frequency and station
 * combinations. During minute sync acquisition the process probes each
 * frequency and station in turn for the minute pulse, which
 * involves searching through the entire 480,000-sample minute. The
 * process finds the maximum signal and RMS noise plus signal. Then, the
 * actual noise is determined by subtracting the energy of the matched
 * filter.
 *
 * Students of radar receiver technology will discover this algorithm
 * amounts to a range-gate discriminator. A valid pulse must have peak
 * amplitude at least QTHR (2500) and SNR at least QSNR (20) dB and the
 * difference between the current and previous epoch must be less than
 * AWND (20 ms). Note that the discriminator peak occurs about 800 ms
 * into the second, so the timing is retarded to the previous second
 * epoch.
 */
static void
wwv_qrz(
	struct peer *peer,	/* peer structure pointer */
	struct sync *sp,	/* sync channel structure */
	int	pdelay		/* propagation delay (samples) */
	)
{
	struct refclockproc *pp;
	struct wwvunit *up;
	char	tbuf[TBUF];	/* monitor buffer */
	long	epoch;

	pp = peer->procptr;
	up = pp->unitptr;

	/*
	 * Find the sample with peak amplitude, which defines the minute
	 * epoch. Accumulate all samples to determine the total noise
	 * energy.
	 */
	epoch = up->mphase - pdelay - SYNSIZ;
	if (epoch < 0)
		epoch += WWV_MIN;
	if (sp->amp > sp->maxeng) {
		sp->maxeng = sp->amp;
		sp->pos = epoch;
	}
	sp->noieng += sp->amp;

	/*
	 * At the end of the minute, determine the epoch of the minute
	 * sync pulse, as well as the difference between the current and
	 * previous epoches due to the intrinsic frequency error plus
	 * jitter. When calculating the SNR, subtract the pulse energy
	 * from the total noise energy and then normalize.
	 */
	if (up->mphase == 0) {
		sp->synmax = sp->maxeng;
		sp->synsnr = wwv_snr(sp->synmax, (sp->noieng -
		    sp->synmax) / WWV_MIN);
		if (sp->count == 0)
			sp->lastpos = sp->pos;
		epoch = (sp->pos - sp->lastpos) % WWV_MIN;
		sp->reach <<= 1;
		if (sp->reach & (1 << AMAX))
			sp->count--;
		if (sp->synmax > ATHR && sp->synsnr > ASNR) {
			if (labs(epoch) < AWND * MS) {
				sp->reach |= 1;
				sp->count++;
				sp->mepoch = sp->lastpos = sp->pos;
			} else if (sp->count == 1) {
				sp->lastpos = sp->pos;
			}
		}
		if (up->watch > ACQSN)
			sp->metric = 0;
		else
			sp->metric = wwv_metric(sp);
		if (pp->sloppyclockflag & CLK_FLAG4) {
			snprintf(tbuf, sizeof(tbuf),
			    "wwv8 %04x %3d %s %04x %.0f %.0f/%.1f %ld %ld",
			    up->status, up->gain, sp->refid,
			    sp->reach & 0xffff, sp->metric, sp->synmax,
			    sp->synsnr, sp->pos % WWV_SEC, epoch);
			record_clock_stats(&peer->srcadr, tbuf);
#ifdef DEBUG
			if (debug)
				printf("%s\n", tbuf);
#endif /* DEBUG */
		}
		sp->maxeng = sp->noieng = 0;
	}
}


/*
 * wwv_endpoc - identify and acquire second sync pulse
 *
 * This routine is called at the end of the second sync interval. It
 * determines the second sync epoch position within the second and
 * disciplines the sample clock using a frequency-lock loop (FLL).
 *
 * Second sync is determined in the RF input routine as the maximum
 * over all 8000 samples in the second comb filter. To assure accurate
 * and reliable time and frequency discipline, this routine performs a
 * great deal of heavy-handed heuristic data filtering and grooming.
 */
static void
wwv_endpoc(
	struct peer *peer,	/* peer structure pointer */
	int epopos		/* epoch max position */
	)
{
	struct refclockproc *pp;
	struct wwvunit *up;
	static int epoch_mf[3]; /* epoch median filter */
	static int tepoch;	/* current second epoch */
 	static int xepoch;	/* last second epoch */
 	static int zepoch;	/* last run epoch */
	static int zcount;	/* last run end time */
	static int scount;	/* seconds counter */
	static int syncnt;	/* run length counter */
	static int maxrun;	/* longest run length */
	static int mepoch;	/* longest run end epoch */
	static int mcount;	/* longest run end time */
	static int avgcnt;	/* averaging interval counter */
	static int avginc;	/* averaging ratchet */
	static int iniflg;	/* initialization flag */
	char tbuf[TBUF];		/* monitor buffer */
	double dtemp;
	int tmp2;

	pp = peer->procptr;
	up = pp->unitptr;
	if (!iniflg) {
		iniflg = 1;
		ZERO(epoch_mf);
	}

	/*
	 * If the signal amplitude or SNR fall below thresholds, dim the
	 * second sync lamp and wait for hotter ions. If no stations are
	 * heard, we are either in a probe cycle or the ions are really
	 * cold. 
	 */
	scount++;
	if (up->epomax < STHR || up->eposnr < SSNR) {
		up->status &= ~(SSYNC | FGATE);
		avgcnt = syncnt = maxrun = 0;
		return;
	}
	if (!(up->status & (SELV | SELH)))
		return;

	/*
	 * A three-stage median filter is used to help denoise the
	 * second sync pulse. The median sample becomes the candidate
	 * epoch.
	 */
	epoch_mf[2] = epoch_mf[1];
	epoch_mf[1] = epoch_mf[0];
	epoch_mf[0] = epopos;
	if (epoch_mf[0] > epoch_mf[1]) {
		if (epoch_mf[1] > epoch_mf[2])
			tepoch = epoch_mf[1];	/* 0 1 2 */
		else if (epoch_mf[2] > epoch_mf[0])
			tepoch = epoch_mf[0];	/* 2 0 1 */
		else
			tepoch = epoch_mf[2];	/* 0 2 1 */
	} else {
		if (epoch_mf[1] < epoch_mf[2])
			tepoch = epoch_mf[1];	/* 2 1 0 */
		else if (epoch_mf[2] < epoch_mf[0])
			tepoch = epoch_mf[0];	/* 1 0 2 */
		else
			tepoch = epoch_mf[2];	/* 1 2 0 */
	}


