/*
* Copyright (c) 1998-2009, 2011, 2012, 2014 Proofpoint, Inc. and its suppliers.
* All rights reserved.
* Copyright (c) 1983, 1995-1997 Eric P. Allman. All rights reserved.
* Copyright (c) 1988, 1993
* The Regents of the University of California. All rights reserved.
*
* By using this file, you agree to the terms and conditions set
* forth in the LICENSE file which can be found at the top level of
* the sendmail distribution.
*
*/
#include <sendmail.h>
#include <sm/sem.h>
SM_RCSID("@(#)$Id: queue.c,v 8.1000 2013-11-22 20:51:56 ca Exp $")
#include <dirent.h>
# define RELEASE_QUEUE (void) 0
# define ST_INODE(st) (st).st_ino
# define sm_file_exists(errno) ((errno) == EEXIST)
# if HASFLOCK && defined(O_EXLOCK)
# define SM_OPEN_EXLOCK 1
# define TF_OPEN_FLAGS (O_CREAT|O_WRONLY|O_EXCL|O_EXLOCK)
# else /* HASFLOCK && defined(O_EXLOCK) */
# define TF_OPEN_FLAGS (O_CREAT|O_WRONLY|O_EXCL)
# endif /* HASFLOCK && defined(O_EXLOCK) */
#ifndef SM_OPEN_EXLOCK
# define SM_OPEN_EXLOCK 0
#endif /* ! SM_OPEN_EXLOCK */
/*
** Historical notes:
** QF_VERSION == 4 was sendmail 8.10/8.11 without _FFR_QUEUEDELAY
** QF_VERSION == 5 was sendmail 8.10/8.11 with _FFR_QUEUEDELAY
** QF_VERSION == 6 was sendmail 8.12 without _FFR_QUEUEDELAY
** QF_VERSION == 7 was sendmail 8.12 with _FFR_QUEUEDELAY
** QF_VERSION == 8 is sendmail 8.13
*/
#define QF_VERSION 8 /* version number of this queue format */
static char queue_letter __P((ENVELOPE *, int));
static bool quarantine_queue_item __P((int, int, ENVELOPE *, char *));
/* Naming convention: qgrp: index of queue group, qg: QUEUEGROUP */
/*
** Work queue.
*/
struct work
{
char *w_name; /* name of control file */
char *w_host; /* name of recipient host */
bool w_lock; /* is message locked? */
bool w_tooyoung; /* is it too young to run? */
long w_pri; /* priority of message, see below */
time_t w_ctime; /* creation time */
time_t w_mtime; /* modification time */
int w_qgrp; /* queue group located in */
int w_qdir; /* queue directory located in */
struct work *w_next; /* next in queue */
};
typedef struct work WORK;
static WORK *WorkQ; /* queue of things to be done */
static int NumWorkGroups; /* number of work groups */
static time_t Current_LA_time = 0;
/* Get new load average every 30 seconds. */
#define GET_NEW_LA_TIME 30
#define SM_GET_LA(now) \
do \
{ \
now = curtime(); \
if (Current_LA_time < now - GET_NEW_LA_TIME) \
{ \
sm_getla(); \
Current_LA_time = now; \
} \
} while (0)
/*
** DoQueueRun indicates that a queue run is needed.
** Notice: DoQueueRun is modified in a signal handler!
*/
static bool volatile DoQueueRun; /* non-interrupt time queue run needed */
/*
** Work group definition structure.
** Each work group contains one or more queue groups. This is done
** to manage the number of queue group runners active at the same time
** to be within the constraints of MaxQueueChildren (if it is set).
** The number of queue groups that can be run on the next work run
** is kept track of. The queue groups are run in a round robin.
*/
struct workgrp
{
int wg_numqgrp; /* number of queue groups in work grp */
int wg_runners; /* total runners */
int wg_curqgrp; /* current queue group */
QUEUEGRP **wg_qgs; /* array of queue groups */
int wg_maxact; /* max # of active runners */
time_t wg_lowqintvl; /* lowest queue interval */
int wg_restart; /* needs restarting? */
int wg_restartcnt; /* count of times restarted */
};
typedef struct workgrp WORKGRP;
static WORKGRP volatile WorkGrp[MAXWORKGROUPS + 1]; /* work groups */
#if SM_HEAP_CHECK
static SM_DEBUG_T DebugLeakQ = SM_DEBUG_INITIALIZER("leak_q",
"@(#)$Debug: leak_q - trace memory leaks during queue processing $");
#endif /* SM_HEAP_CHECK */
static void grow_wlist __P((int, int));
static int multiqueue_cache __P((char *, int, QUEUEGRP *, int, unsigned int *));
static int gatherq __P((int, int, bool, bool *, bool *, int *));
static int sortq __P((int));
static void printctladdr __P((ADDRESS *, SM_FILE_T *));
static bool readqf __P((ENVELOPE *, bool));
static void restart_work_group __P((int));
static void runner_work __P((ENVELOPE *, int, bool, int, int));
static void schedule_queue_runs __P((bool, int, bool));
static char *strrev __P((char *));
static ADDRESS *setctluser __P((char *, int, ENVELOPE *));
#if _FFR_RHS
static int sm_strshufflecmp __P((char *, char *));
static void init_shuffle_alphabet __P(());
#endif /* _FFR_RHS */
/*
** Note: workcmpf?() don't use a prototype because it will cause a conflict
** with the qsort() call (which expects something like
** int (*compar)(const void *, const void *), not (WORK *, WORK *))
*/
static int workcmpf0();
static int workcmpf1();
static int workcmpf2();
static int workcmpf3();
static int workcmpf4();
static int randi = 3; /* index for workcmpf5() */
static int workcmpf5();
static int workcmpf6();
#if _FFR_RHS
static int workcmpf7();
#endif /* _FFR_RHS */
#if RANDOMSHIFT
# define get_rand_mod(m) ((get_random() >> RANDOMSHIFT) % (m))
#else /* RANDOMSHIFT */
# define get_rand_mod(m) (get_random() % (m))
#endif /* RANDOMSHIFT */
/*
** File system definition.
** Used to keep track of how much free space is available
** on a file system in which one or more queue directories reside.
*/
typedef struct filesys_shared FILESYS;
struct filesys_shared
{
dev_t fs_dev; /* unique device id */
long fs_avail; /* number of free blocks available */
long fs_blksize; /* block size, in bytes */
};
/* probably kept in shared memory */
static FILESYS FileSys[MAXFILESYS]; /* queue file systems */
static const char *FSPath[MAXFILESYS]; /* pathnames for file systems */
#if SM_CONF_SHM
/*
** Shared memory data
**
** Current layout:
** size -- size of shared memory segment
** pid -- pid of owner, should be a unique id to avoid misinterpretations
** by other processes.
** tag -- should be a unique id to avoid misinterpretations by others.
** idea: hash over configuration data that will be stored here.
** NumFileSys -- number of file systems.
** FileSys -- (array of) structure for used file systems.
** RSATmpCnt -- counter for number of uses of ephemeral RSA key.
** QShm -- (array of) structure for information about queue directories.
*/
/*
** Queue data in shared memory
*/
typedef struct queue_shared QUEUE_SHM_T;
struct queue_shared
{
int qs_entries; /* number of entries */
/* XXX more to follow? */
};
static void *Pshm; /* pointer to shared memory */
static FILESYS *PtrFileSys; /* pointer to queue file system array */
int ShmId = SM_SHM_NO_ID; /* shared memory id */
static QUEUE_SHM_T *QShm; /* pointer to shared queue data */
static size_t shms;
# define SHM_OFF_PID(p) (((char *) (p)) + sizeof(int))
# define SHM_OFF_TAG(p) (((char *) (p)) + sizeof(pid_t) + sizeof(int))
# define SHM_OFF_HEAD (sizeof(pid_t) + sizeof(int) * 2)
/* how to access FileSys */
# define FILE_SYS(i) (PtrFileSys[i])
/* first entry is a tag, for now just the size */
# define OFF_FILE_SYS(p) (((char *) (p)) + SHM_OFF_HEAD)
/* offset for PNumFileSys */
# define OFF_NUM_FILE_SYS(p) (((char *) (p)) + SHM_OFF_HEAD + sizeof(FileSys))
/* offset for PRSATmpCnt */
# define OFF_RSA_TMP_CNT(p) (((char *) (p)) + SHM_OFF_HEAD + sizeof(FileSys) + sizeof(int))
int *PRSATmpCnt;
/* offset for queue_shm */
# define OFF_QUEUE_SHM(p) (((char *) (p)) + SHM_OFF_HEAD + sizeof(FileSys) + sizeof(int) * 2)
# define QSHM_ENTRIES(i) QShm[i].qs_entries
/* basic size of shared memory segment */
# define SM_T_SIZE (SHM_OFF_HEAD + sizeof(FileSys) + sizeof(int) * 2)
static unsigned int hash_q __P((char *, unsigned int));
/*
** HASH_Q -- simple hash function
**
** Parameters:
** p -- string to hash.
** h -- hash start value (from previous run).
**
** Returns:
** hash value.
*/
static unsigned int
hash_q(p, h)
char *p;
unsigned int h;
{
int c, d;
while (*p != '\0')
{
d = *p++;
c = d;
c ^= c<<6;
h += (c<<11) ^ (c>>1);
h ^= (d<<14) + (d<<7) + (d<<4) + d;
}
return h;
}
#else /* SM_CONF_SHM */
# define FILE_SYS(i) FileSys[i]
#endif /* SM_CONF_SHM */
/* access to the various components of file system data */
#define FILE_SYS_NAME(i) FSPath[i]
#define FILE_SYS_AVAIL(i) FILE_SYS(i).fs_avail
#define FILE_SYS_BLKSIZE(i) FILE_SYS(i).fs_blksize
#define FILE_SYS_DEV(i) FILE_SYS(i).fs_dev
/*
** Current qf file field assignments:
**
** A AUTH= parameter
** B body type
** C controlling user
** D data file name
** d data file directory name (added in 8.12)
** E error recipient
** F flag bits
** G free
** H header
** I data file's inode number
** K time of last delivery attempt
** L Solaris Content-Length: header (obsolete)
** M message
** N number of delivery attempts
** P message priority
** q quarantine reason
** Q original recipient (ORCPT=)
** r final recipient (Final-Recipient: DSN field)
** R recipient
** S sender
** T init time
** V queue file version
** X free (was: character set if _FFR_SAVE_CHARSET)
** Y free
** Z original envelope id from ESMTP
** ! deliver by (added in 8.12)
** $ define macro
** . terminate file
*/
/*
** QUEUEUP -- queue a message up for future transmission.
**
** Parameters:
** e -- the envelope to queue up.
** announce -- if true, tell when you are queueing up.
** msync -- if true, then fsync() if SuperSafe interactive mode.
**
** Returns:
** none.
**
** Side Effects:
** The current request is saved in a control file.
** The queue file is left locked.
*/
void
queueup(e, announce, msync)
register ENVELOPE *e;
bool announce;
bool msync;
{
register SM_FILE_T *tfp;
register HDR *h;
register ADDRESS *q;
int tfd = -1;
int i;
bool newid;
register char *p;
MAILER nullmailer;
MCI mcibuf;
char qf[MAXPATHLEN];
char tf[MAXPATHLEN];
char df[MAXPATHLEN];
char buf[MAXLINE];
/*
** Create control file.
*/
#define OPEN_TF do \
{ \
MODE_T oldumask = 0; \
\
if (bitset(S_IWGRP, QueueFileMode)) \
oldumask = umask(002); \
tfd = open(tf, TF_OPEN_FLAGS, QueueFileMode); \
if (bitset(S_IWGRP, QueueFileMode)) \
(void) umask(oldumask); \
} while (0)
newid = (e->e_id == NULL) || !bitset(EF_INQUEUE, e->e_flags);
(void) sm_strlcpy(tf, queuename(e, NEWQFL_LETTER), sizeof(tf));
tfp = e->e_lockfp;
if (tfp == NULL && newid)
{
/*
** open qf file directly: this will give an error if the file
** already exists and hence prevent problems if a queue-id
** is reused (e.g., because the clock is set back).
*/
(void) sm_strlcpy(tf, queuename(e, ANYQFL_LETTER), sizeof(tf));
OPEN_TF;
if (tfd < 0 ||
#if !SM_OPEN_EXLOCK
!lockfile(tfd, tf, NULL, LOCK_EX|LOCK_NB) ||
#endif /* !SM_OPEN_EXLOCK */
(tfp = sm_io_open(SmFtStdiofd, SM_TIME_DEFAULT,
(void *) &tfd, SM_IO_WRONLY,
NULL)) == NULL)
{
int save_errno = errno;
printopenfds(true);
errno = save_errno;
syserr("!queueup: cannot create queue file %s, euid=%ld, fd=%d, fp=%p",
tf, (long) geteuid(), tfd, tfp);
/* NOTREACHED */
}
e->e_lockfp = tfp;
upd_qs(e, 1, 0, "queueup");
}
/* if newid, write the queue file directly (instead of temp file) */
if (!newid)
{
/* get a locked tf file */
for (i = 0; i < 128; i++)
{
if (tfd < 0)
{
OPEN_TF;
if (tfd < 0)
{
if (errno != EEXIST)
break;
if (LogLevel > 0 && (i % 32) == 0)
sm_syslog(LOG_ALERT, e->e_id,
"queueup: cannot create %s, euid=%ld: %s",
tf, (long) geteuid(),
sm_errstring(errno));
}
#if SM_OPEN_EXLOCK
else
break;
#endif /* SM_OPEN_EXLOCK */
}
if (tfd >= 0)
{
#if SM_OPEN_EXLOCK
/* file is locked by open() */
break;
#else /* SM_OPEN_EXLOCK */
if (lockfile(tfd, tf, NULL, LOCK_EX|LOCK_NB))
break;
else
#endif /* SM_OPEN_EXLOCK */
if (LogLevel > 0 && (i % 32) == 0)
sm_syslog(LOG_ALERT, e->e_id,
"queueup: cannot lock %s: %s",
tf, sm_errstring(errno));
if ((i % 32) == 31)
{
(void) close(tfd);
tfd = -1;
}
}
if ((i % 32) == 31)
{
/* save the old temp file away */
(void) rename(tf, queuename(e, TEMPQF_LETTER));
}
else
(void) sleep(i % 32);
}
if (tfd < 0 || (tfp = sm_io_open(SmFtStdiofd, SM_TIME_DEFAULT,
(void *) &tfd, SM_IO_WRONLY_B,
NULL)) == NULL)
{
int save_errno = errno;
printopenfds(true);
errno = save_errno;
syserr("!queueup: cannot create queue temp file %s, uid=%ld",
tf, (long) geteuid());
}
}
if (tTd(40, 1))
sm_dprintf("\n>>>>> queueing %s/%s%s >>>>>\n",
qid_printqueue(e->e_qgrp, e->e_qdir),
queuename(e, ANYQFL_LETTER),
newid ? " (new id)" : "");
if (tTd(40, 3))
{
sm_dprintf(" e_flags=");
printenvflags(e);
}
if (tTd(40, 32))
{
sm_dprintf(" sendq=");
printaddr(sm_debug_file(), e->e_sendqueue, true);
}
if (tTd(40, 9))
{
sm_dprintf(" tfp=");
dumpfd(sm_io_getinfo(tfp, SM_IO_WHAT_FD, NULL), true, false);
sm_dprintf(" lockfp=");
if (e->e_lockfp == NULL)
sm_dprintf("NULL\n");
else
dumpfd(sm_io_getinfo(e->e_lockfp, SM_IO_WHAT_FD, NULL),
true, false);
}
/*
** If there is no data file yet, create one.
*/
(void) sm_strlcpy(df, queuename(e, DATAFL_LETTER), sizeof(df));
if (bitset(EF_HAS_DF, e->e_flags))
{
if (e->e_dfp != NULL &&
SuperSafe != SAFE_REALLY &&
SuperSafe != SAFE_REALLY_POSTMILTER &&
sm_io_setinfo(e->e_dfp, SM_BF_COMMIT, NULL) < 0 &&
errno != EINVAL)
{
syserr("!queueup: cannot commit data file %s, uid=%ld",
queuename(e, DATAFL_LETTER), (long) geteuid());
}
if (e->e_dfp != NULL &&
SuperSafe == SAFE_INTERACTIVE && msync)
{
if (tTd(40,32))
sm_syslog(LOG_INFO, e->e_id,
"queueup: fsync(e->e_dfp)");
if (fsync(sm_io_getinfo(e->e_dfp, SM_IO_WHAT_FD,
NULL)) < 0)
{
if (newid)
syserr("!552 Error writing data file %s",
df);
else
syserr("!452 Error writing data file %s",
df);
}
}
}
else
{
int dfd;
MODE_T oldumask = 0;
register SM_FILE_T *dfp = NULL;
struct stat stbuf;
if (e->e_dfp != NULL &&
sm_io_getinfo(e->e_dfp, SM_IO_WHAT_ISTYPE, BF_FILE_TYPE))
syserr("committing over bf file");
if (bitset(S_IWGRP, QueueFileMode))
oldumask = umask(002);
dfd = open(df, O_WRONLY|O_CREAT|O_TRUNC|QF_O_EXTRA,
QueueFileMode);
if (bitset(S_IWGRP, QueueFileMode))
(void) umask(oldumask);
if (dfd < 0 || (dfp = sm_io_open(SmFtStdiofd, SM_TIME_DEFAULT,
(void *) &dfd, SM_IO_WRONLY_B,
NULL)) == NULL)
syserr("!queueup: cannot create data temp file %s, uid=%ld",
df, (long) geteuid());
if (fstat(dfd, &stbuf) < 0)
e->e_dfino = -1;
else
{
e->e_dfdev = stbuf.st_dev;
e->e_dfino = ST_INODE(stbuf);
}
e->e_flags |= EF_HAS_DF;
memset(&mcibuf, '\0', sizeof(mcibuf));
mcibuf.mci_out = dfp;
mcibuf.mci_mailer = FileMailer;
(*e->e_putbody)(&mcibuf, e, NULL);
if (SuperSafe == SAFE_REALLY ||
SuperSafe == SAFE_REALLY_POSTMILTER ||
(SuperSafe == SAFE_INTERACTIVE && msync))
{
if (tTd(40,32))
sm_syslog(LOG_INFO, e->e_id,
"queueup: fsync(dfp)");
if (fsync(sm_io_getinfo(dfp, SM_IO_WHAT_FD, NULL)) < 0)
{
if (newid)
syserr("!552 Error writing data file %s",
df);
else
syserr("!452 Error writing data file %s",
df);
}
}
if (sm_io_close(dfp, SM_TIME_DEFAULT) < 0)
syserr("!queueup: cannot save data temp file %s, uid=%ld",
df, (long) geteuid());
e->e_putbody = putbody;
}
/*
** Output future work requests.
** Priority and creation time should be first, since
** they are required by gatherq.
*/
/* output queue version number (must be first!) */
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT, "V%d\n", QF_VERSION);
/* output creation time */
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT, "T%ld\n", (long) e->e_ctime);
/* output last delivery time */
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT, "K%ld\n", (long) e->e_dtime);
/* output number of delivery attempts */
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT, "N%d\n", e->e_ntries);
/* output message priority */
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT, "P%ld\n", e->e_msgpriority);
/*
** If data file is in a different directory than the queue file,
** output a "d" record naming the directory of the data file.
*/
if (e->e_dfqgrp != e->e_qgrp)
{
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT, "d%s\n",
Queue[e->e_dfqgrp]->qg_qpaths[e->e_dfqdir].qp_name);
}
/* output inode number of data file */
if (e->e_dfino != -1)
{
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT, "I%ld/%ld/%llu\n",
(long) major(e->e_dfdev),
(long) minor(e->e_dfdev),
(ULONGLONG_T) e->e_dfino);
}
/* output body type */
if (e->e_bodytype != NULL)
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT, "B%s\n",
denlstring(e->e_bodytype, true, false));
/* quarantine reason */
if (e->e_quarmsg != NULL)
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT, "q%s\n",
denlstring(e->e_quarmsg, true, false));
/* message from envelope, if it exists */
if (e->e_message != NULL)
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT, "M%s\n",
denlstring(e->e_message, true, false));
/* send various flag bits through */
p = buf;
if (bitset(EF_WARNING, e->e_flags))
*p++ = 'w';
if (bitset(EF_RESPONSE, e->e_flags))
*p++ = 'r';
if (bitset(EF_HAS8BIT, e->e_flags))
*p++ = '8';
if (bitset(EF_DELETE_BCC, e->e_flags))
*p++ = 'b';
if (bitset(EF_RET_PARAM, e->e_flags))
*p++ = 'd';
if (bitset(EF_NO_BODY_RETN, e->e_flags))
*p++ = 'n';
if (bitset(EF_SPLIT, e->e_flags))
*p++ = 's';
*p++ = '\0';
if (buf[0] != '\0')
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT, "F%s\n", buf);
/* save $={persistentMacros} macro values */
queueup_macros(macid("{persistentMacros}"), tfp, e);
/* output name of sender */
if (bitnset(M_UDBENVELOPE, e->e_from.q_mailer->m_flags))
p = e->e_sender;
else
p = e->e_from.q_paddr;
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT, "S%s\n",
denlstring(p, true, false));
/* output ESMTP-supplied "original" information */
if (e->e_envid != NULL)
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT, "Z%s\n",
denlstring(e->e_envid, true, false));
/* output AUTH= parameter */
if (e->e_auth_param != NULL)
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT, "A%s\n",
denlstring(e->e_auth_param, true, false));
if (e->e_dlvr_flag != 0)
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT, "!%c %ld\n",
(char) e->e_dlvr_flag, e->e_deliver_by);
/* output list of recipient addresses */
printctladdr(NULL, NULL);
for (q = e->e_sendqueue; q != NULL; q = q->q_next)
{
if (!QS_IS_UNDELIVERED(q->q_state))
continue;
/* message for this recipient, if it exists */
if (q->q_message != NULL)
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT, "M%s\n",
denlstring(q->q_message, true,
false));
printctladdr(q, tfp);
if (q->q_orcpt != NULL)
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT, "Q%s\n",
denlstring(q->q_orcpt, true,
false));
if (q->q_finalrcpt != NULL)
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT, "r%s\n",
denlstring(q->q_finalrcpt, true,
false));
(void) sm_io_putc(tfp, SM_TIME_DEFAULT, 'R');
if (bitset(QPRIMARY, q->q_flags))
(void) sm_io_putc(tfp, SM_TIME_DEFAULT, 'P');
if (bitset(QHASNOTIFY, q->q_flags))
(void) sm_io_putc(tfp, SM_TIME_DEFAULT, 'N');
if (bitset(QPINGONSUCCESS, q->q_flags))
(void) sm_io_putc(tfp, SM_TIME_DEFAULT, 'S');
if (bitset(QPINGONFAILURE, q->q_flags))
(void) sm_io_putc(tfp, SM_TIME_DEFAULT, 'F');
if (bitset(QPINGONDELAY, q->q_flags))
(void) sm_io_putc(tfp, SM_TIME_DEFAULT, 'D');
if (bitset(QINTBCC, q->q_flags))
(void) sm_io_putc(tfp, SM_TIME_DEFAULT, 'B');
if (q->q_alias != NULL &&
bitset(QALIAS, q->q_alias->q_flags))
(void) sm_io_putc(tfp, SM_TIME_DEFAULT, 'A');
/* _FFR_RCPTFLAGS */
if (bitset(QDYNMAILER, q->q_flags))
(void) sm_io_putc(tfp, SM_TIME_DEFAULT, QDYNMAILFLG);
(void) sm_io_putc(tfp, SM_TIME_DEFAULT, ':');
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT, "%s\n",
denlstring(q->q_paddr, true, false));
if (announce)
{
char *tag = "queued";
if (e->e_quarmsg != NULL)
tag = "quarantined";
e->e_to = q->q_paddr;
message("%s", tag);
if (LogLevel > 8)
logdelivery(q->q_mailer, NULL, q->q_status,
tag, NULL, (time_t) 0, e, q, EX_OK);
e->e_to = NULL;
}
if (tTd(40, 1))
{
sm_dprintf("queueing ");
printaddr(sm_debug_file(), q, false);
}
}
/*
** Output headers for this message.
** Expand macros completely here. Queue run will deal with
** everything as absolute headers.
** All headers that must be relative to the recipient
** can be cracked later.
** We set up a "null mailer" -- i.e., a mailer that will have
** no effect on the addresses as they are output.
*/
memset((char *) &nullmailer, '\0', sizeof(nullmailer));
nullmailer.m_re_rwset = nullmailer.m_rh_rwset =
nullmailer.m_se_rwset = nullmailer.m_sh_rwset = -1;
nullmailer.m_eol = "\n";
memset(&mcibuf, '\0', sizeof(mcibuf));
mcibuf.mci_mailer = &nullmailer;
mcibuf.mci_out = tfp;
macdefine(&e->e_macro, A_PERM, 'g', "\201f");
for (h = e->e_header; h != NULL; h = h->h_link)
{
if (h->h_value == NULL)
continue;
/* don't output resent headers on non-resent messages */
if (bitset(H_RESENT, h->h_flags) &&
!bitset(EF_RESENT, e->e_flags))
continue;
/* expand macros; if null, don't output header at all */
if (bitset(H_DEFAULT, h->h_flags))
{
(void) expand(h->h_value, buf, sizeof(buf), e);
if (buf[0] == '\0')
continue;
if (buf[0] == ' ' && buf[1] == '\0')
continue;
}
/* output this header */
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT, "H?");
/* output conditional macro if present */
if (h->h_macro != '\0')
{
if (bitset(0200, h->h_macro))
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT,
"${%s}",
macname(bitidx(h->h_macro)));
else
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT,
"$%c", h->h_macro);
}
else if (!bitzerop(h->h_mflags) &&
bitset(H_CHECK|H_ACHECK, h->h_flags))
{
int j;
/* if conditional, output the set of conditions */
for (j = '\0'; j <= '\177'; j++)
if (bitnset(j, h->h_mflags))
(void) sm_io_putc(tfp, SM_TIME_DEFAULT,
j);
}
(void) sm_io_putc(tfp, SM_TIME_DEFAULT, '?');
/* output the header: expand macros, convert addresses */
if (bitset(H_DEFAULT, h->h_flags) &&
!bitset(H_BINDLATE, h->h_flags))
{
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT, "%s:%s\n",
h->h_field,
denlstring(buf, false, true));
}
else if (bitset(H_FROM|H_RCPT, h->h_flags) &&
!bitset(H_BINDLATE, h->h_flags))
{
bool oldstyle = bitset(EF_OLDSTYLE, e->e_flags);
SM_FILE_T *savetrace = TrafficLogFile;
TrafficLogFile = NULL;
if (bitset(H_FROM, h->h_flags))
oldstyle = false;
commaize(h, h->h_value, oldstyle, &mcibuf, e,
PXLF_HEADER);
TrafficLogFile = savetrace;
}
else
{
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT, "%s:%s\n",
h->h_field,
denlstring(h->h_value, false,
true));
}
}
/*
** Clean up.
**
** Write a terminator record -- this is to prevent
** scurrilous crackers from appending any data.
*/
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT, ".\n");
if (sm_io_flush(tfp, SM_TIME_DEFAULT) != 0 ||
((SuperSafe == SAFE_REALLY ||
SuperSafe == SAFE_REALLY_POSTMILTER ||
(SuperSafe == SAFE_INTERACTIVE && msync)) &&
fsync(sm_io_getinfo(tfp, SM_IO_WHAT_FD, NULL)) < 0) ||
sm_io_error(tfp))
{
if (newid)
syserr("!552 Error writing control file %s", tf);
else
syserr("!452 Error writing control file %s", tf);
}
if (!newid)
{
char new = queue_letter(e, ANYQFL_LETTER);
/* rename (locked) tf to be (locked) [qh]f */
(void) sm_strlcpy(qf, queuename(e, ANYQFL_LETTER),
sizeof(qf));
if (rename(tf, qf) < 0)
syserr("cannot rename(%s, %s), uid=%ld",
tf, qf, (long) geteuid());
else
{
/*
** Check if type has changed and only
** remove the old item if the rename above
** succeeded.
*/
if (e->e_qfletter != '\0' &&
e->e_qfletter != new)
{
if (tTd(40, 5))
{
sm_dprintf("type changed from %c to %c\n",
e->e_qfletter, new);
}
if (unlink(queuename(e, e->e_qfletter)) < 0)
{
/* XXX: something more drastic? */
if (LogLevel > 0)
sm_syslog(LOG_ERR, e->e_id,
"queueup: unlink(%s) failed: %s",
queuename(e, e->e_qfletter),
sm_errstring(errno));
}
}
}
e->e_qfletter = new;
/*
** fsync() after renaming to make sure metadata is
** written to disk on filesystems in which renames are
** not guaranteed.
*/
if (SuperSafe != SAFE_NO)
{
/* for softupdates */
if (tfd >= 0 && fsync(tfd) < 0)
{
syserr("!queueup: cannot fsync queue temp file %s",
tf);
}
SYNC_DIR(qf, true);
}
/* close and unlock old (locked) queue file */
if (e->e_lockfp != NULL)
(void) sm_io_close(e->e_lockfp, SM_TIME_DEFAULT);
e->e_lockfp = tfp;
/* save log info */
if (LogLevel > 79)
sm_syslog(LOG_DEBUG, e->e_id, "queueup %s", qf);
}
else
{
/* save log info */
if (LogLevel > 79)
sm_syslog(LOG_DEBUG, e->e_id, "queueup %s", tf);
e->e_qfletter = queue_letter(e, ANYQFL_LETTER);
}
errno = 0;
e->e_flags |= EF_INQUEUE;
if (tTd(40, 1))
sm_dprintf("<<<<< done queueing %s <<<<<\n\n", e->e_id);
return;