	/*
	 * If the epoch candidate is the same as the last one, increment
	 * the run counter. If not, save the length, epoch and end
	 * time of the current run for use later and reset the counter.
	 * The epoch is considered valid if the run is at least SCMP
	 * (10) s, the minute is synchronized and the interval since the
	 * last epoch  is not greater than the averaging interval. Thus,
	 * after a long absence, the program will wait a full averaging
	 * interval while the comb filter charges up and noise
	 * dissapates..
	 */
	tmp2 = (tepoch - xepoch) % WWV_SEC;
	if (tmp2 == 0) {
		syncnt++;
		if (syncnt > SCMP && up->status & MSYNC && (up->status &
		    FGATE || scount - zcount <= up->avgint)) {
			up->status |= SSYNC;
			up->yepoch = tepoch;
		}
	} else if (syncnt >= maxrun) {
		maxrun = syncnt;
		mcount = scount;
		mepoch = xepoch;
		syncnt = 0;
	}
	if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
	    MSYNC)) {
		snprintf(tbuf, sizeof(tbuf),
		    "wwv1 %04x %3d %4d %5.0f %5.1f %5d %4d %4d %4d",
		    up->status, up->gain, tepoch, up->epomax,
		    up->eposnr, tmp2, avgcnt, syncnt,
		    maxrun);
		record_clock_stats(&peer->srcadr, tbuf);
#ifdef DEBUG
		if (debug)
			printf("%s\n", tbuf);
#endif /* DEBUG */
	}
	avgcnt++;
	if (avgcnt < up->avgint) {
		xepoch = tepoch;
		return;
	}

	/*
	 * The sample clock frequency is disciplined using a first-order
	 * feedback loop with time constant consistent with the Allan
	 * intercept of typical computer clocks. During each averaging
	 * interval the candidate epoch at the end of the longest run is
	 * determined. If the longest run is zero, all epoches in the
	 * interval are different, so the candidate epoch is the current
	 * epoch. The frequency update is computed from the candidate
	 * epoch difference (125-us units) and time difference (seconds)
	 * between updates.
	 */
	if (syncnt >= maxrun) {
		maxrun = syncnt;
		mcount = scount;
		mepoch = xepoch;
	}
	xepoch = tepoch;
	if (maxrun == 0) {
		mepoch = tepoch;
		mcount = scount;
	}

	/*
	 * The master clock runs at the codec sample frequency of 8000
	 * Hz, so the intrinsic time resolution is 125 us. The frequency
	 * resolution ranges from 18 PPM at the minimum averaging
	 * interval of 8 s to 0.12 PPM at the maximum interval of 1024
	 * s. An offset update is determined at the end of the longest
	 * run in each averaging interval. The frequency adjustment is
	 * computed from the difference between offset updates and the
	 * interval between them.
	 *
	 * The maximum frequency adjustment ranges from 187 PPM at the
	 * minimum interval to 1.5 PPM at the maximum. If the adjustment
	 * exceeds the maximum, the update is discarded and the
	 * hysteresis counter is decremented. Otherwise, the frequency
	 * is incremented by the adjustment, but clamped to the maximum
	 * 187.5 PPM. If the update is less than half the maximum, the
	 * hysteresis counter is incremented. If the counter increments
	 * to +3, the averaging interval is doubled and the counter set
	 * to zero; if it decrements to -3, the interval is halved and
	 * the counter set to zero.
	 */
	dtemp = (mepoch - zepoch) % WWV_SEC;
	if (up->status & FGATE) {
		if (fabs(dtemp) < MAXFREQ * MINAVG) {
			up->freq += (dtemp / 2.) / ((mcount - zcount) *
			    FCONST);
			if (up->freq > MAXFREQ)
				up->freq = MAXFREQ;
			else if (up->freq < -MAXFREQ)
				up->freq = -MAXFREQ;
			if (fabs(dtemp) < MAXFREQ * MINAVG / 2.) {
				if (avginc < 3) {
					avginc++;
				} else {
					if (up->avgint < MAXAVG) {
						up->avgint <<= 1;
						avginc = 0;
					}
				}
			}
		} else {
			if (avginc > -3) {
				avginc--;
			} else {
				if (up->avgint > MINAVG) {
					up->avgint >>= 1;
					avginc = 0;
				}
			}
		}
	}
	if (pp->sloppyclockflag & CLK_FLAG4) {
		snprintf(tbuf, sizeof(tbuf),
		    "wwv2 %04x %5.0f %5.1f %5d %4d %4d %4d %4.0f %7.2f",
		    up->status, up->epomax, up->eposnr, mepoch,
		    up->avgint, maxrun, mcount - zcount, dtemp,
		    up->freq * 1e6 / WWV_SEC);
		record_clock_stats(&peer->srcadr, tbuf);
#ifdef DEBUG
		if (debug)
			printf("%s\n", tbuf);
#endif /* DEBUG */
	}

	/*
	 * This is a valid update; set up for the next interval.
	 */
	up->status |= FGATE;
	zepoch = mepoch;
	zcount = mcount;
	avgcnt = syncnt = maxrun = 0;
}


/*
 * wwv_epoch - epoch scanner
 *
 * This routine extracts data signals from the 100-Hz subcarrier. It
 * scans the receiver second epoch to determine the signal amplitudes
 * and pulse timings. Receiver synchronization is determined by the
 * minute sync pulse detected in the wwv_rf() routine and the second
 * sync pulse detected in the wwv_epoch() routine. The transmitted
 * signals are delayed by the propagation delay, receiver delay and
 * filter delay of this program. Delay corrections are introduced
 * separately for WWV and WWVH. 
 *
 * Most communications radios use a highpass filter in the audio stages,
 * which can do nasty things to the subcarrier phase relative to the
 * sync pulses. Therefore, the data subcarrier reference phase is
 * disciplined using the hardlimited quadrature-phase signal sampled at
 * the same time as the in-phase signal. The phase tracking loop uses
 * phase adjustments of plus-minus one sample (125 us). 
 */
static void
wwv_epoch(
	struct peer *peer	/* peer structure pointer */
	)
{
	struct refclockproc *pp;
	struct wwvunit *up;
	struct chan *cp;
	static double sigmin, sigzer, sigone, engmax, engmin;

	pp = peer->procptr;
	up = pp->unitptr;