}
/*
** PRINTCTLADDR -- print control address to file.
**
** Parameters:
** a -- address.
** tfp -- file pointer.
**
** Returns:
** none.
**
** Side Effects:
** The control address (if changed) is printed to the file.
** The last control address and uid are saved.
*/
static void
printctladdr(a, tfp)
register ADDRESS *a;
SM_FILE_T *tfp;
{
char *user;
register ADDRESS *q;
uid_t uid;
gid_t gid;
static ADDRESS *lastctladdr = NULL;
static uid_t lastuid;
/* initialization */
if (a == NULL || a->q_alias == NULL || tfp == NULL)
{
if (lastctladdr != NULL && tfp != NULL)
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT, "C\n");
lastctladdr = NULL;
lastuid = 0;
return;
}
/* find the active uid */
q = getctladdr(a);
if (q == NULL)
{
user = NULL;
uid = 0;
gid = 0;
}
else
{
user = q->q_ruser != NULL ? q->q_ruser : q->q_user;
uid = q->q_uid;
gid = q->q_gid;
}
a = a->q_alias;
/* check to see if this is the same as last time */
if (lastctladdr != NULL && uid == lastuid &&
strcmp(lastctladdr->q_paddr, a->q_paddr) == 0)
return;
lastuid = uid;
lastctladdr = a;
if (uid == 0 || user == NULL || user[0] == '\0')
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT, "C");
else
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT, "C%s:%ld:%ld",
denlstring(user, true, false), (long) uid,
(long) gid);
(void) sm_io_fprintf(tfp, SM_TIME_DEFAULT, ":%s\n",
denlstring(a->q_paddr, true, false));
}
/*
** RUNNERS_SIGTERM -- propagate a SIGTERM to queue runner process
**
** This propagates the signal to the child processes that are queue
** runners. This is for a queue runner "cleanup". After all of the
** child queue runner processes are signaled (it should be SIGTERM
** being the sig) then the old signal handler (Oldsh) is called
** to handle any cleanup set for this process (provided it is not
** SIG_DFL or SIG_IGN). The signal may not be handled immediately
** if the BlockOldsh flag is set. If the current process doesn't
** have a parent then handle the signal immediately, regardless of
** BlockOldsh.
**
** Parameters:
** sig -- the signal number being sent
**
** Returns:
** none.
**
** Side Effects:
** Sets the NoMoreRunners boolean to true to stop more runners
** from being started in runqueue().
**
** NOTE: THIS CAN BE CALLED FROM A SIGNAL HANDLER. DO NOT ADD
** ANYTHING TO THIS ROUTINE UNLESS YOU KNOW WHAT YOU ARE
** DOING.
*/
static bool volatile NoMoreRunners = false;
static sigfunc_t Oldsh_term = SIG_DFL;
static sigfunc_t Oldsh_hup = SIG_DFL;
static sigfunc_t volatile Oldsh = SIG_DFL;
static bool BlockOldsh = false;
static int volatile Oldsig = 0;
static SIGFUNC_DECL runners_sigterm __P((int));
static SIGFUNC_DECL runners_sighup __P((int));
static SIGFUNC_DECL
runners_sigterm(sig)
int sig;
{
int save_errno = errno;
FIX_SYSV_SIGNAL(sig, runners_sigterm);
errno = save_errno;
CHECK_CRITICAL(sig);
NoMoreRunners = true;
Oldsh = Oldsh_term;
Oldsig = sig;
proc_list_signal(PROC_QUEUE, sig);
if (!BlockOldsh || getppid() <= 1)
{
/* Check that a valid 'old signal handler' is callable */
if (Oldsh_term != SIG_DFL && Oldsh_term != SIG_IGN &&
Oldsh_term != runners_sigterm)
(*Oldsh_term)(sig);
}
errno = save_errno;
return SIGFUNC_RETURN;
}
/*
** RUNNERS_SIGHUP -- propagate a SIGHUP to queue runner process
**
** This propagates the signal to the child processes that are queue
** runners. This is for a queue runner "cleanup". After all of the
** child queue runner processes are signaled (it should be SIGHUP
** being the sig) then the old signal handler (Oldsh) is called to
** handle any cleanup set for this process (provided it is not SIG_DFL
** or SIG_IGN). The signal may not be handled immediately if the
** BlockOldsh flag is set. If the current process doesn't have
** a parent then handle the signal immediately, regardless of
** BlockOldsh.
**
** Parameters:
** sig -- the signal number being sent
**
** Returns:
** none.
**
** Side Effects:
** Sets the NoMoreRunners boolean to true to stop more runners
** from being started in runqueue().
**
** NOTE: THIS CAN BE CALLED FROM A SIGNAL HANDLER. DO NOT ADD
** ANYTHING TO THIS ROUTINE UNLESS YOU KNOW WHAT YOU ARE
** DOING.
*/
static SIGFUNC_DECL
runners_sighup(sig)
int sig;
{
int save_errno = errno;
FIX_SYSV_SIGNAL(sig, runners_sighup);
errno = save_errno;
CHECK_CRITICAL(sig);
NoMoreRunners = true;
Oldsh = Oldsh_hup;
Oldsig = sig;
proc_list_signal(PROC_QUEUE, sig);
if (!BlockOldsh || getppid() <= 1)
{
/* Check that a valid 'old signal handler' is callable */
if (Oldsh_hup != SIG_DFL && Oldsh_hup != SIG_IGN &&
Oldsh_hup != runners_sighup)
(*Oldsh_hup)(sig);
}
errno = save_errno;
return SIGFUNC_RETURN;
}
/*
** MARK_WORK_GROUP_RESTART -- mark a work group as needing a restart
**
** Sets a workgroup for restarting.
**
** Parameters:
** wgrp -- the work group id to restart.
** reason -- why (signal?), -1 to turn off restart
**
** Returns:
** none.
**
** Side effects:
** May set global RestartWorkGroup to true.
**
** NOTE: THIS CAN BE CALLED FROM A SIGNAL HANDLER. DO NOT ADD
** ANYTHING TO THIS ROUTINE UNLESS YOU KNOW WHAT YOU ARE
** DOING.
*/
void
mark_work_group_restart(wgrp, reason)
int wgrp;
int reason;
{
if (wgrp < 0 || wgrp > NumWorkGroups)
return;
WorkGrp[wgrp].wg_restart = reason;
if (reason >= 0)
RestartWorkGroup = true;
}
/*
** RESTART_MARKED_WORK_GROUPS -- restart work groups marked as needing restart
**
** Restart any workgroup marked as needing a restart provided more
** runners are allowed.
**
** Parameters:
** none.
**
** Returns:
** none.
**
** Side effects:
** Sets global RestartWorkGroup to false.
*/
void
restart_marked_work_groups()
{
int i;
int wasblocked;
if (NoMoreRunners)
return;
/* Block SIGCHLD so reapchild() doesn't mess with us */
wasblocked = sm_blocksignal(SIGCHLD);
for (i = 0; i < NumWorkGroups; i++)
{
if (WorkGrp[i].wg_restart >= 0)
{
if (LogLevel > 8)
sm_syslog(LOG_ERR, NOQID,
"restart queue runner=%d due to signal 0x%x",
i, WorkGrp[i].wg_restart);
restart_work_group(i);
}
}
RestartWorkGroup = false;
if (wasblocked == 0)
(void) sm_releasesignal(SIGCHLD);
}
/*
** RESTART_WORK_GROUP -- restart a specific work group
**
** Restart a specific workgroup provided more runners are allowed.
** If the requested work group has been restarted too many times log
** this and refuse to restart.
**
** Parameters:
** wgrp -- the work group id to restart
**
** Returns:
** none.
**
** Side Effects:
** starts another process doing the work of wgrp
*/
#define MAX_PERSIST_RESTART 10 /* max allowed number of restarts */
static void
restart_work_group(wgrp)
int wgrp;
{
if (NoMoreRunners ||
wgrp < 0 || wgrp > NumWorkGroups)
return;
WorkGrp[wgrp].wg_restart = -1;
if (WorkGrp[wgrp].wg_restartcnt < MAX_PERSIST_RESTART)
{
/* avoid overflow; increment here */
WorkGrp[wgrp].wg_restartcnt++;
(void) run_work_group(wgrp, RWG_FORK|RWG_PERSISTENT|RWG_RUNALL);
}
else
{
sm_syslog(LOG_ERR, NOQID,
"ERROR: persistent queue runner=%d restarted too many times, queue runner lost",
wgrp);
}
}
/*
** SCHEDULE_QUEUE_RUNS -- schedule the next queue run for a work group.
**
** Parameters:
** runall -- schedule even if individual bit is not set.
** wgrp -- the work group id to schedule.
** didit -- the queue run was performed for this work group.
**
** Returns:
** nothing
*/
#define INCR_MOD(v, m) if (++v >= m) \
v = 0; \
else
static void
schedule_queue_runs(runall, wgrp, didit)
bool runall;
int wgrp;
bool didit;
{
int qgrp, cgrp, endgrp;
#if _FFR_QUEUE_SCHED_DBG
time_t lastsched;
bool sched;
#endif /* _FFR_QUEUE_SCHED_DBG */
time_t now;
time_t minqintvl;
/*
** This is a bit ugly since we have to duplicate the
** code that "walks" through a work queue group.
*/
now = curtime();
minqintvl = 0;
cgrp = endgrp = WorkGrp[wgrp].wg_curqgrp;
do
{
time_t qintvl;
#if _FFR_QUEUE_SCHED_DBG
lastsched = 0;
sched = false;
#endif /* _FFR_QUEUE_SCHED_DBG */
qgrp = WorkGrp[wgrp].wg_qgs[cgrp]->qg_index;
if (Queue[qgrp]->qg_queueintvl > 0)
qintvl = Queue[qgrp]->qg_queueintvl;
else if (QueueIntvl > 0)
qintvl = QueueIntvl;
else
qintvl = (time_t) 0;
#if _FFR_QUEUE_SCHED_DBG
lastsched = Queue[qgrp]->qg_nextrun;
#endif /* _FFR_QUEUE_SCHED_DBG */
if ((runall || Queue[qgrp]->qg_nextrun <= now) && qintvl > 0)
{
#if _FFR_QUEUE_SCHED_DBG
sched = true;
#endif /* _FFR_QUEUE_SCHED_DBG */
if (minqintvl == 0 || qintvl < minqintvl)
minqintvl = qintvl;
/*
** Only set a new time if a queue run was performed
** for this queue group. If the queue was not run,
** we could starve it by setting a new time on each
** call.
*/
if (didit)
Queue[qgrp]->qg_nextrun += qintvl;
}
#if _FFR_QUEUE_SCHED_DBG
if (tTd(69, 10))
sm_syslog(LOG_INFO, NOQID,
"sqr: wgrp=%d, cgrp=%d, qgrp=%d, intvl=%ld, QI=%ld, runall=%d, lastrun=%ld, nextrun=%ld, sched=%d",
wgrp, cgrp, qgrp, Queue[qgrp]->qg_queueintvl,
QueueIntvl, runall, lastsched,
Queue[qgrp]->qg_nextrun, sched);
#endif /* _FFR_QUEUE_SCHED_DBG */
INCR_MOD(cgrp, WorkGrp[wgrp].wg_numqgrp);
} while (endgrp != cgrp);
if (minqintvl > 0)
(void) sm_setevent(minqintvl, runqueueevent, 0);
}
#if _FFR_QUEUE_RUN_PARANOIA
/*
** CHECKQUEUERUNNER -- check whether a queue group hasn't been run.
**
** Use this if events may get lost and hence queue runners may not
** be started and mail will pile up in a queue.
**
** Parameters:
** none.
**
** Returns:
** true if a queue run is necessary.
**
** Side Effects:
** may schedule a queue run.
*/
bool
checkqueuerunner()
{
int qgrp;
time_t now, minqintvl;
now = curtime();
minqintvl = 0;
for (qgrp = 0; qgrp < NumQueue && Queue[qgrp] != NULL; qgrp++)
{
time_t qintvl;
if (Queue[qgrp]->qg_queueintvl > 0)
qintvl = Queue[qgrp]->qg_queueintvl;
else if (QueueIntvl > 0)
qintvl = QueueIntvl;
else
qintvl = (time_t) 0;
if (Queue[qgrp]->qg_nextrun <= now - qintvl)
{
if (minqintvl == 0 || qintvl < minqintvl)
minqintvl = qintvl;
if (LogLevel > 1)
sm_syslog(LOG_WARNING, NOQID,
"checkqueuerunner: queue %d should have been run at %s, queue interval %ld",
qgrp,
arpadate(ctime(&Queue[qgrp]->qg_nextrun)),
qintvl);
}
}
if (minqintvl > 0)
{
(void) sm_setevent(minqintvl, runqueueevent, 0);
return true;
}
return false;
}
#endif /* _FFR_QUEUE_RUN_PARANOIA */
/*
** RUNQUEUE -- run the jobs in the queue.
**
** Gets the stuff out of the queue in some presumably logical
** order and processes them.
**
** Parameters:
** forkflag -- true if the queue scanning should be done in
** a child process. We double-fork so it is not our
** child and we don't have to clean up after it.
** false can be ignored if we have multiple queues.
** verbose -- if true, print out status information.
** persistent -- persistent queue runner?
** runall -- run all groups or only a subset (DoQueueRun)?
**
** Returns:
** true if the queue run successfully began.
**
** Side Effects:
** runs things in the mail queue using run_work_group().
** maybe schedules next queue run.
*/
static ENVELOPE QueueEnvelope; /* the queue run envelope */
static time_t LastQueueTime = 0; /* last time a queue ID assigned */
static pid_t LastQueuePid = -1; /* last PID which had a queue ID */
/* values for qp_supdirs */
#define QP_NOSUB 0x0000 /* No subdirectories */
#define QP_SUBDF 0x0001 /* "df" subdirectory */
#define QP_SUBQF 0x0002 /* "qf" subdirectory */
#define QP_SUBXF 0x0004 /* "xf" subdirectory */
bool
runqueue(forkflag, verbose, persistent, runall)
bool forkflag;
bool verbose;
bool persistent;
bool runall;
{
int i;
bool ret = true;
static int curnum = 0;
sigfunc_t cursh;
#if SM_HEAP_CHECK
SM_NONVOLATILE int oldgroup = 0;
if (sm_debug_active(&DebugLeakQ, 1))
{
oldgroup = sm_heap_group();
sm_heap_newgroup();
sm_dprintf("runqueue() heap group #%d\n", sm_heap_group());
}
#endif /* SM_HEAP_CHECK */
/* queue run has been started, don't do any more this time */
DoQueueRun = false;
/* more than one queue or more than one directory per queue */
if (!forkflag && !verbose &&
(WorkGrp[0].wg_qgs[0]->qg_numqueues > 1 || NumWorkGroups > 1 ||
WorkGrp[0].wg_numqgrp > 1))
forkflag = true;