	/*
	 * Find the maximum minute sync pulse energy for both the
	 * WWV and WWVH stations. This will be used later for channel
	 * and station mitigation. Also set the seconds epoch at 800 ms
	 * well before the end of the second to make sure we never set
	 * the epoch backwards.
	 */
	cp = &up->mitig[up->achan];
	if (cp->wwv.amp > cp->wwv.syneng) 
		cp->wwv.syneng = cp->wwv.amp;
	if (cp->wwvh.amp > cp->wwvh.syneng) 
		cp->wwvh.syneng = cp->wwvh.amp;
	if (up->rphase == 800 * MS)
		up->repoch = up->yepoch;

	/*
	 * Use the signal amplitude at epoch 15 ms as the noise floor.
	 * This gives a guard time of +-15 ms from the beginning of the
	 * second until the second pulse rises at 30 ms. There is a
	 * compromise here; we want to delay the sample as long as
	 * possible to give the radio time to change frequency and the
	 * AGC to stabilize, but as early as possible if the second
	 * epoch is not exact.
	 */
	if (up->rphase == 15 * MS)
		sigmin = sigzer = sigone = up->irig;

	/*
	 * Latch the data signal at 200 ms. Keep this around until the
	 * end of the second. Use the signal energy as the peak to
	 * compute the SNR. Use the Q sample to adjust the 100-Hz
	 * reference oscillator phase.
	 */
	if (up->rphase == 200 * MS) {
		sigzer = up->irig;
		engmax = sqrt(up->irig * up->irig + up->qrig *
		    up->qrig);
		up->datpha = up->qrig / up->avgint;
		if (up->datpha >= 0) {
			up->datapt++;
			if (up->datapt >= 80)
				up->datapt -= 80;
		} else {
			up->datapt--;
			if (up->datapt < 0)
				up->datapt += 80;
		}
	}


	/*
	 * Latch the data signal at 500 ms. Keep this around until the
	 * end of the second.
	 */
	else if (up->rphase == 500 * MS)
		sigone = up->irig;

	/*
	 * At the end of the second crank the clock state machine and
	 * adjust the codec gain. Note the epoch is buffered from the
	 * center of the second in order to avoid jitter while the
	 * seconds synch is diddling the epoch. Then, determine the true
	 * offset and update the median filter in the driver interface.
	 *
	 * Use the energy at the end of the second as the noise to
	 * compute the SNR for the data pulse. This gives a better
	 * measurement than the beginning of the second, especially when
	 * returning from the probe channel. This gives a guard time of
	 * 30 ms from the decay of the longest pulse to the rise of the
	 * next pulse.
	 */
	up->rphase++;
	if (up->mphase % WWV_SEC == up->repoch) {
		up->status &= ~(DGATE | BGATE);
		engmin = sqrt(up->irig * up->irig + up->qrig *
		    up->qrig);
		up->datsig = engmax;
		up->datsnr = wwv_snr(engmax, engmin);

		/*
		 * If the amplitude or SNR is below threshold, average a
		 * 0 in the the integrators; otherwise, average the
		 * bipolar signal. This is done to avoid noise polution.
		 */
		if (engmax < DTHR || up->datsnr < DSNR) {
			up->status |= DGATE;
			wwv_rsec(peer, 0);
		} else {
			sigzer -= sigone;
			sigone -= sigmin;
			wwv_rsec(peer, sigone - sigzer);
		}
		if (up->status & (DGATE | BGATE))
			up->errcnt++;
		if (up->errcnt > MAXERR)
			up->alarm |= LOWERR;
		wwv_gain(peer);
		cp = &up->mitig[up->achan];
		cp->wwv.syneng = 0;
		cp->wwvh.syneng = 0;
		up->rphase = 0;
	}
}


/*
 * wwv_rsec - process receiver second
 *
 * This routine is called at the end of each receiver second to
 * implement the per-second state machine. The machine assembles BCD
 * digit bits, decodes miscellaneous bits and dances the leap seconds.
 *
 * Normally, the minute has 60 seconds numbered 0-59. If the leap
 * warning bit is set, the last minute (1439) of 30 June (day 181 or 182
 * for leap years) or 31 December (day 365 or 366 for leap years) is
 * augmented by one second numbered 60. This is accomplished by
 * extending the minute interval by one second and teaching the state
 * machine to ignore it.
 */
static void
wwv_rsec(
	struct peer *peer,	/* peer structure pointer */
	double bit
	)
{
	static int iniflg;	/* initialization flag */
	static double bcddld[4]; /* BCD data bits */
	static double bitvec[61]; /* bit integrator for misc bits */
	struct refclockproc *pp;
	struct wwvunit *up;
	struct chan *cp;
	struct sync *sp, *rp;
	char	tbuf[TBUF];	/* monitor buffer */
	int	sw, arg, nsec;

	pp = peer->procptr;
	up = pp->unitptr;
	if (!iniflg) {
		iniflg = 1;
		ZERO(bitvec);
	}

	/*
	 * The bit represents the probability of a hit on zero (negative
	 * values), a hit on one (positive values) or a miss (zero
	 * value). The likelihood vector is the exponential average of
	 * these probabilities. Only the bits of this vector
	 * corresponding to the miscellaneous bits of the timecode are
	 * used, but it's easier to do them all. After that, crank the
	 * seconds state machine.
	 */
	nsec = up->rsec;
	up->rsec++;
	bitvec[nsec] += (bit - bitvec[nsec]) / TCONST;
	sw = progx[nsec].sw;
	arg = progx[nsec].arg;