/*
** For controlling queue runners via signals sent to this process.
** Oldsh* will get called too by runners_sig* (if it is not SIG_IGN
** or SIG_DFL) to preserve cleanup behavior. Now that this process
** will have children (and perhaps grandchildren) this handler will
** be left in place. This is because this process, once it has
** finished spinning off queue runners, may go back to doing something
** else (like being a daemon). And we still want on a SIG{TERM,HUP} to
** clean up the child queue runners. Only install 'runners_sig*' once
** else we'll get stuck looping forever.
*/
cursh = sm_signal(SIGTERM, runners_sigterm);
if (cursh != runners_sigterm)
Oldsh_term = cursh;
cursh = sm_signal(SIGHUP, runners_sighup);
if (cursh != runners_sighup)
Oldsh_hup = cursh;
for (i = 0; i < NumWorkGroups && !NoMoreRunners; i++)
{
int rwgflags = RWG_NONE;
int wasblocked;
/*
** If MaxQueueChildren active then test whether the start
** of the next queue group's additional queue runners (maximum)
** will result in MaxQueueChildren being exceeded.
**
** Note: do not use continue; even though another workgroup
** may have fewer queue runners, this would be "unfair",
** i.e., this work group might "starve" then.
*/
#if _FFR_QUEUE_SCHED_DBG
if (tTd(69, 10))
sm_syslog(LOG_INFO, NOQID,
"rq: curnum=%d, MaxQueueChildren=%d, CurRunners=%d, WorkGrp[curnum].wg_maxact=%d",
curnum, MaxQueueChildren, CurRunners,
WorkGrp[curnum].wg_maxact);
#endif /* _FFR_QUEUE_SCHED_DBG */
if (MaxQueueChildren > 0 &&
CurRunners + WorkGrp[curnum].wg_maxact > MaxQueueChildren)
break;
/*
** Pick up where we left off (curnum), in case we
** used up all the children last time without finishing.
** This give a round-robin fairness to queue runs.
**
** Increment CurRunners before calling run_work_group()
** to avoid a "race condition" with proc_list_drop() which
** decrements CurRunners if the queue runners terminate.
** Notice: CurRunners is an upper limit, in some cases
** (too few jobs in the queue) this value is larger than
** the actual number of queue runners. The discrepancy can
** increase if some queue runners "hang" for a long time.
*/
/* don't let proc_list_drop() change CurRunners */
wasblocked = sm_blocksignal(SIGCHLD);
CurRunners += WorkGrp[curnum].wg_maxact;
if (wasblocked == 0)
(void) sm_releasesignal(SIGCHLD);
if (forkflag)
rwgflags |= RWG_FORK;
if (verbose)
rwgflags |= RWG_VERBOSE;
if (persistent)
rwgflags |= RWG_PERSISTENT;
if (runall)
rwgflags |= RWG_RUNALL;
ret = run_work_group(curnum, rwgflags);
/*
** Failure means a message was printed for ETRN
** and subsequent queues are likely to fail as well.
** Decrement CurRunners in that case because
** none have been started.
*/
if (!ret)
{
/* don't let proc_list_drop() change CurRunners */
wasblocked = sm_blocksignal(SIGCHLD);
CurRunners -= WorkGrp[curnum].wg_maxact;
CHK_CUR_RUNNERS("runqueue", curnum,
WorkGrp[curnum].wg_maxact);
if (wasblocked == 0)
(void) sm_releasesignal(SIGCHLD);
break;
}
if (!persistent)
schedule_queue_runs(runall, curnum, true);
INCR_MOD(curnum, NumWorkGroups);
}
/* schedule left over queue runs */
if (i < NumWorkGroups && !NoMoreRunners && !persistent)
{
int h;
for (h = curnum; i < NumWorkGroups; i++)
{
schedule_queue_runs(runall, h, false);
INCR_MOD(h, NumWorkGroups);
}
}
#if SM_HEAP_CHECK
if (sm_debug_active(&DebugLeakQ, 1))
sm_heap_setgroup(oldgroup);
#endif /* SM_HEAP_CHECK */
return ret;
}
#if _FFR_SKIP_DOMAINS
/*
** SKIP_DOMAINS -- Skip 'skip' number of domains in the WorkQ.
**
** Added by Stephen Frost <sfrost@snowman.net> to support
** having each runner process every N'th domain instead of
** every N'th message.
**
** Parameters:
** skip -- number of domains in WorkQ to skip.
**
** Returns:
** total number of messages skipped.
**
** Side Effects:
** may change WorkQ
*/
static int
skip_domains(skip)
int skip;
{
int n, seqjump;
for (n = 0, seqjump = 0; n < skip && WorkQ != NULL; seqjump++)
{
if (WorkQ->w_next != NULL)
{
if (WorkQ->w_host != NULL &&
WorkQ->w_next->w_host != NULL)
{
if (sm_strcasecmp(WorkQ->w_host,
WorkQ->w_next->w_host) != 0)
n++;
}
else
{
if ((WorkQ->w_host != NULL &&
WorkQ->w_next->w_host == NULL) ||
(WorkQ->w_host == NULL &&
WorkQ->w_next->w_host != NULL))
n++;
}
}
WorkQ = WorkQ->w_next;
}
return seqjump;
}
#endif /* _FFR_SKIP_DOMAINS */
/*
** RUNNER_WORK -- have a queue runner do its work
**
** Have a queue runner do its work a list of entries.
** When work isn't directly being done then this process can take a signal
** and terminate immediately (in a clean fashion of course).
** When work is directly being done, it's not to be interrupted
** immediately: the work should be allowed to finish at a clean point
** before termination (in a clean fashion of course).
**
** Parameters:
** e -- envelope.
** sequenceno -- 'th process to run WorkQ.
** didfork -- did the calling process fork()?
** skip -- process only each skip'th item.
** njobs -- number of jobs in WorkQ.
**
** Returns:
** none.
**
** Side Effects:
** runs things in the mail queue.
*/
static void
runner_work(e, sequenceno, didfork, skip, njobs)
register ENVELOPE *e;
int sequenceno;
bool didfork;
int skip;
int njobs;
{
int n, seqjump;
WORK *w;
time_t now;
SM_GET_LA(now);
/*
** Here we temporarily block the second calling of the handlers.
** This allows us to handle the signal without terminating in the
** middle of direct work. If a signal does come, the test for
** NoMoreRunners will find it.
*/
BlockOldsh = true;
seqjump = skip;
/* process them once at a time */
while (WorkQ != NULL)
{
#if SM_HEAP_CHECK
SM_NONVOLATILE int oldgroup = 0;
if (sm_debug_active(&DebugLeakQ, 1))
{
oldgroup = sm_heap_group();
sm_heap_newgroup();
sm_dprintf("run_queue_group() heap group #%d\n",
sm_heap_group());
}
#endif /* SM_HEAP_CHECK */
/* do no more work */
if (NoMoreRunners)
{
/* Check that a valid signal handler is callable */
if (Oldsh != SIG_DFL && Oldsh != SIG_IGN &&
Oldsh != runners_sighup &&
Oldsh != runners_sigterm)
(*Oldsh)(Oldsig);
break;
}
w = WorkQ; /* assign current work item */
/*
** Set the head of the WorkQ to the next work item.
** It is set 'skip' ahead (the number of parallel queue
** runners working on WorkQ together) since each runner
** works on every 'skip'th (N-th) item.
#if _FFR_SKIP_DOMAINS
** In the case of the BYHOST Queue Sort Order, the 'item'
** is a domain, so we work on every 'skip'th (N-th) domain.
#endif * _FFR_SKIP_DOMAINS *
*/
#if _FFR_SKIP_DOMAINS
if (QueueSortOrder == QSO_BYHOST)
{
seqjump = 1;
if (WorkQ->w_next != NULL)
{
if (WorkQ->w_host != NULL &&
WorkQ->w_next->w_host != NULL)
{
if (sm_strcasecmp(WorkQ->w_host,
WorkQ->w_next->w_host)
!= 0)
seqjump = skip_domains(skip);
else
WorkQ = WorkQ->w_next;
}
else
{
if ((WorkQ->w_host != NULL &&
WorkQ->w_next->w_host == NULL) ||
(WorkQ->w_host == NULL &&
WorkQ->w_next->w_host != NULL))
seqjump = skip_domains(skip);
else
WorkQ = WorkQ->w_next;
}
}
else
WorkQ = WorkQ->w_next;
}
else
#endif /* _FFR_SKIP_DOMAINS */
{
for (n = 0; n < skip && WorkQ != NULL; n++)
WorkQ = WorkQ->w_next;
}
e->e_to = NULL;
/*
** Ignore jobs that are too expensive for the moment.
**
** Get new load average every GET_NEW_LA_TIME seconds.
*/
SM_GET_LA(now);
if (shouldqueue(WkRecipFact, Current_LA_time))
{
char *msg = "Aborting queue run: load average too high";
if (Verbose)
message("%s", msg);
if (LogLevel > 8)
sm_syslog(LOG_INFO, NOQID, "runqueue: %s", msg);
break;
}
if (shouldqueue(w->w_pri, w->w_ctime))
{
if (Verbose)
message("%s", "");
if (QueueSortOrder == QSO_BYPRIORITY)
{
if (Verbose)
message("Skipping %s/%s (sequence %d of %d) and flushing rest of queue",
qid_printqueue(w->w_qgrp,
w->w_qdir),
w->w_name + 2, sequenceno,
njobs);
if (LogLevel > 8)
sm_syslog(LOG_INFO, NOQID,
"runqueue: Flushing queue from %s/%s (pri %ld, LA %d, %d of %d)",
qid_printqueue(w->w_qgrp,
w->w_qdir),
w->w_name + 2, w->w_pri,
CurrentLA, sequenceno,
njobs);
break;
}
else if (Verbose)
message("Skipping %s/%s (sequence %d of %d)",
qid_printqueue(w->w_qgrp, w->w_qdir),
w->w_name + 2, sequenceno, njobs);
}
else
{
if (Verbose)
{
message("%s", "");
message("Running %s/%s (sequence %d of %d)",
qid_printqueue(w->w_qgrp, w->w_qdir),
w->w_name + 2, sequenceno, njobs);
}
if (didfork && MaxQueueChildren > 0)
{
sm_blocksignal(SIGCHLD);
(void) sm_signal(SIGCHLD, reapchild);
}
if (tTd(63, 100))
sm_syslog(LOG_DEBUG, NOQID,
"runqueue %s dowork(%s)",
qid_printqueue(w->w_qgrp, w->w_qdir),
w->w_name + 2);
(void) dowork(w->w_qgrp, w->w_qdir, w->w_name + 2,
ForkQueueRuns, false, e);
errno = 0;
}
sm_free(w->w_name); /* XXX */
if (w->w_host != NULL)
sm_free(w->w_host); /* XXX */
sm_free((char *) w); /* XXX */
sequenceno += seqjump; /* next sequence number */
#if SM_HEAP_CHECK
if (sm_debug_active(&DebugLeakQ, 1))
sm_heap_setgroup(oldgroup);
#endif /* SM_HEAP_CHECK */
}
BlockOldsh = false;
/* check the signals didn't happen during the revert */
if (NoMoreRunners)
{
/* Check that a valid signal handler is callable */
if (Oldsh != SIG_DFL && Oldsh != SIG_IGN &&
Oldsh != runners_sighup && Oldsh != runners_sigterm)
(*Oldsh)(Oldsig);
}
Oldsh = SIG_DFL; /* after the NoMoreRunners check */
}
/*
** RUN_WORK_GROUP -- run the jobs in a queue group from a work group.
**
** Gets the stuff out of the queue in some presumably logical
** order and processes them.
**
** Parameters:
** wgrp -- work group to process.
** flags -- RWG_* flags
**
** Returns:
** true if the queue run successfully began.
**
** Side Effects:
** runs things in the mail queue.
*/
/* Minimum sleep time for persistent queue runners */
#define MIN_SLEEP_TIME 5
bool
run_work_group(wgrp, flags)
int wgrp;
int flags;
{
register ENVELOPE *e;
int njobs, qdir;
int sequenceno = 1;
int qgrp, endgrp, h, i;
time_t now;
bool full, more;
SM_RPOOL_T *rpool;
extern ENVELOPE BlankEnvelope;
extern SIGFUNC_DECL reapchild __P((int));
if (wgrp < 0)
return false;
/*
** If no work will ever be selected, don't even bother reading
** the queue.
*/
SM_GET_LA(now);
if (!bitset(RWG_PERSISTENT, flags) &&
shouldqueue(WkRecipFact, Current_LA_time))
{
char *msg = "Skipping queue run -- load average too high";
if (bitset(RWG_VERBOSE, flags))
message("458 %s\n", msg);
if (LogLevel > 8)
sm_syslog(LOG_INFO, NOQID, "runqueue: %s", msg);
return false;
}
/*
** See if we already have too many children.
*/
if (bitset(RWG_FORK, flags) &&
WorkGrp[wgrp].wg_lowqintvl > 0 &&
!bitset(RWG_PERSISTENT, flags) &&
MaxChildren > 0 && CurChildren >= MaxChildren)
{
char *msg = "Skipping queue run -- too many children";
if (bitset(RWG_VERBOSE, flags))
message("458 %s (%d)\n", msg, CurChildren);
if (LogLevel > 8)
sm_syslog(LOG_INFO, NOQID, "runqueue: %s (%d)",
msg, CurChildren);
return false;
}
/*
** See if we want to go off and do other useful work.
*/
if (bitset(RWG_FORK, flags))
{
pid_t pid;
(void) sm_blocksignal(SIGCHLD);
(void) sm_signal(SIGCHLD, reapchild);
pid = dofork();
if (pid == -1)
{
const char *msg = "Skipping queue run -- fork() failed";
const char *err = sm_errstring(errno);
if (bitset(RWG_VERBOSE, flags))
message("458 %s: %s\n", msg, err);
if (LogLevel > 8)
sm_syslog(LOG_INFO, NOQID, "runqueue: %s: %s",
msg, err);
(void) sm_releasesignal(SIGCHLD);
return false;
}
if (pid != 0)
{
/* parent -- pick up intermediate zombie */
(void) sm_blocksignal(SIGALRM);
/* wgrp only used when queue runners are persistent */
proc_list_add(pid, "Queue runner", PROC_QUEUE,
WorkGrp[wgrp].wg_maxact,
bitset(RWG_PERSISTENT, flags) ? wgrp : -1,
NULL);
(void) sm_releasesignal(SIGALRM);
(void) sm_releasesignal(SIGCHLD);
return true;
}
/* child -- clean up signals */
/* Reset global flags */
RestartRequest = NULL;
RestartWorkGroup = false;
ShutdownRequest = NULL;
PendingSignal = 0;
CurrentPid = getpid();
close_sendmail_pid();