	/*
	 * The minute state machine. Fly off to a particular section as
	 * directed by the transition matrix and second number.
	 */
	switch (sw) {

	/*
	 * Ignore this second.
	 */
	case IDLE:			/* 9, 45-49 */
		break;

	/*
	 * Probe channel stuff
	 *
	 * The WWV/H format contains data pulses in second 59 (position
	 * identifier) and second 1, but not in second 0. The minute
	 * sync pulse is contained in second 0. At the end of second 58
	 * QSY to the probe channel, which rotates in turn over all
	 * WWV/H frequencies. At the end of second 0 measure the minute
	 * sync pulse. At the end of second 1 measure the data pulse and
	 * QSY back to the data channel. Note that the actions commented
	 * here happen at the end of the second numbered as shown.
	 *
	 * At the end of second 0 save the minute sync amplitude latched
	 * at 800 ms as the signal later used to calculate the SNR. 
	 */
	case SYNC2:			/* 0 */
		cp = &up->mitig[up->achan];
		cp->wwv.synmax = cp->wwv.syneng;
		cp->wwvh.synmax = cp->wwvh.syneng;
		break;

	/*
	 * At the end of second 1 use the minute sync amplitude latched
	 * at 800 ms as the noise to calculate the SNR. If the minute
	 * sync pulse and SNR are above thresholds and the data pulse
	 * amplitude and SNR are above thresolds, shift a 1 into the
	 * station reachability register; otherwise, shift a 0. The
	 * number of 1 bits in the last six intervals is a component of
	 * the channel metric computed by the wwv_metric() routine.
	 * Finally, QSY back to the data channel.
	 */
	case SYNC3:			/* 1 */
		cp = &up->mitig[up->achan];

		/*
		 * WWV station
		 */
		sp = &cp->wwv;
		sp->synsnr = wwv_snr(sp->synmax, sp->amp);
		sp->reach <<= 1;
		if (sp->reach & (1 << AMAX))
			sp->count--;
		if (sp->synmax >= QTHR && sp->synsnr >= QSNR &&
		    !(up->status & (DGATE | BGATE))) {
			sp->reach |= 1;
			sp->count++;
		}
		sp->metric = wwv_metric(sp);

		/*
		 * WWVH station
		 */
		rp = &cp->wwvh;
		rp->synsnr = wwv_snr(rp->synmax, rp->amp);
		rp->reach <<= 1;
		if (rp->reach & (1 << AMAX))
			rp->count--;
		if (rp->synmax >= QTHR && rp->synsnr >= QSNR &&
		    !(up->status & (DGATE | BGATE))) {
			rp->reach |= 1;
			rp->count++;
		}
		rp->metric = wwv_metric(rp);
		if (pp->sloppyclockflag & CLK_FLAG4) {
			snprintf(tbuf, sizeof(tbuf),
			    "wwv5 %04x %3d %4d %.0f/%.1f %.0f/%.1f %s %04x %.0f %.0f/%.1f %s %04x %.0f %.0f/%.1f",
			    up->status, up->gain, up->yepoch,
			    up->epomax, up->eposnr, up->datsig,
			    up->datsnr,
			    sp->refid, sp->reach & 0xffff,
			    sp->metric, sp->synmax, sp->synsnr,
			    rp->refid, rp->reach & 0xffff,
			    rp->metric, rp->synmax, rp->synsnr);
			record_clock_stats(&peer->srcadr, tbuf);
#ifdef DEBUG
			if (debug)
				printf("%s\n", tbuf);
#endif /* DEBUG */
		}
		up->errcnt = up->digcnt = up->alarm = 0;

		/*
		 * If synchronized to a station, restart if no stations
		 * have been heard within the PANIC timeout (2 days). If
		 * not and the minute digit has been found, restart if
		 * not synchronized withing the SYNCH timeout (40 m). If
		 * not, restart if the unit digit has not been found
		 * within the DATA timeout (15 m).
		 */
		if (up->status & INSYNC) {
			if (up->watch > PANIC) {
				wwv_newgame(peer);
				return;
			}
		} else if (up->status & DSYNC) {
			if (up->watch > SYNCH) {
				wwv_newgame(peer);
				return;
			}
		} else if (up->watch > DATA) {
			wwv_newgame(peer);
			return;
		}
		wwv_newchan(peer);
		break;

	/*
	 * Save the bit probability in the BCD data vector at the index
	 * given by the argument. Bits not used in the digit are forced
	 * to zero.
	 */
	case COEF1:			/* 4-7 */ 
		bcddld[arg] = bit;
		break;

	case COEF:			/* 10-13, 15-17, 20-23, 25-26,
					   30-33, 35-38, 40-41, 51-54 */
		if (up->status & DSYNC) 
			bcddld[arg] = bit;
		else
			bcddld[arg] = 0;
		break;

	case COEF2:			/* 18, 27-28, 42-43 */
		bcddld[arg] = 0;
		break;

	/*
	 * Correlate coefficient vector with each valid digit vector and
	 * save in decoding matrix. We step through the decoding matrix
	 * digits correlating each with the coefficients and saving the
	 * greatest and the next lower for later SNR calculation.
	 */
	case DECIM2:			/* 29 */
		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd2);
		break;

	case DECIM3:			/* 44 */
		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd3);
		break;

	case DECIM6:			/* 19 */
		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd6);
		break;

	case DECIM9:			/* 8, 14, 24, 34, 39 */
		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd9);
		break;

	/*
	 * Miscellaneous bits. If above the positive threshold, declare
	 * 1; if below the negative threshold, declare 0; otherwise
	 * raise the BGATE bit. The design is intended to avoid
	 * integrating noise under low SNR conditions.
	 */
	case MSC20:			/* 55 */
		wwv_corr4(peer, &up->decvec[YR + 1], bcddld, bcd9);
		/* fall through */

	case MSCBIT:			/* 2-3, 50, 56-57 */
		if (bitvec[nsec] > BTHR) {
			if (!(up->misc & arg))
				up->alarm |= CMPERR;
			up->misc |= arg;
		} else if (bitvec[nsec] < -BTHR) {
			if (up->misc & arg)
				up->alarm |= CMPERR;
			up->misc &= ~arg;
		} else {
			up->status |= BGATE;
		}
		break;

	/*
	 * Save the data channel gain, then QSY to the probe channel and
	 * dim the seconds comb filters. The www_newchan() routine will
	 * light them back up.
	 */
	case MSC21:			/* 58 */
		if (bitvec[nsec] > BTHR) {
			if (!(up->misc & arg))
				up->alarm |= CMPERR;
			up->misc |= arg;
		} else if (bitvec[nsec] < -BTHR) {
			if (up->misc & arg)
				up->alarm |= CMPERR;
			up->misc &= ~arg;
		} else {
			up->status |= BGATE;
		}
		up->status &= ~(SELV | SELH);
#ifdef ICOM
		if (up->fd_icom > 0) {
			up->schan = (up->schan + 1) % NCHAN;
			wwv_qsy(peer, up->schan);
		} else {
			up->mitig[up->achan].gain = up->gain;
		}
#else
		up->mitig[up->achan].gain = up->gain;
#endif /* ICOM */
		break;

	/*
	 * The endgames
	 *
	 * During second 59 the receiver and codec AGC are settling
	 * down, so the data pulse is unusable as quality metric. If
	 * LEPSEC is set on the last minute of 30 June or 31 December,
	 * the transmitter and receiver insert an extra second (60) in
	 * the timescale and the minute sync repeats the second. Once
	 * leaps occurred at intervals of about 18 months, but the last
	 * leap before the most recent leap in 1995 was in  1998.
	 */
	case MIN1:			/* 59 */
		if (up->status & LEPSEC)
			break;

		/* fall through */

	case MIN2:			/* 60 */
		up->status &= ~LEPSEC;
		wwv_tsec(peer);
		up->rsec = 0;
		wwv_clock(peer);
		break;
	}
	if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
	    DSYNC)) {
		snprintf(tbuf, sizeof(tbuf),
		    "wwv3 %2d %04x %3d %4d %5.0f %5.1f %5.0f %5.1f %5.0f",
		    nsec, up->status, up->gain, up->yepoch, up->epomax,
		    up->eposnr, up->datsig, up->datsnr, bit);
		record_clock_stats(&peer->srcadr, tbuf);
#ifdef DEBUG
		if (debug)
			printf("%s\n", tbuf);
#endif /* DEBUG */
	}
	pp->disp += AUDIO_PHI;
}

/*
 * The radio clock is set if the alarm bits are all zero. After that,
 * the time is considered valid if the second sync bit is lit. It should
 * not be a surprise, especially if the radio is not tunable, that
 * sometimes no stations are above the noise and the integrators
 * discharge below the thresholds. We assume that, after a day of signal
 * loss, the minute sync epoch will be in the same second. This requires
 * the codec frequency be accurate within 6 PPM. Practical experience
 * shows the frequency typically within 0.1 PPM, so after a day of
 * signal loss, the time should be within 8.6 ms.. 
 */
static void
wwv_clock(
	struct peer *peer	/* peer unit pointer */
	)
{
	struct refclockproc *pp;
	struct wwvunit *up;
	l_fp	offset;		/* offset in NTP seconds */

	pp = peer->procptr;
	up = pp->unitptr;
	if (!(up->status & SSYNC))
		up->alarm |= SYNERR;
	if (up->digcnt < 9)
		up->alarm |= NINERR;
	if (!(up->alarm))
		up->status |= INSYNC;
	if (up->status & INSYNC && up->status & SSYNC) {
		if (up->misc & SECWAR)
			pp->leap = LEAP_ADDSECOND;
		else
			pp->leap = LEAP_NOWARNING;
		pp->second = up->rsec;
		pp->minute = up->decvec[MN].digit + up->decvec[MN +
		    1].digit * 10;
		pp->hour = up->decvec[HR].digit + up->decvec[HR +
		    1].digit * 10;
		pp->day = up->decvec[DA].digit + up->decvec[DA +
		    1].digit * 10 + up->decvec[DA + 2].digit * 100;
		pp->year = up->decvec[YR].digit + up->decvec[YR +
		    1].digit * 10;
		pp->year += 2000;
		L_CLR(&offset);
		if (!clocktime(pp->day, pp->hour, pp->minute,
		    pp->second, GMT, up->timestamp.l_ui,
		    &pp->yearstart, &offset.l_ui)) {
			up->errflg = CEVNT_BADTIME;
		} else {
			up->watch = 0;
			pp->disp = 0;
			pp->lastref = up->timestamp;
			refclock_process_offset(pp, offset,
			    up->timestamp, PDELAY + up->pdelay);
			refclock_receive(peer);
		}
	}
	pp->lencode = timecode(up, pp->a_lastcode,
			       sizeof(pp->a_lastcode));
	record_clock_stats(&peer->srcadr, pp->a_lastcode);
#ifdef DEBUG
	if (debug)
		printf("wwv: timecode %d %s\n", pp->lencode,
		    pp->a_lastcode);
#endif /* DEBUG */
}


/*
 * wwv_corr4 - determine maximum-likelihood digit
 *
 * This routine correlates the received digit vector with the BCD
 * coefficient vectors corresponding to all valid digits at the given
 * position in the decoding matrix. The maximum value corresponds to the
 * maximum-likelihood digit, while the ratio of this value to the next
 * lower value determines the likelihood function. Note that, if the
 * digit is invalid, the likelihood vector is averaged toward a miss.
 */
static void
wwv_corr4(
	struct peer *peer,	/* peer unit pointer */
	struct decvec *vp,	/* decoding table pointer */
	double	data[],		/* received data vector */
	double	tab[][4]	/* correlation vector array */
	)
{
	struct refclockproc *pp;
	struct wwvunit *up;
	double	topmax, nxtmax;	/* metrics */
	double	acc;		/* accumulator */
	char	tbuf[TBUF];	/* monitor buffer */
	int	mldigit;	/* max likelihood digit */
	int	i, j;

	pp = peer->procptr;
	up = pp->unitptr;