/*
** Initialize exception stack and default exception
** handler for child process.
*/
sm_exc_newthread(fatal_error);
clrcontrol();
proc_list_clear();
/* Add parent process as first child item */
proc_list_add(CurrentPid, "Queue runner child process",
PROC_QUEUE_CHILD, 0, -1, NULL);
(void) sm_releasesignal(SIGCHLD);
(void) sm_signal(SIGCHLD, SIG_DFL);
(void) sm_signal(SIGHUP, SIG_DFL);
(void) sm_signal(SIGTERM, intsig);
}
/*
** Release any resources used by the daemon code.
*/
clrdaemon();
/* force it to run expensive jobs */
NoConnect = false;
/* drop privileges */
if (geteuid() == (uid_t) 0)
(void) drop_privileges(false);
/*
** Create ourselves an envelope
*/
CurEnv = &QueueEnvelope;
rpool = sm_rpool_new_x(NULL);
e = newenvelope(&QueueEnvelope, CurEnv, rpool);
e->e_flags = BlankEnvelope.e_flags;
e->e_parent = NULL;
/* make sure we have disconnected from parent */
if (bitset(RWG_FORK, flags))
{
disconnect(1, e);
QuickAbort = false;
}
/*
** If we are running part of the queue, always ignore stored
** host status.
*/
if (QueueLimitId != NULL || QueueLimitSender != NULL ||
QueueLimitQuarantine != NULL ||
QueueLimitRecipient != NULL)
{
IgnoreHostStatus = true;
MinQueueAge = 0;
MaxQueueAge = 0;
}
/*
** Here is where we choose the queue group from the work group.
** The caller of the "domorework" label must setup a new envelope.
*/
endgrp = WorkGrp[wgrp].wg_curqgrp; /* to not spin endlessly */
domorework:
/*
** Run a queue group if:
** RWG_RUNALL bit is set or the bit for this group is set.
*/
now = curtime();
for (;;)
{
/*
** Find the next queue group within the work group that
** has been marked as needing a run.
*/
qgrp = WorkGrp[wgrp].wg_qgs[WorkGrp[wgrp].wg_curqgrp]->qg_index;
WorkGrp[wgrp].wg_curqgrp++; /* advance */
WorkGrp[wgrp].wg_curqgrp %= WorkGrp[wgrp].wg_numqgrp; /* wrap */
if (bitset(RWG_RUNALL, flags) ||
(Queue[qgrp]->qg_nextrun <= now &&
Queue[qgrp]->qg_nextrun != (time_t) -1))
break;
if (endgrp == WorkGrp[wgrp].wg_curqgrp)
{
e->e_id = NULL;
if (bitset(RWG_FORK, flags))
finis(true, true, ExitStat);
return true; /* we're done */
}
}
qdir = Queue[qgrp]->qg_curnum; /* round-robin init of queue position */
#if _FFR_QUEUE_SCHED_DBG
if (tTd(69, 12))
sm_syslog(LOG_INFO, NOQID,
"rwg: wgrp=%d, qgrp=%d, qdir=%d, name=%s, curqgrp=%d, numgrps=%d",
wgrp, qgrp, qdir, qid_printqueue(qgrp, qdir),
WorkGrp[wgrp].wg_curqgrp, WorkGrp[wgrp].wg_numqgrp);
#endif /* _FFR_QUEUE_SCHED_DBG */
#if HASNICE
/* tweak niceness of queue runs */
if (Queue[qgrp]->qg_nice > 0)
(void) nice(Queue[qgrp]->qg_nice);
#endif /* HASNICE */
/* XXX running queue group... */
sm_setproctitle(true, CurEnv, "running queue: %s",
qid_printqueue(qgrp, qdir));
if (LogLevel > 69 || tTd(63, 99))
sm_syslog(LOG_DEBUG, NOQID,
"runqueue %s, pid=%d, forkflag=%d",
qid_printqueue(qgrp, qdir), (int) CurrentPid,
bitset(RWG_FORK, flags));
/*
** Start making passes through the queue.
** First, read and sort the entire queue.
** Then, process the work in that order.
** But if you take too long, start over.
*/
for (i = 0; i < Queue[qgrp]->qg_numqueues; i++)
{
(void) gatherq(qgrp, qdir, false, &full, &more, &h);
#if SM_CONF_SHM
if (ShmId != SM_SHM_NO_ID)
QSHM_ENTRIES(Queue[qgrp]->qg_qpaths[qdir].qp_idx) = h;
#endif /* SM_CONF_SHM */
/* If there are no more items in this queue advance */
if (!more)
{
/* A round-robin advance */
qdir++;
qdir %= Queue[qgrp]->qg_numqueues;
}
/* Has the WorkList reached the limit? */
if (full)
break; /* don't try to gather more */
}
/* order the existing work requests */
njobs = sortq(Queue[qgrp]->qg_maxlist);
Queue[qgrp]->qg_curnum = qdir; /* update */
if (!Verbose && bitnset(QD_FORK, Queue[qgrp]->qg_flags))
{
int loop, maxrunners;
pid_t pid;
/*
** For this WorkQ we want to fork off N children (maxrunners)
** at this point. Each child has a copy of WorkQ. Each child
** will process every N-th item. The parent will wait for all
** of the children to finish before moving on to the next
** queue group within the work group. This saves us forking
** a new runner-child for each work item.
** It's valid for qg_maxqrun == 0 since this may be an
** explicit "don't run this queue" setting.
*/
maxrunners = Queue[qgrp]->qg_maxqrun;
/*
** If no runners are configured for this group but
** the queue is "forced" then lets use 1 runner.
*/
if (maxrunners == 0 && bitset(RWG_FORCE, flags))
maxrunners = 1;
/* No need to have more runners then there are jobs */
if (maxrunners > njobs)
maxrunners = njobs;
for (loop = 0; loop < maxrunners; loop++)
{
/*
** Since the delivery may happen in a child and the
** parent does not wait, the parent may close the
** maps thereby removing any shared memory used by
** the map. Therefore, close the maps now so the
** child will dynamically open them if necessary.
*/
closemaps(false);
pid = fork();
if (pid < 0)
{
syserr("run_work_group: cannot fork");
return false;
}
else if (pid > 0)
{
/* parent -- clean out connection cache */
mci_flush(false, NULL);
#if _FFR_SKIP_DOMAINS
if (QueueSortOrder == QSO_BYHOST)
{
sequenceno += skip_domains(1);
}
else
#endif /* _FFR_SKIP_DOMAINS */
{
/* for the skip */
WorkQ = WorkQ->w_next;
sequenceno++;
}
proc_list_add(pid, "Queue child runner process",
PROC_QUEUE_CHILD, 0, -1, NULL);
/* No additional work, no additional runners */
if (WorkQ == NULL)
break;
}
else
{
/* child -- Reset global flags */
RestartRequest = NULL;
RestartWorkGroup = false;
ShutdownRequest = NULL;
PendingSignal = 0;
CurrentPid = getpid();
close_sendmail_pid();
/*
** Initialize exception stack and default
** exception handler for child process.
** When fork()'d the child now has a private
** copy of WorkQ at its current position.
*/
sm_exc_newthread(fatal_error);
/*
** SMTP processes (whether -bd or -bs) set
** SIGCHLD to reapchild to collect
** children status. However, at delivery
** time, that status must be collected
** by sm_wait() to be dealt with properly
** (check success of delivery based
** on status code, etc). Therefore, if we
** are an SMTP process, reset SIGCHLD
** back to the default so reapchild
** doesn't collect status before
** sm_wait().
*/
if (OpMode == MD_SMTP ||
OpMode == MD_DAEMON ||
MaxQueueChildren > 0)
{
proc_list_clear();
sm_releasesignal(SIGCHLD);
(void) sm_signal(SIGCHLD, SIG_DFL);
}
/* child -- error messages to the transcript */
QuickAbort = OnlyOneError = false;
runner_work(e, sequenceno, true,
maxrunners, njobs);
/* This child is done */
finis(true, true, ExitStat);
/* NOTREACHED */
}
}
sm_releasesignal(SIGCHLD);
/*
** Wait until all of the runners have completed before
** seeing if there is another queue group in the
** work group to process.
** XXX Future enhancement: don't wait() for all children
** here, just go ahead and make sure that overall the number
** of children is not exceeded.
*/
while (CurChildren > 0)
{
int status;
pid_t ret;
while ((ret = sm_wait(&status)) <= 0)
continue;
proc_list_drop(ret, status, NULL);
}
}
else if (Queue[qgrp]->qg_maxqrun > 0 || bitset(RWG_FORCE, flags))
{
/*
** When current process will not fork children to do the work,
** it will do the work itself. The 'skip' will be 1 since
** there are no child runners to divide the work across.
*/
runner_work(e, sequenceno, false, 1, njobs);
}
/* free memory allocated by newenvelope() above */
sm_rpool_free(rpool);
QueueEnvelope.e_rpool = NULL;
/* Are there still more queues in the work group to process? */
if (endgrp != WorkGrp[wgrp].wg_curqgrp)
{
rpool = sm_rpool_new_x(NULL);
e = newenvelope(&QueueEnvelope, CurEnv, rpool);
e->e_flags = BlankEnvelope.e_flags;
goto domorework;
}
/* No more queues in work group to process. Now check persistent. */
if (bitset(RWG_PERSISTENT, flags))
{
sequenceno = 1;
sm_setproctitle(true, NULL, "running queue: %s",
qid_printqueue(qgrp, qdir));
/*
** close bogus maps, i.e., maps which caused a tempfail,
** so we get fresh map connections on the next lookup.
** closemaps() is also called when children are started.
*/
closemaps(true);
/* Close any cached connections. */
mci_flush(true, NULL);
/* Clean out expired related entries. */
rmexpstab();
#if NAMED_BIND
/* Update MX records for FallbackMX. */
if (FallbackMX != NULL)
(void) getfallbackmxrr(FallbackMX);
#endif /* NAMED_BIND */
#if USERDB
/* close UserDatabase */
_udbx_close();
#endif /* USERDB */
#if SM_HEAP_CHECK
if (sm_debug_active(&SmHeapCheck, 2)
&& access("memdump", F_OK) == 0
)
{
SM_FILE_T *out;
remove("memdump");
out = sm_io_open(SmFtStdio, SM_TIME_DEFAULT,
"memdump.out", SM_IO_APPEND, NULL);
if (out != NULL)
{
(void) sm_io_fprintf(out, SM_TIME_DEFAULT, "----------------------\n");
sm_heap_report(out,
sm_debug_level(&SmHeapCheck) - 1);
(void) sm_io_close(out, SM_TIME_DEFAULT);
}
}
#endif /* SM_HEAP_CHECK */
/* let me rest for a second to catch my breath */
if (njobs == 0 && WorkGrp[wgrp].wg_lowqintvl < MIN_SLEEP_TIME)
sleep(MIN_SLEEP_TIME);
else if (WorkGrp[wgrp].wg_lowqintvl <= 0)
sleep(QueueIntvl > 0 ? QueueIntvl : MIN_SLEEP_TIME);
else
sleep(WorkGrp[wgrp].wg_lowqintvl);
/*
** Get the LA outside the WorkQ loop if necessary.
** In a persistent queue runner the code is repeated over
** and over but gatherq() may ignore entries due to
** shouldqueue() (do we really have to do this twice?).
** Hence the queue runners would just idle around when once
** CurrentLA caused all entries in a queue to be ignored.
*/
if (njobs == 0)
SM_GET_LA(now);
rpool = sm_rpool_new_x(NULL);
e = newenvelope(&QueueEnvelope, CurEnv, rpool);
e->e_flags = BlankEnvelope.e_flags;
goto domorework;
}
/* exit without the usual cleanup */
e->e_id = NULL;
if (bitset(RWG_FORK, flags))
finis(true, true, ExitStat);
/* NOTREACHED */
return true;
}
/*
** DOQUEUERUN -- do a queue run?
*/
bool
doqueuerun()
{
return DoQueueRun;
}
/*
** RUNQUEUEEVENT -- Sets a flag to indicate that a queue run should be done.
**
** Parameters:
** none.
**
** Returns:
** none.
**
** Side Effects:
** The invocation of this function via an alarm may interrupt
** a set of actions. Thus errno may be set in that context.
** We need to restore errno at the end of this function to ensure
** that any work done here that sets errno doesn't return a
** misleading/false errno value. Errno may be EINTR upon entry to
** this function because of non-restartable/continuable system
** API was active. Iff this is true we will override errno as
** a timeout (as a more accurate error message).
**
** NOTE: THIS CAN BE CALLED FROM A SIGNAL HANDLER. DO NOT ADD
** ANYTHING TO THIS ROUTINE UNLESS YOU KNOW WHAT YOU ARE
** DOING.
*/
void
runqueueevent(ignore)
int ignore;
{
int save_errno = errno;
/*
** Set the general bit that we want a queue run,
** tested in doqueuerun()
*/
DoQueueRun = true;
#if _FFR_QUEUE_SCHED_DBG
if (tTd(69, 10))
sm_syslog(LOG_INFO, NOQID, "rqe: done");
#endif /* _FFR_QUEUE_SCHED_DBG */
errno = save_errno;
if (errno == EINTR)
errno = ETIMEDOUT;