	/*
	 * Correlate digit vector with each BCD coefficient vector. If
	 * any BCD digit bit is bad, consider all bits a miss. Until the
	 * minute units digit has been resolved, don't to anything else.
	 * Note the SNR is calculated as the ratio of the largest
	 * likelihood value to the next largest likelihood value.
 	 */
	mldigit = 0;
	topmax = nxtmax = -MAXAMP;
	for (i = 0; tab[i][0] != 0; i++) {
		acc = 0;
		for (j = 0; j < 4; j++)
			acc += data[j] * tab[i][j];
		acc = (vp->like[i] += (acc - vp->like[i]) / TCONST);
		if (acc > topmax) {
			nxtmax = topmax;
			topmax = acc;
			mldigit = i;
		} else if (acc > nxtmax) {
			nxtmax = acc;
		}
	}
	vp->digprb = topmax;
	vp->digsnr = wwv_snr(topmax, nxtmax);

	/*
	 * The current maximum-likelihood digit is compared to the last
	 * maximum-likelihood digit. If different, the compare counter
	 * and maximum-likelihood digit are reset.  When the compare
	 * counter reaches the BCMP threshold (3), the digit is assumed
	 * correct. When the compare counter of all nine digits have
	 * reached threshold, the clock is assumed correct.
	 *
	 * Note that the clock display digit is set before the compare
	 * counter has reached threshold; however, the clock display is
	 * not considered correct until all nine clock digits have
	 * reached threshold. This is intended as eye candy, but avoids
	 * mistakes when the signal is low and the SNR is very marginal.
	 */
	if (vp->digprb < BTHR || vp->digsnr < BSNR) {
		up->status |= BGATE;
	} else {
		if (vp->digit != mldigit) {
			up->alarm |= CMPERR;
			if (vp->count > 0)
				vp->count--;
			if (vp->count == 0)
				vp->digit = mldigit;
		} else {
			if (vp->count < BCMP)
				vp->count++;
			if (vp->count == BCMP) {
				up->status |= DSYNC;
				up->digcnt++;
			}
		}
	}
	if ((pp->sloppyclockflag & CLK_FLAG4) && !(up->status &
	    INSYNC)) {
		snprintf(tbuf, sizeof(tbuf),
		    "wwv4 %2d %04x %3d %4d %5.0f %2d %d %d %d %5.0f %5.1f",
		    up->rsec - 1, up->status, up->gain, up->yepoch,
		    up->epomax, vp->radix, vp->digit, mldigit,
		    vp->count, vp->digprb, vp->digsnr);
		record_clock_stats(&peer->srcadr, tbuf);
#ifdef DEBUG
		if (debug)
			printf("%s\n", tbuf);
#endif /* DEBUG */
	}
}


/*
 * wwv_tsec - transmitter minute processing
 *
 * This routine is called at the end of the transmitter minute. It
 * implements a state machine that advances the logical clock subject to
 * the funny rules that govern the conventional clock and calendar.
 */
static void
wwv_tsec(
	struct peer *peer	/* driver structure pointer */
	)
{
	struct refclockproc *pp;
	struct wwvunit *up;
	int minute, day, isleap;
	int temp;

	pp = peer->procptr;
	up = pp->unitptr;

	/*
	 * Advance minute unit of the day. Don't propagate carries until
	 * the unit minute digit has been found.
	 */
	temp = carry(&up->decvec[MN]);	/* minute units */
	if (!(up->status & DSYNC))
		return;

	/*
	 * Propagate carries through the day.
	 */ 
	if (temp == 0)			/* carry minutes */
		temp = carry(&up->decvec[MN + 1]);
	if (temp == 0)			/* carry hours */
		temp = carry(&up->decvec[HR]);
	if (temp == 0)
		temp = carry(&up->decvec[HR + 1]);
	// XXX: Does temp have an expected value here?

	/*
	 * Decode the current minute and day. Set leap day if the
	 * timecode leap bit is set on 30 June or 31 December. Set leap
	 * minute if the last minute on leap day, but only if the clock
	 * is syncrhronized. This code fails in 2400 AD.
	 */
	minute = up->decvec[MN].digit + up->decvec[MN + 1].digit *
	    10 + up->decvec[HR].digit * 60 + up->decvec[HR +
	    1].digit * 600;
	day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
	    up->decvec[DA + 2].digit * 100;

	/*
	 * Set the leap bit on the last minute of the leap day.
	 */
	isleap = up->decvec[YR].digit & 0x3;
	if (up->misc & SECWAR && up->status & INSYNC) {
		if ((day == (isleap ? 182 : 183) || day == (isleap ?
		    365 : 366)) && minute == 1439)
			up->status |= LEPSEC;
	}

	/*
	 * Roll the day if this the first minute and propagate carries
	 * through the year.
	 */
	if (minute != 1440)
		return;

	// minute = 0;
	while (carry(&up->decvec[HR]) != 0); /* advance to minute 0 */
	while (carry(&up->decvec[HR + 1]) != 0);
	day++;
	temp = carry(&up->decvec[DA]);	/* carry days */
	if (temp == 0)
		temp = carry(&up->decvec[DA + 1]);
	if (temp == 0)
		temp = carry(&up->decvec[DA + 2]);
	// XXX: Is there an expected value of temp here?

	/*
	 * Roll the year if this the first day and propagate carries
	 * through the century.
	 */
	if (day != (isleap ? 365 : 366))
		return;

	// day = 1;
	while (carry(&up->decvec[DA]) != 1); /* advance to day 1 */
	while (carry(&up->decvec[DA + 1]) != 0);
	while (carry(&up->decvec[DA + 2]) != 0);
	temp = carry(&up->decvec[YR]);	/* carry years */
	if (temp == 0)
		carry(&up->decvec[YR + 1]);
}


/*
 * carry - process digit
 *
 * This routine rotates a likelihood vector one position and increments
 * the clock digit modulo the radix. It returns the new clock digit or
 * zero if a carry occurred. Once synchronized, the clock digit will
 * match the maximum-likelihood digit corresponding to that position.
 */
static int
carry(
	struct decvec *dp	/* decoding table pointer */
	)
{
	int temp;
	int j;

	dp->digit++;
	if (dp->digit == dp->radix)
		dp->digit = 0;
	temp = dp->like[dp->radix - 1];
	for (j = dp->radix - 1; j > 0; j--)
		dp->like[j] = dp->like[j - 1];
	dp->like[0] = temp;
	return (dp->digit);
}


/*
 * wwv_snr - compute SNR or likelihood function
 */
static double
wwv_snr(
	double signal,		/* signal */
	double noise		/* noise */
	)
{
	double rval;

	/*
	 * This is a little tricky. Due to the way things are measured,
	 * either or both the signal or noise amplitude can be negative
	 * or zero. The intent is that, if the signal is negative or
	 * zero, the SNR must always be zero. This can happen with the
	 * subcarrier SNR before the phase has been aligned. On the
	 * other hand, in the likelihood function the "noise" is the
	 * next maximum down from the peak and this could be negative.
	 * However, in this case the SNR is truly stupendous, so we
	 * simply cap at MAXSNR dB (40).
	 */
	if (signal <= 0) {
		rval = 0;
	} else if (noise <= 0) {
		rval = MAXSNR;
	} else {
		rval = 20. * log10(signal / noise);
		if (rval > MAXSNR)
			rval = MAXSNR;
	}
	return (rval);
}


/*
 * wwv_newchan - change to new data channel
 *
 * The radio actually appears to have ten channels, one channel for each
 * of five frequencies and each of two stations (WWV and WWVH), although
 * if not tunable only the DCHAN channel appears live. While the radio
 * is tuned to the working data channel frequency and station for most
 * of the minute, during seconds 59, 0 and 1 the radio is tuned to a
 * probe frequency in order to search for minute sync pulse and data
 * subcarrier from other transmitters.
 *
 * The search for WWV and WWVH operates simultaneously, with WWV minute
 * sync pulse at 1000 Hz and WWVH at 1200 Hz. The probe frequency
 * rotates each minute over 2.5, 5, 10, 15 and 20 MHz in order and yes,
 * we all know WWVH is dark on 20 MHz, but few remember when WWV was lit
 * on 25 MHz.
 *
 * This routine selects the best channel using a metric computed from
 * the reachability register and minute pulse amplitude. Normally, the
 * award goes to the the channel with the highest metric; but, in case
 * of ties, the award goes to the channel with the highest minute sync
 * pulse amplitude and then to the highest frequency.
 *
 * The routine performs an important squelch function to keep dirty data
 * from polluting the integrators. In order to consider a station valid,
 * the metric must be at least MTHR (13); otherwise, the station select
 * bits are cleared so the second sync is disabled and the data bit
 * integrators averaged to a miss. 
 */
static int
wwv_newchan(
	struct peer *peer	/* peer structure pointer */
	)
{
	struct refclockproc *pp;
	struct wwvunit *up;
	struct sync *sp, *rp;
	double rank, dtemp;
	int i, j, rval;

	pp = peer->procptr;
	up = pp->unitptr;

	/*
	 * Search all five station pairs looking for the channel with
	 * maximum metric.
	 */
	sp = NULL;
	j = 0;
	rank = 0;
	for (i = 0; i < NCHAN; i++) {
		rp = &up->mitig[i].wwvh;
		dtemp = rp->metric;
		if (dtemp >= rank) {
			rank = dtemp;
			sp = rp;
			j = i;
		}
		rp = &up->mitig[i].wwv;
		dtemp = rp->metric;
		if (dtemp >= rank) {
			rank = dtemp;
			sp = rp;
			j = i;
		}
	}

	/*
	 * If the strongest signal is less than the MTHR threshold (13),
	 * we are beneath the waves, so squelch the second sync and
	 * advance to the next station. This makes sure all stations are
	 * scanned when the ions grow dim. If the strongest signal is
	 * greater than the threshold, tune to that frequency and
	 * transmitter QTH.
	 */
	up->status &= ~(SELV | SELH);
	if (rank < MTHR) {
		up->dchan = (up->dchan + 1) % NCHAN;
		if (up->status & METRIC) {
			up->status &= ~METRIC;
			refclock_report(peer, CEVNT_PROP);
		}
		rval = FALSE;
	} else {
		up->dchan = j;
		up->sptr = sp;
		memcpy(&pp->refid, sp->refid, 4);
		peer->refid = pp->refid;
		up->status |= METRIC;
		if (sp->select & SELV) {
			up->status |= SELV;
			up->pdelay = pp->fudgetime1;
		} else if (sp->select & SELH) {
			up->status |= SELH;
			up->pdelay = pp->fudgetime2;
		} else {
			up->pdelay = 0;
		}
		rval = TRUE;
	}
#ifdef ICOM
	if (up->fd_icom > 0)
		wwv_qsy(peer, up->dchan);
#endif /* ICOM */
	return (rval);
}


/*
 * wwv_newgame - reset and start over
 *
 * There are three conditions resulting in a new game:
 *
 * 1	After finding the minute pulse (MSYNC lit), going 15 minutes
 *	(DATA) without finding the unit seconds digit.
 *
 * 2	After finding good data (DSYNC lit), going more than 40 minutes
 *	(SYNCH) without finding station sync (INSYNC lit).
 *
 * 3	After finding station sync (INSYNC lit), going more than 2 days
 *	(PANIC) without finding any station. 
 */
static void
wwv_newgame(
	struct peer *peer	/* peer structure pointer */
	)
{
	struct refclockproc *pp;
	struct wwvunit *up;
	struct chan *cp;
	int i;

	pp = peer->procptr;
	up = pp->unitptr;

	/*
	 * Initialize strategic values. Note we set the leap bits
	 * NOTINSYNC and the refid "NONE".
	 */
	if (up->status)
		up->errflg = CEVNT_TIMEOUT;
	peer->leap = LEAP_NOTINSYNC;
	up->watch = up->status = up->alarm = 0;
	up->avgint = MINAVG;
	up->freq = 0;
	up->gain = MAXGAIN / 2;