}
/*
** GATHERQ -- gather messages from the message queue(s) the work queue.
**
** Parameters:
** qgrp -- the index of the queue group.
** qdir -- the index of the queue directory.
** doall -- if set, include everything in the queue (even
** the jobs that cannot be run because the load
** average is too high, or MaxQueueRun is reached).
** Otherwise, exclude those jobs.
** full -- (optional) to be set 'true' if WorkList is full
** more -- (optional) to be set 'true' if there are still more
** messages in this queue not added to WorkList
** pnentries -- (optional) total nuber of entries in queue
**
** Returns:
** The number of request in the queue (not necessarily
** the number of requests in WorkList however).
**
** Side Effects:
** prepares available work into WorkList
*/
#define NEED_P 0001 /* 'P': priority */
#define NEED_T 0002 /* 'T': time */
#define NEED_R 0004 /* 'R': recipient */
#define NEED_S 0010 /* 'S': sender */
#define NEED_H 0020 /* host */
#define HAS_QUARANTINE 0040 /* has an unexpected 'q' line */
#define NEED_QUARANTINE 0100 /* 'q': reason */
static WORK *WorkList = NULL; /* list of unsort work */
static int WorkListSize = 0; /* current max size of WorkList */
static int WorkListCount = 0; /* # of work items in WorkList */
static int
gatherq(qgrp, qdir, doall, full, more, pnentries)
int qgrp;
int qdir;
bool doall;
bool *full;
bool *more;
int *pnentries;
{
register struct dirent *d;
register WORK *w;
register char *p;
DIR *f;
int i, num_ent, wn, nentries;
QUEUE_CHAR *check;
char qd[MAXPATHLEN];
char qf[MAXPATHLEN];
wn = WorkListCount - 1;
num_ent = 0;
nentries = 0;
if (qdir == NOQDIR)
(void) sm_strlcpy(qd, ".", sizeof(qd));
else
(void) sm_strlcpyn(qd, sizeof(qd), 2,
Queue[qgrp]->qg_qpaths[qdir].qp_name,
(bitset(QP_SUBQF,
Queue[qgrp]->qg_qpaths[qdir].qp_subdirs)
? "/qf" : ""));
if (tTd(41, 1))
{
sm_dprintf("gatherq:\n");
check = QueueLimitId;
while (check != NULL)
{
sm_dprintf("\tQueueLimitId = %s%s\n",
check->queue_negate ? "!" : "",
check->queue_match);
check = check->queue_next;
}
check = QueueLimitSender;
while (check != NULL)
{
sm_dprintf("\tQueueLimitSender = %s%s\n",
check->queue_negate ? "!" : "",
check->queue_match);
check = check->queue_next;
}
check = QueueLimitRecipient;
while (check != NULL)
{
sm_dprintf("\tQueueLimitRecipient = %s%s\n",
check->queue_negate ? "!" : "",
check->queue_match);
check = check->queue_next;
}
if (QueueMode == QM_QUARANTINE)
{
check = QueueLimitQuarantine;
while (check != NULL)
{
sm_dprintf("\tQueueLimitQuarantine = %s%s\n",
check->queue_negate ? "!" : "",
check->queue_match);
check = check->queue_next;
}
}
}
/* open the queue directory */
f = opendir(qd);
if (f == NULL)
{
syserr("gatherq: cannot open \"%s\"",
qid_printqueue(qgrp, qdir));
if (full != NULL)
*full = WorkListCount >= MaxQueueRun && MaxQueueRun > 0;
if (more != NULL)
*more = false;
return 0;
}
/*
** Read the work directory.
*/
while ((d = readdir(f)) != NULL)
{
SM_FILE_T *cf;
int qfver = 0;
char lbuf[MAXNAME + 1];
struct stat sbuf;
if (tTd(41, 50))
sm_dprintf("gatherq: checking %s..", d->d_name);
/* is this an interesting entry? */
if (!(((QueueMode == QM_NORMAL &&
d->d_name[0] == NORMQF_LETTER) ||
(QueueMode == QM_QUARANTINE &&
d->d_name[0] == QUARQF_LETTER) ||
(QueueMode == QM_LOST &&
d->d_name[0] == LOSEQF_LETTER)) &&
d->d_name[1] == 'f'))
{
if (tTd(41, 50))
sm_dprintf(" skipping\n");
continue;
}
if (tTd(41, 50))
sm_dprintf("\n");
if (strlen(d->d_name) >= MAXQFNAME)
{
if (Verbose)
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT,
"gatherq: %s too long, %d max characters\n",
d->d_name, MAXQFNAME);
if (LogLevel > 0)
sm_syslog(LOG_ALERT, NOQID,
"gatherq: %s too long, %d max characters",
d->d_name, MAXQFNAME);
continue;
}
++nentries;
check = QueueLimitId;
while (check != NULL)
{
if (strcontainedin(false, check->queue_match,
d->d_name) != check->queue_negate)
break;
else
check = check->queue_next;
}
if (QueueLimitId != NULL && check == NULL)
continue;
/* grow work list if necessary */
if (++wn >= MaxQueueRun && MaxQueueRun > 0)
{
if (wn == MaxQueueRun && LogLevel > 0)
sm_syslog(LOG_WARNING, NOQID,
"WorkList for %s maxed out at %d",
qid_printqueue(qgrp, qdir),
MaxQueueRun);
if (doall)
continue; /* just count entries */
break;
}
if (wn >= WorkListSize)
{
grow_wlist(qgrp, qdir);
if (wn >= WorkListSize)
continue;
}
SM_ASSERT(wn >= 0);
w = &WorkList[wn];
(void) sm_strlcpyn(qf, sizeof(qf), 3, qd, "/", d->d_name);
if (stat(qf, &sbuf) < 0)
{
if (errno != ENOENT)
sm_syslog(LOG_INFO, NOQID,
"gatherq: can't stat %s/%s",
qid_printqueue(qgrp, qdir),
d->d_name);
wn--;
continue;
}
if (!bitset(S_IFREG, sbuf.st_mode))
{
/* Yikes! Skip it or we will hang on open! */
if (!((d->d_name[0] == DATAFL_LETTER ||
d->d_name[0] == NORMQF_LETTER ||
d->d_name[0] == QUARQF_LETTER ||
d->d_name[0] == LOSEQF_LETTER ||
d->d_name[0] == XSCRPT_LETTER) &&
d->d_name[1] == 'f' && d->d_name[2] == '\0'))
syserr("gatherq: %s/%s is not a regular file",
qid_printqueue(qgrp, qdir), d->d_name);
wn--;
continue;
}
/* avoid work if possible */
if ((QueueSortOrder == QSO_BYFILENAME ||
QueueSortOrder == QSO_BYMODTIME ||
QueueSortOrder == QSO_NONE ||
QueueSortOrder == QSO_RANDOM) &&
QueueLimitQuarantine == NULL &&
QueueLimitSender == NULL &&
QueueLimitRecipient == NULL)
{
w->w_qgrp = qgrp;
w->w_qdir = qdir;
w->w_name = newstr(d->d_name);
w->w_host = NULL;
w->w_lock = w->w_tooyoung = false;
w->w_pri = 0;
w->w_ctime = 0;
w->w_mtime = sbuf.st_mtime;
++num_ent;
continue;
}
/* open control file */
cf = sm_io_open(SmFtStdio, SM_TIME_DEFAULT, qf, SM_IO_RDONLY_B,
NULL);
if (cf == NULL && OpMode != MD_PRINT)
{
/* this may be some random person sending hir msgs */
if (tTd(41, 2))
sm_dprintf("gatherq: cannot open %s: %s\n",
d->d_name, sm_errstring(errno));
errno = 0;
wn--;
continue;
}
w->w_qgrp = qgrp;
w->w_qdir = qdir;
w->w_name = newstr(d->d_name);
w->w_host = NULL;
if (cf != NULL)
{
w->w_lock = !lockfile(sm_io_getinfo(cf, SM_IO_WHAT_FD,
NULL),
w->w_name, NULL,
LOCK_SH|LOCK_NB);
}
w->w_tooyoung = false;
/* make sure jobs in creation don't clog queue */
w->w_pri = 0x7fffffff;
w->w_ctime = 0;
w->w_mtime = sbuf.st_mtime;
/* extract useful information */
i = NEED_P|NEED_T;
if (QueueSortOrder == QSO_BYHOST
#if _FFR_RHS
|| QueueSortOrder == QSO_BYSHUFFLE
#endif /* _FFR_RHS */
)
{
/* need w_host set for host sort order */
i |= NEED_H;
}
if (QueueLimitSender != NULL)
i |= NEED_S;
if (QueueLimitRecipient != NULL)
i |= NEED_R;
if (QueueLimitQuarantine != NULL)
i |= NEED_QUARANTINE;
while (cf != NULL && i != 0 &&
sm_io_fgets(cf, SM_TIME_DEFAULT, lbuf,
sizeof(lbuf)) >= 0)
{
int c;
time_t age;
p = strchr(lbuf, '\n');
if (p != NULL)
*p = '\0';
else
{
/* flush rest of overly long line */
while ((c = sm_io_getc(cf, SM_TIME_DEFAULT))
!= SM_IO_EOF && c != '\n')
continue;
}
switch (lbuf[0])
{
case 'V':
qfver = atoi(&lbuf[1]);
break;
case 'P':
w->w_pri = atol(&lbuf[1]);
i &= ~NEED_P;
break;
case 'T':
w->w_ctime = atol(&lbuf[1]);
i &= ~NEED_T;
break;
case 'q':
if (QueueMode != QM_QUARANTINE &&
QueueMode != QM_LOST)
{
if (tTd(41, 49))
sm_dprintf("%s not marked as quarantined but has a 'q' line\n",
w->w_name);
i |= HAS_QUARANTINE;
}
else if (QueueMode == QM_QUARANTINE)
{
if (QueueLimitQuarantine == NULL)
{
i &= ~NEED_QUARANTINE;
break;
}
p = &lbuf[1];
check = QueueLimitQuarantine;
while (check != NULL)
{
if (strcontainedin(false,
check->queue_match,
p) !=
check->queue_negate)
break;
else
check = check->queue_next;
}
if (check != NULL)
i &= ~NEED_QUARANTINE;
}
break;
case 'R':
if (w->w_host == NULL &&
(p = strrchr(&lbuf[1], '@')) != NULL)
{
#if _FFR_RHS
if (QueueSortOrder == QSO_BYSHUFFLE)
w->w_host = newstr(&p[1]);
else
#endif /* _FFR_RHS */
w->w_host = strrev(&p[1]);
makelower(w->w_host);
i &= ~NEED_H;
}
if (QueueLimitRecipient == NULL)
{
i &= ~NEED_R;
break;
}
if (qfver > 0)
{
p = strchr(&lbuf[1], ':');
if (p == NULL)
p = &lbuf[1];
else
++p; /* skip over ':' */
}
else
p = &lbuf[1];
check = QueueLimitRecipient;
while (check != NULL)
{
if (strcontainedin(true,
check->queue_match,
p) !=
check->queue_negate)
break;
else
check = check->queue_next;
}
if (check != NULL)
i &= ~NEED_R;
break;
case 'S':
check = QueueLimitSender;
while (check != NULL)
{
if (strcontainedin(true,
check->queue_match,
&lbuf[1]) !=
check->queue_negate)
break;
else
check = check->queue_next;
}
if (check != NULL)
i &= ~NEED_S;
break;
case 'K':
if (MaxQueueAge > 0)
{
time_t lasttry, delay;
lasttry = (time_t) atol(&lbuf[1]);
delay = MIN(lasttry - w->w_ctime,
MaxQueueAge);
age = curtime() - lasttry;
if (age < delay)
w->w_tooyoung = true;
break;
}
age = curtime() - (time_t) atol(&lbuf[1]);
if (age >= 0 && MinQueueAge > 0 &&
age < MinQueueAge)
w->w_tooyoung = true;
break;
case 'N':
if (atol(&lbuf[1]) == 0)
w->w_tooyoung = false;
break;
}
}
if (cf != NULL)
(void) sm_io_close(cf, SM_TIME_DEFAULT);
if ((!doall && (shouldqueue(w->w_pri, w->w_ctime) ||
w->w_tooyoung)) ||
bitset(HAS_QUARANTINE, i) ||
bitset(NEED_QUARANTINE, i) ||
bitset(NEED_R|NEED_S, i))
{
/* don't even bother sorting this job in */
if (tTd(41, 49))
sm_dprintf("skipping %s (%x)\n", w->w_name, i);
sm_free(w->w_name); /* XXX */
if (w->w_host != NULL)
sm_free(w->w_host); /* XXX */
wn--;
}
else
++num_ent;
}
(void) closedir(f);
wn++;
i = wn - WorkListCount;
WorkListCount += SM_MIN(num_ent, WorkListSize);
if (more != NULL)
*more = WorkListCount < wn;
if (full != NULL)
*full = (wn >= MaxQueueRun && MaxQueueRun > 0) ||
(WorkList == NULL && wn > 0);
if (pnentries != NULL)
*pnentries = nentries;
return i;
}
/*
** SORTQ -- sort the work list
**
** First the old WorkQ is cleared away. Then the WorkList is sorted
** for all items so that important (higher sorting value) items are not
** truncated off. Then the most important items are moved from
** WorkList to WorkQ. The lower count of 'max' or MaxListCount items
** are moved.
**
** Parameters:
** max -- maximum number of items to be placed in WorkQ
**
** Returns:
** the number of items in WorkQ
**
** Side Effects:
** WorkQ gets released and filled with new work. WorkList
** gets released. Work items get sorted in order.
*/
static int
sortq(max)
int max;
{
register int i; /* local counter */
register WORK *w; /* tmp item pointer */
int wc = WorkListCount; /* trim size for WorkQ */
if (WorkQ != NULL)
{
WORK *nw;
/* Clear out old WorkQ. */
for (w = WorkQ; w != NULL; w = nw)
{
nw = w->w_next;
sm_free(w->w_name); /* XXX */
if (w->w_host != NULL)
sm_free(w->w_host); /* XXX */
sm_free((char *) w); /* XXX */
}
WorkQ = NULL;
}
if (WorkList == NULL || wc <= 0)
return 0;
/*
** The sort now takes place using all of the items in WorkList.
** The list gets trimmed to the most important items after the sort.
** If the trim were to happen before the sort then one or more
** important items might get truncated off -- not what we want.
*/
if (QueueSortOrder == QSO_BYHOST)
{
/*
** Sort the work directory for the first time,
** based on host name, lock status, and priority.
*/
qsort((char *) WorkList, wc, sizeof(*WorkList), workcmpf1);
/*
** If one message to host is locked, "lock" all messages
** to that host.
*/
i = 0;
while (i < wc)
{
if (!WorkList[i].w_lock)
{
i++;
continue;
}
w = &WorkList[i];
while (++i < wc)
{
if (WorkList[i].w_host == NULL &&
w->w_host == NULL)
WorkList[i].w_lock = true;
else if (WorkList[i].w_host != NULL &&
w->w_host != NULL &&
sm_strcasecmp(WorkList[i].w_host,
w->w_host) == 0)
WorkList[i].w_lock = true;
else
break;
}
}
/*
** Sort the work directory for the second time,
** based on lock status, host name, and priority.
*/
qsort((char *) WorkList, wc, sizeof(*WorkList), workcmpf2);
}
else if (QueueSortOrder == QSO_BYTIME)
{
/*
** Simple sort based on submission time only.
*/
qsort((char *) WorkList, wc, sizeof(*WorkList), workcmpf3);
}
else if (QueueSortOrder == QSO_BYFILENAME)
{
/*
** Sort based on queue filename.
*/
qsort((char *) WorkList, wc, sizeof(*WorkList), workcmpf4);
}
else if (QueueSortOrder == QSO_RANDOM)
{
/*
** Sort randomly. To avoid problems with an instable sort,
** use a random index into the queue file name to start
** comparison.
*/
randi = get_rand_mod(MAXQFNAME);
if (randi < 2)
randi = 3;
qsort((char *) WorkList, wc, sizeof(*WorkList), workcmpf5);
}
else if (QueueSortOrder == QSO_BYMODTIME)
{
/*
** Simple sort based on modification time of queue file.
** This puts the oldest items first.
*/
qsort((char *) WorkList, wc, sizeof(*WorkList), workcmpf6);
}
#if _FFR_RHS
else if (QueueSortOrder == QSO_BYSHUFFLE)
{
/*
** Simple sort based on shuffled host name.
*/
init_shuffle_alphabet();
qsort((char *) WorkList, wc, sizeof(*WorkList), workcmpf7);
}
#endif /* _FFR_RHS */
else if (QueueSortOrder == QSO_BYPRIORITY)
{
/*
** Simple sort based on queue priority only.
*/
qsort((char *) WorkList, wc, sizeof(*WorkList), workcmpf0);
}
/* else don't sort at all */
/* Check if the per queue group item limit will be exceeded */
if (wc > max && max > 0)
wc = max;
/*
** Convert the work list into canonical form.
** Should be turning it into a list of envelopes here perhaps.
** Only take the most important items up to the per queue group
** maximum.
*/
for (i = wc; --i >= 0; )
{
w = (WORK *) xalloc(sizeof(*w));
w->w_qgrp = WorkList[i].w_qgrp;
w->w_qdir = WorkList[i].w_qdir;
w->w_name = WorkList[i].w_name;
w->w_host = WorkList[i].w_host;
w->w_lock = WorkList[i].w_lock;
w->w_tooyoung = WorkList[i].w_tooyoung;
w->w_pri = WorkList[i].w_pri;
w->w_ctime = WorkList[i].w_ctime;
w->w_mtime = WorkList[i].w_mtime;
w->w_next = WorkQ;
WorkQ = w;
}
/* free the rest of the list */
for (i = WorkListCount; --i >= wc; )
{
sm_free(WorkList[i].w_name);
if (WorkList[i].w_host != NULL)
sm_free(WorkList[i].w_host);
}
if (WorkList != NULL)
sm_free(WorkList); /* XXX */
WorkList = NULL;
WorkListSize = 0;
WorkListCount = 0;
if (tTd(40, 1))
{
for (w = WorkQ; w != NULL; w = w->w_next)
{
if (w->w_host != NULL)
sm_dprintf("%22s: pri=%ld %s\n",
w->w_name, w->w_pri, w->w_host);
else
sm_dprintf("%32s: pri=%ld\n",
w->w_name, w->w_pri);
}
}
return wc; /* return number of WorkQ items */
}
/*
** GROW_WLIST -- make the work list larger
**
** Parameters:
** qgrp -- the index for the queue group.
** qdir -- the index for the queue directory.
**
** Returns:
** none.
**
** Side Effects:
** Adds another QUEUESEGSIZE entries to WorkList if possible.
** It can fail if there isn't enough memory, so WorkListSize
** should be checked again upon return.
*/
static void
grow_wlist(qgrp, qdir)
int qgrp;
int qdir;
{
if (tTd(41, 1))
sm_dprintf("grow_wlist: WorkListSize=%d\n", WorkListSize);
if (WorkList == NULL)
{
WorkList = (WORK *) xalloc((sizeof(*WorkList)) *
(QUEUESEGSIZE + 1));
WorkListSize = QUEUESEGSIZE;
}
else
{
int newsize = WorkListSize + QUEUESEGSIZE;
WORK *newlist = (WORK *) sm_realloc((char *) WorkList,
(unsigned) sizeof(WORK) * (newsize + 1));
if (newlist != NULL)
{
WorkListSize = newsize;
WorkList = newlist;
if (LogLevel > 1)
{
sm_syslog(LOG_INFO, NOQID,
"grew WorkList for %s to %d",
qid_printqueue(qgrp, qdir),
WorkListSize);
}
}
else if (LogLevel > 0)
{
sm_syslog(LOG_ALERT, NOQID,
"FAILED to grow WorkList for %s to %d",
qid_printqueue(qgrp, qdir), newsize);
}
}
if (tTd(41, 1))
sm_dprintf("grow_wlist: WorkListSize now %d\n", WorkListSize);
}
/*
** WORKCMPF0 -- simple priority-only compare function.
**
** Parameters:
** a -- the first argument.
** b -- the second argument.
**
** Returns:
** -1 if a < b
** 0 if a == b
** +1 if a > b
**
*/
static int
workcmpf0(a, b)
register WORK *a;
register WORK *b;
{
long pa = a->w_pri;
long pb = b->w_pri;
if (pa == pb)
return 0;
else if (pa > pb)
return 1;
else
return -1;
}
/*
** WORKCMPF1 -- first compare function for ordering work based on host name.
**
** Sorts on host name, lock status, and priority in that order.
**
** Parameters:
** a -- the first argument.
** b -- the second argument.
**
** Returns:
** <0 if a < b
** 0 if a == b
** >0 if a > b
**
*/
static int
workcmpf1(a, b)
register WORK *a;
register WORK *b;
{
int i;
/* host name */
if (a->w_host != NULL && b->w_host == NULL)
return 1;
else if (a->w_host == NULL && b->w_host != NULL)
return -1;
if (a->w_host != NULL && b->w_host != NULL &&
(i = sm_strcasecmp(a->w_host, b->w_host)) != 0)
return i;
/* lock status */
if (a->w_lock != b->w_lock)
return b->w_lock - a->w_lock;
/* job priority */
return workcmpf0(a, b);
}
/*
** WORKCMPF2 -- second compare function for ordering work based on host name.
**
** Sorts on lock status, host name, and priority in that order.
**
** Parameters:
** a -- the first argument.
** b -- the second argument.
**
** Returns:
** <0 if a < b
** 0 if a == b
** >0 if a > b
**
*/
static int
workcmpf2(a, b)
register WORK *a;
register WORK *b;
{
int i;
/* lock status */
if (a->w_lock != b->w_lock)
return a->w_lock - b->w_lock;
/* host name */
if (a->w_host != NULL && b->w_host == NULL)
return 1;
else if (a->w_host == NULL && b->w_host != NULL)
return -1;
if (a->w_host != NULL && b->w_host != NULL &&
(i = sm_strcasecmp(a->w_host, b->w_host)) != 0)
return i;
/* job priority */
return workcmpf0(a, b);
}
/*
** WORKCMPF3 -- simple submission-time-only compare function.
**
** Parameters:
** a -- the first argument.
** b -- the second argument.
**
** Returns:
** -1 if a < b
** 0 if a == b
** +1 if a > b
**
*/
static int
workcmpf3(a, b)
register WORK *a;
register WORK *b;
{
if (a->w_ctime > b->w_ctime)
return 1;
else if (a->w_ctime < b->w_ctime)
return -1;
else
return 0;
}
/*
** WORKCMPF4 -- compare based on file name
**
** Parameters:
** a -- the first argument.
** b -- the second argument.
**
** Returns:
** -1 if a < b
** 0 if a == b
** +1 if a > b
**
*/
static int
workcmpf4(a, b)
register WORK *a;
register WORK *b;
{
return strcmp(a->w_name, b->w_name);
}
/*
** WORKCMPF5 -- compare based on assigned random number
**
** Parameters:
** a -- the first argument.
** b -- the second argument.
**
** Returns:
** randomly 1/-1
*/
/* ARGSUSED0 */
static int
workcmpf5(a, b)
register WORK *a;
register WORK *b;
{
if (strlen(a->w_name) < randi || strlen(b->w_name) < randi)
return -1;
return a->w_name[randi] - b->w_name[randi];
}
/*
** WORKCMPF6 -- simple modification-time-only compare function.
**
** Parameters:
** a -- the first argument.
** b -- the second argument.
**
** Returns:
** -1 if a < b
** 0 if a == b
** +1 if a > b
**
*/
static int
workcmpf6(a, b)
register WORK *a;
register WORK *b;
{
if (a->w_mtime > b->w_mtime)
return 1;
else if (a->w_mtime < b->w_mtime)
return -1;
else
return 0;
}
#if _FFR_RHS
/*
** WORKCMPF7 -- compare function for ordering work based on shuffled host name.
**
** Sorts on lock status, host name, and priority in that order.
**
** Parameters:
** a -- the first argument.
** b -- the second argument.
**
** Returns:
** <0 if a < b
** 0 if a == b
** >0 if a > b
**
*/
static int
workcmpf7(a, b)
register WORK *a;
register WORK *b;
{
int i;
/* lock status */
if (a->w_lock != b->w_lock)
return a->w_lock - b->w_lock;
/* host name */
if (a->w_host != NULL && b->w_host == NULL)
return 1;
else if (a->w_host == NULL && b->w_host != NULL)
return -1;
if (a->w_host != NULL && b->w_host != NULL &&
(i = sm_strshufflecmp(a->w_host, b->w_host)) != 0)
return i;
/* job priority */
return workcmpf0(a, b);
}
#endif /* _FFR_RHS */
/*
** STRREV -- reverse string
**
** Returns a pointer to a new string that is the reverse of
** the string pointed to by fwd. The space for the new
** string is obtained using xalloc().
**
** Parameters:
** fwd -- the string to reverse.
**
** Returns:
** the reversed string.
*/
static char *
strrev(fwd)
char *fwd;
{
char *rev = NULL;
int len, cnt;
len = strlen(fwd);
rev = xalloc(len + 1);
for (cnt = 0; cnt < len; ++cnt)
rev[cnt] = fwd[len - cnt - 1];
rev[len] = '\0';
return rev;
}
#if _FFR_RHS
# define NASCII 128
# define NCHAR 256
static unsigned char ShuffledAlphabet[NCHAR];
void
init_shuffle_alphabet()
{
static bool init = false;
int i;
if (init)
return;
/* fill the ShuffledAlphabet */
for (i = 0; i < NASCII; i++)
ShuffledAlphabet[i] = i;
/* mix it */
for (i = 1; i < NASCII; i++)
{
register int j = get_random() % NASCII;
register int tmp;
tmp = ShuffledAlphabet[j];
ShuffledAlphabet[j] = ShuffledAlphabet[i];
ShuffledAlphabet[i] = tmp;
}
/* make it case insensitive */
for (i = 'A'; i <= 'Z'; i++)
ShuffledAlphabet[i] = ShuffledAlphabet[i + 'a' - 'A'];
/* fill the upper part */
for (i = 0; i < NASCII; i++)
ShuffledAlphabet[i + NASCII] = ShuffledAlphabet[i];
init = true;
}
static int
sm_strshufflecmp(a, b)
char *a;
char *b;
{
const unsigned char *us1 = (const unsigned char *) a;
const unsigned char *us2 = (const unsigned char *) b;
while (ShuffledAlphabet[*us1] == ShuffledAlphabet[*us2++])
{
if (*us1++ == '\0')
return 0;
}
return (ShuffledAlphabet[*us1] - ShuffledAlphabet[*--us2]);
}
#endif /* _FFR_RHS */
/*
** DOWORK -- do a work request.
**
** Parameters:
** qgrp -- the index of the queue group for the job.
** qdir -- the index of the queue directory for the job.
** id -- the ID of the job to run.
** forkflag -- if set, run this in background.
** requeueflag -- if set, reinstantiate the queue quickly.
** This is used when expanding aliases in the queue.
** If forkflag is also set, it doesn't wait for the
** child.
** e - the envelope in which to run it.
**
** Returns:
** process id of process that is running the queue job.
**
** Side Effects:
** The work request is satisfied if possible.
*/
pid_t
dowork(qgrp, qdir, id, forkflag, requeueflag, e)
int qgrp;
int qdir;
char *id;
bool forkflag;
bool requeueflag;
register ENVELOPE *e;
{
register pid_t pid;
SM_RPOOL_T *rpool;
if (tTd(40, 1))
sm_dprintf("dowork(%s/%s)\n", qid_printqueue(qgrp, qdir), id);
/*
** Fork for work.
*/
if (forkflag)
{
/*
** Since the delivery may happen in a child and the
** parent does not wait, the parent may close the
** maps thereby removing any shared memory used by
** the map. Therefore, close the maps now so the
** child will dynamically open them if necessary.
*/
closemaps(false);
pid = fork();
if (pid < 0)
{
syserr("dowork: cannot fork");
return 0;
}
else if (pid > 0)
{
/* parent -- clean out connection cache */
mci_flush(false, NULL);
}
else
{
/*
** Initialize exception stack and default exception
** handler for child process.
*/
/* Reset global flags */
RestartRequest = NULL;
RestartWorkGroup = false;
ShutdownRequest = NULL;
PendingSignal = 0;
CurrentPid = getpid();
sm_exc_newthread(fatal_error);
/*
** See note above about SMTP processes and SIGCHLD.
*/
if (OpMode == MD_SMTP ||
OpMode == MD_DAEMON ||
MaxQueueChildren > 0)
{
proc_list_clear();
sm_releasesignal(SIGCHLD);
(void) sm_signal(SIGCHLD, SIG_DFL);
}
/* child -- error messages to the transcript */
QuickAbort = OnlyOneError = false;
}
}
else
{
pid = 0;
}
if (pid == 0)
{
/*
** CHILD
** Lock the control file to avoid duplicate deliveries.
** Then run the file as though we had just read it.
** We save an idea of the temporary name so we
** can recover on interrupt.
*/
if (forkflag)
{
/* Reset global flags */
RestartRequest = NULL;
RestartWorkGroup = false;
ShutdownRequest = NULL;
PendingSignal = 0;
}
/* set basic modes, etc. */
sm_clear_events();
clearstats();
rpool = sm_rpool_new_x(NULL);
clearenvelope(e, false, rpool);
e->e_flags |= EF_QUEUERUN|EF_GLOBALERRS;
set_delivery_mode(SM_DELIVER, e);
e->e_errormode = EM_MAIL;
e->e_id = id;
e->e_qgrp = qgrp;
e->e_qdir = qdir;
GrabTo = UseErrorsTo = false;
ExitStat = EX_OK;
if (forkflag)
{
disconnect(1, e);
set_op_mode(MD_QUEUERUN);
}
sm_setproctitle(true, e, "%s from queue", qid_printname(e));
if (LogLevel > 76)
sm_syslog(LOG_DEBUG, e->e_id, "dowork, pid=%d",
(int) CurrentPid);
/* don't use the headers from sendmail.cf... */
e->e_header = NULL;
/* read the queue control file -- return if locked */
if (!readqf(e, false))
{
if (tTd(40, 4) && e->e_id != NULL)
sm_dprintf("readqf(%s) failed\n",
qid_printname(e));
e->e_id = NULL;
if (forkflag)
finis(false, true, EX_OK);
else
{
/* adding this frees 8 bytes */
clearenvelope(e, false, rpool);
/* adding this frees 12 bytes */
sm_rpool_free(rpool);
e->e_rpool = NULL;
return 0;
}
}
e->e_flags |= EF_INQUEUE;
eatheader(e, requeueflag, true);
if (requeueflag)
queueup(e, false, false);
/* do the delivery */
sendall(e, SM_DELIVER);
/* finish up and exit */
if (forkflag)
finis(true, true, ExitStat);
else
{
(void) dropenvelope(e, true, false);
sm_rpool_free(rpool);
e->e_rpool = NULL;
e->e_message = NULL;
}
}
e->e_id = NULL;
return pid;