	/*
	 * Initialize the station processes for audio gain, select bit,
	 * station/frequency identifier and reference identifier. Start
	 * probing at the strongest channel or the default channel if
	 * nothing heard.
	 */
	memset(up->mitig, 0, sizeof(up->mitig));
	for (i = 0; i < NCHAN; i++) {
		cp = &up->mitig[i];
		cp->gain = up->gain;
		cp->wwv.select = SELV;
		snprintf(cp->wwv.refid, sizeof(cp->wwv.refid), "WV%.0f",
		    floor(qsy[i])); 
		cp->wwvh.select = SELH;
		snprintf(cp->wwvh.refid, sizeof(cp->wwvh.refid), "WH%.0f",
		    floor(qsy[i])); 
	}
	up->dchan = (DCHAN + NCHAN - 1) % NCHAN;
	wwv_newchan(peer);
	up->schan = up->dchan;
}

/*
 * wwv_metric - compute station metric
 *
 * The most significant bits represent the number of ones in the
 * station reachability register. The least significant bits represent
 * the minute sync pulse amplitude. The combined value is scaled 0-100.
 */
double
wwv_metric(
	struct sync *sp		/* station pointer */
	)
{
	double	dtemp;

	dtemp = sp->count * MAXAMP;
	if (sp->synmax < MAXAMP)
		dtemp += sp->synmax;
	else
		dtemp += MAXAMP - 1;
	dtemp /= (AMAX + 1) * MAXAMP;
	return (dtemp * 100.);
}


#ifdef ICOM
/*
 * wwv_qsy - Tune ICOM receiver
 *
 * This routine saves the AGC for the current channel, switches to a new
 * channel and restores the AGC for that channel. If a tunable receiver
 * is not available, just fake it.
 */
static int
wwv_qsy(
	struct peer *peer,	/* peer structure pointer */
	int	chan		/* channel */
	)
{
	int rval = 0;
	struct refclockproc *pp;
	struct wwvunit *up;

	pp = peer->procptr;
	up = pp->unitptr;
	if (up->fd_icom > 0) {
		up->mitig[up->achan].gain = up->gain;
		rval = icom_freq(up->fd_icom, peer->ttl & 0x7f,
		    qsy[chan]);
		up->achan = chan;
		up->gain = up->mitig[up->achan].gain;
	}
	return (rval);
}
#endif /* ICOM */


/*
 * timecode - assemble timecode string and length
 *
 * Prettytime format - similar to Spectracom
 *
 * sq yy ddd hh:mm:ss ld dut lset agc iden sig errs freq avgt
 *
 * s	sync indicator ('?' or ' ')
 * q	error bits (hex 0-F)
 * yyyy	year of century
 * ddd	day of year
 * hh	hour of day
 * mm	minute of hour
 * ss	second of minute)
 * l	leap second warning (' ' or 'L')
 * d	DST state ('S', 'D', 'I', or 'O')
 * dut	DUT sign and magnitude (0.1 s)
 * lset	minutes since last clock update
 * agc	audio gain (0-255)
 * iden	reference identifier (station and frequency)
 * sig	signal quality (0-100)
 * errs	bit errors in last minute
 * freq	frequency offset (PPM)
 * avgt	averaging time (s)
 */
static int
timecode(
	struct wwvunit *up,	/* driver structure pointer */
	char *		tc,	/* target string */
	size_t		tcsiz	/* target max chars */
	)
{
	struct sync *sp;
	int year, day, hour, minute, second, dut;
	char synchar, leapchar, dst;
	char cptr[50];
	

	/*
	 * Common fixed-format fields
	 */
	synchar = (up->status & INSYNC) ? ' ' : '?';
	year = up->decvec[YR].digit + up->decvec[YR + 1].digit * 10 +
	    2000;
	day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
	    up->decvec[DA + 2].digit * 100;
	hour = up->decvec[HR].digit + up->decvec[HR + 1].digit * 10;
	minute = up->decvec[MN].digit + up->decvec[MN + 1].digit * 10;
	second = 0;
	leapchar = (up->misc & SECWAR) ? 'L' : ' ';
	dst = dstcod[(up->misc >> 4) & 0x3];
	dut = up->misc & 0x7;
	if (!(up->misc & DUTS))
		dut = -dut;
	snprintf(tc, tcsiz, "%c%1X", synchar, up->alarm);
	snprintf(cptr, sizeof(cptr),
		 " %4d %03d %02d:%02d:%02d %c%c %+d",
		 year, day, hour, minute, second, leapchar, dst, dut);
	strlcat(tc, cptr, tcsiz);

	/*
	 * Specific variable-format fields
	 */
	sp = up->sptr;
	snprintf(cptr, sizeof(cptr), " %d %d %s %.0f %d %.1f %d",
		 up->watch, up->mitig[up->dchan].gain, sp->refid,
		 sp->metric, up->errcnt, up->freq / WWV_SEC * 1e6,
		 up->avgint);
	strlcat(tc, cptr, tcsiz);

	return strlen(tc);
}


/*
 * wwv_gain - adjust codec gain
 *
 * This routine is called at the end of each second. During the second
 * the number of signal clips above the MAXAMP threshold (6000). If
 * there are no clips, the gain is bumped up; if there are more than
 * MAXCLP clips (100), it is bumped down. The decoder is relatively
 * insensitive to amplitude, so this crudity works just peachy. The
 * routine also jiggles the input port and selectively mutes the
 * monitor.
 */
static void
wwv_gain(
	struct peer *peer	/* peer structure pointer */
	)
{
	struct refclockproc *pp;
	struct wwvunit *up;

	pp = peer->procptr;
	up = pp->unitptr;

	/*
	 * Apparently, the codec uses only the high order bits of the
	 * gain control field. Thus, it may take awhile for changes to
	 * wiggle the hardware bits.
	 */
	if (up->clipcnt == 0) {
		up->gain += 4;
		if (up->gain > MAXGAIN)
			up->gain = MAXGAIN;
	} else if (up->clipcnt > MAXCLP) {
		up->gain -= 4;
		if (up->gain < 0)
			up->gain = 0;
	}
	audio_gain(up->gain, up->mongain, up->port);
	up->clipcnt = 0;
#if DEBUG
	if (debug > 1)
		audio_show();
#endif
}


#else
int refclock_wwv_bs;
#endif /* REFCLOCK */