}
/*
** DOWORKLIST -- process a list of envelopes as work requests
**
** Similar to dowork(), except that after forking, it processes an
** envelope and its siblings, treating each envelope as a work request.
**
** Parameters:
** el -- envelope to be processed including its siblings.
** forkflag -- if set, run this in background.
** requeueflag -- if set, reinstantiate the queue quickly.
** This is used when expanding aliases in the queue.
** If forkflag is also set, it doesn't wait for the
** child.
**
** Returns:
** process id of process that is running the queue job.
**
** Side Effects:
** The work request is satisfied if possible.
*/
pid_t
doworklist(el, forkflag, requeueflag)
ENVELOPE *el;
bool forkflag;
bool requeueflag;
{
register pid_t pid;
ENVELOPE *ei;
if (tTd(40, 1))
sm_dprintf("doworklist()\n");
/*
** Fork for work.
*/
if (forkflag)
{
/*
** Since the delivery may happen in a child and the
** parent does not wait, the parent may close the
** maps thereby removing any shared memory used by
** the map. Therefore, close the maps now so the
** child will dynamically open them if necessary.
*/
closemaps(false);
pid = fork();
if (pid < 0)
{
syserr("doworklist: cannot fork");
return 0;
}
else if (pid > 0)
{
/* parent -- clean out connection cache */
mci_flush(false, NULL);
}
else
{
/*
** Initialize exception stack and default exception
** handler for child process.
*/
/* Reset global flags */
RestartRequest = NULL;
RestartWorkGroup = false;
ShutdownRequest = NULL;
PendingSignal = 0;
CurrentPid = getpid();
sm_exc_newthread(fatal_error);
/*
** See note above about SMTP processes and SIGCHLD.
*/
if (OpMode == MD_SMTP ||
OpMode == MD_DAEMON ||
MaxQueueChildren > 0)
{
proc_list_clear();
sm_releasesignal(SIGCHLD);
(void) sm_signal(SIGCHLD, SIG_DFL);
}
/* child -- error messages to the transcript */
QuickAbort = OnlyOneError = false;
}
}
else
{
pid = 0;
}
if (pid != 0)
return pid;
/*
** IN CHILD
** Lock the control file to avoid duplicate deliveries.
** Then run the file as though we had just read it.
** We save an idea of the temporary name so we
** can recover on interrupt.
*/
if (forkflag)
{
/* Reset global flags */
RestartRequest = NULL;
RestartWorkGroup = false;
ShutdownRequest = NULL;
PendingSignal = 0;
}
/* set basic modes, etc. */
sm_clear_events();
clearstats();
GrabTo = UseErrorsTo = false;
ExitStat = EX_OK;
if (forkflag)
{
disconnect(1, el);
set_op_mode(MD_QUEUERUN);
}
if (LogLevel > 76)
sm_syslog(LOG_DEBUG, el->e_id, "doworklist, pid=%d",
(int) CurrentPid);
for (ei = el; ei != NULL; ei = ei->e_sibling)
{
ENVELOPE e;
SM_RPOOL_T *rpool;
if (WILL_BE_QUEUED(ei->e_sendmode))
continue;
else if (QueueMode != QM_QUARANTINE &&
ei->e_quarmsg != NULL)
continue;
rpool = sm_rpool_new_x(NULL);
clearenvelope(&e, true, rpool);
e.e_flags |= EF_QUEUERUN|EF_GLOBALERRS;
set_delivery_mode(SM_DELIVER, &e);
e.e_errormode = EM_MAIL;
e.e_id = ei->e_id;
e.e_qgrp = ei->e_qgrp;
e.e_qdir = ei->e_qdir;
openxscript(&e);
sm_setproctitle(true, &e, "%s from queue", qid_printname(&e));
/* don't use the headers from sendmail.cf... */
e.e_header = NULL;
CurEnv = &e;
/* read the queue control file -- return if locked */
if (readqf(&e, false))
{
e.e_flags |= EF_INQUEUE;
eatheader(&e, requeueflag, true);
if (requeueflag)
queueup(&e, false, false);
/* do the delivery */
sendall(&e, SM_DELIVER);
(void) dropenvelope(&e, true, false);
}
else
{
if (tTd(40, 4) && e.e_id != NULL)
sm_dprintf("readqf(%s) failed\n",
qid_printname(&e));
}
sm_rpool_free(rpool);
ei->e_id = NULL;
}
/* restore CurEnv */
CurEnv = el;
/* finish up and exit */
if (forkflag)
finis(true, true, ExitStat);
return 0;
}
/*
** READQF -- read queue file and set up environment.
**
** Parameters:
** e -- the envelope of the job to run.
** openonly -- only open the qf (returned as e_lockfp)
**
** Returns:
** true if it successfully read the queue file.
** false otherwise.
**
** Side Effects:
** The queue file is returned locked.
*/
static bool
readqf(e, openonly)
register ENVELOPE *e;
bool openonly;
{
register SM_FILE_T *qfp;
ADDRESS *ctladdr;
struct stat st, stf;
char *bp;
int qfver = 0;
long hdrsize = 0;
register char *p;
char *frcpt = NULL;
char *orcpt = NULL;
bool nomore = false;
bool bogus = false;
MODE_T qsafe;
char *err;
char qf[MAXPATHLEN];
char buf[MAXLINE];
int bufsize;
/*
** Read and process the file.
*/
SM_REQUIRE(e != NULL);
bp = NULL;
(void) sm_strlcpy(qf, queuename(e, ANYQFL_LETTER), sizeof(qf));
qfp = sm_io_open(SmFtStdio, SM_TIME_DEFAULT, qf, SM_IO_RDWR_B, NULL);
if (qfp == NULL)
{
int save_errno = errno;
if (tTd(40, 8))
sm_dprintf("readqf(%s): sm_io_open failure (%s)\n",
qf, sm_errstring(errno));
errno = save_errno;
if (errno != ENOENT
)
syserr("readqf: no control file %s", qf);
RELEASE_QUEUE;
return false;
}
if (!lockfile(sm_io_getinfo(qfp, SM_IO_WHAT_FD, NULL), qf, NULL,
LOCK_EX|LOCK_NB))
{
/* being processed by another queuer */
if (Verbose)
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT,
"%s: locked\n", e->e_id);
if (tTd(40, 8))
sm_dprintf("%s: locked\n", e->e_id);
if (LogLevel > 19)
sm_syslog(LOG_DEBUG, e->e_id, "locked");
(void) sm_io_close(qfp, SM_TIME_DEFAULT);
RELEASE_QUEUE;
return false;
}
RELEASE_QUEUE;
/*
** Prevent locking race condition.
**
** Process A: readqf(): qfp = fopen(qffile)
** Process B: queueup(): rename(tf, qf)
** Process B: unlocks(tf)
** Process A: lockfile(qf);
**
** Process A (us) has the old qf file (before the rename deleted
** the directory entry) and will be delivering based on old data.
** This can lead to multiple deliveries of the same recipients.
**
** Catch this by checking if the underlying qf file has changed
** *after* acquiring our lock and if so, act as though the file
** was still locked (i.e., just return like the lockfile() case
** above.
*/
if (stat(qf, &stf) < 0 ||
fstat(sm_io_getinfo(qfp, SM_IO_WHAT_FD, NULL), &st) < 0)
{
/* must have been being processed by someone else */
if (tTd(40, 8))
sm_dprintf("readqf(%s): [f]stat failure (%s)\n",
qf, sm_errstring(errno));
(void) sm_io_close(qfp, SM_TIME_DEFAULT);
return false;
}
if (st.st_nlink != stf.st_nlink ||
st.st_dev != stf.st_dev ||
ST_INODE(st) != ST_INODE(stf) ||
#if HAS_ST_GEN && 0 /* AFS returns garbage in st_gen */
st.st_gen != stf.st_gen ||
#endif /* HAS_ST_GEN && 0 */
st.st_uid != stf.st_uid ||
st.st_gid != stf.st_gid ||
st.st_size != stf.st_size)
{
/* changed after opened */
if (Verbose)
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT,
"%s: changed\n", e->e_id);
if (tTd(40, 8))
sm_dprintf("%s: changed\n", e->e_id);
if (LogLevel > 19)
sm_syslog(LOG_DEBUG, e->e_id, "changed");
(void) sm_io_close(qfp, SM_TIME_DEFAULT);
return false;
}
/*
** Check the queue file for plausibility to avoid attacks.
*/
qsafe = S_IWOTH|S_IWGRP;
if (bitset(S_IWGRP, QueueFileMode))
qsafe &= ~S_IWGRP;
bogus = st.st_uid != geteuid() &&
st.st_uid != TrustedUid &&
geteuid() != RealUid;
/*
** If this qf file results from a set-group-ID binary, then
** we check whether the directory is group-writable,
** the queue file mode contains the group-writable bit, and
** the groups are the same.
** Notice: this requires that the set-group-ID binary is used to
** run the queue!
*/
if (bogus && st.st_gid == getegid() && UseMSP)
{
char delim;
struct stat dst;
bp = SM_LAST_DIR_DELIM(qf);
if (bp == NULL)
delim = '\0';
else
{
delim = *bp;
*bp = '\0';
}
if (stat(delim == '\0' ? "." : qf, &dst) < 0)
syserr("readqf: cannot stat directory %s",
delim == '\0' ? "." : qf);
else
{
bogus = !(bitset(S_IWGRP, QueueFileMode) &&
bitset(S_IWGRP, dst.st_mode) &&
dst.st_gid == st.st_gid);
}
if (delim != '\0')
*bp = delim;
bp = NULL;
}
if (!bogus)
bogus = bitset(qsafe, st.st_mode);
if (bogus)
{
if (LogLevel > 0)
{
sm_syslog(LOG_ALERT, e->e_id,
"bogus queue file, uid=%ld, gid=%ld, mode=%o",
(long) st.st_uid, (long) st.st_gid,
(unsigned int) st.st_mode);
}
if (tTd(40, 8))
sm_dprintf("readqf(%s): bogus file\n", qf);
e->e_flags |= EF_INQUEUE;
if (!openonly)
loseqfile(e, "bogus file uid/gid in mqueue");
(void) sm_io_close(qfp, SM_TIME_DEFAULT);
return false;
}
if (st.st_size == 0)
{
/* must be a bogus file -- if also old, just remove it */
if (!openonly && st.st_ctime + 10 * 60 < curtime())
{
(void) xunlink(queuename(e, DATAFL_LETTER));
(void) xunlink(queuename(e, ANYQFL_LETTER));
}
(void) sm_io_close(qfp, SM_TIME_DEFAULT);
return false;
}
if (st.st_nlink == 0)
{
/*
** Race condition -- we got a file just as it was being
** unlinked. Just assume it is zero length.
*/
(void) sm_io_close(qfp, SM_TIME_DEFAULT);
return false;
}
#if _FFR_TRUSTED_QF
/*
** If we don't own the file mark it as unsafe.
** However, allow TrustedUser to own it as well
** in case TrustedUser manipulates the queue.
*/
if (st.st_uid != geteuid() && st.st_uid != TrustedUid)
e->e_flags |= EF_UNSAFE;
#else /* _FFR_TRUSTED_QF */
/* If we don't own the file mark it as unsafe */
if (st.st_uid != geteuid())
e->e_flags |= EF_UNSAFE;
#endif /* _FFR_TRUSTED_QF */
/* good file -- save this lock */
e->e_lockfp = qfp;
/* Just wanted the open file */
if (openonly)
return true;
/* do basic system initialization */
initsys(e);
macdefine(&e->e_macro, A_PERM, 'i', e->e_id);
LineNumber = 0;
e->e_flags |= EF_GLOBALERRS;
set_op_mode(MD_QUEUERUN);
ctladdr = NULL;
e->e_qfletter = queue_letter(e, ANYQFL_LETTER);
e->e_dfqgrp = e->e_qgrp;
e->e_dfqdir = e->e_qdir;
#if _FFR_QUEUE_MACRO
macdefine(&e->e_macro, A_TEMP, macid("{queue}"),
qid_printqueue(e->e_qgrp, e->e_qdir));
#endif /* _FFR_QUEUE_MACRO */
e->e_dfino = -1;
e->e_msgsize = -1;
while (bufsize = sizeof(buf),
(bp = fgetfolded(buf, &bufsize, qfp)) != NULL)
{
unsigned long qflags;
ADDRESS *q;
int r;
time_t now;
auto char *ep;
if (tTd(40, 4))
sm_dprintf("+++++ %s\n", bp);
if (nomore)
{
/* hack attack */
hackattack:
syserr("SECURITY ALERT: extra or bogus data in queue file: %s",
bp);
err = "bogus queue line";
goto fail;
}
switch (bp[0])
{
case 'A': /* AUTH= parameter */
if (!xtextok(&bp[1]))
goto hackattack;
e->e_auth_param = sm_rpool_strdup_x(e->e_rpool, &bp[1]);
break;
case 'B': /* body type */
r = check_bodytype(&bp[1]);
if (!BODYTYPE_VALID(r))
goto hackattack;
e->e_bodytype = sm_rpool_strdup_x(e->e_rpool, &bp[1]);
break;
case 'C': /* specify controlling user */
ctladdr = setctluser(&bp[1], qfver, e);
break;
case 'D': /* data file name */
/* obsolete -- ignore */
break;
case 'd': /* data file directory name */
{
int qgrp, qdir;
#if _FFR_MSP_PARANOIA
/* forbid queue groups in MSP? */
if (UseMSP)
goto hackattack;
#endif /* _FFR_MSP_PARANOIA */
for (qgrp = 0;
qgrp < NumQueue && Queue[qgrp] != NULL;
++qgrp)
{
for (qdir = 0;
qdir < Queue[qgrp]->qg_numqueues;
++qdir)
{
if (strcmp(&bp[1],
Queue[qgrp]->qg_qpaths[qdir].qp_name)
== 0)
{
e->e_dfqgrp = qgrp;
e->e_dfqdir = qdir;
goto done;
}
}
}
err = "bogus queue file directory";
goto fail;
done:
break;
}
case 'E': /* specify error recipient */
/* no longer used */
break;
case 'F': /* flag bits */
if (strncmp(bp, "From ", 5) == 0)
{
/* we are being spoofed! */
syserr("SECURITY ALERT: bogus qf line %s", bp);
err = "bogus queue line";
goto fail;
}
for (p = &bp[1]; *p != '\0'; p++)
{
switch (*p)
{
case '8': /* has 8 bit data */
e->e_flags |= EF_HAS8BIT;
break;
case 'b': /* delete Bcc: header */
e->e_flags |= EF_DELETE_BCC;
break;
case 'd': /* envelope has DSN RET= */
e->e_flags |= EF_RET_PARAM;
break;
case 'n': /* don't return body */
e->e_flags |= EF_NO_BODY_RETN;
break;
case 'r': /* response */
e->e_flags |= EF_RESPONSE;
break;
case 's': /* split */
e->e_flags |= EF_SPLIT;
break;
case 'w': /* warning sent */
e->e_flags |= EF_WARNING;
break;
}
}
break;
case 'q': /* quarantine reason */
e->e_quarmsg = sm_rpool_strdup_x(e->e_rpool, &bp[1]);
macdefine(&e->e_macro, A_PERM,
macid("{quarantine}"), e->e_quarmsg);
break;
case 'H': /* header */
/*
** count size before chompheader() destroys the line.
** this isn't accurate due to macro expansion, but
** better than before. "-3" to skip H?? at least.
*/
hdrsize += strlen(bp) - 3;
(void) chompheader(&bp[1], CHHDR_QUEUE, NULL, e);
break;
case 'I': /* data file's inode number */
/* regenerated below */
break;
case 'K': /* time of last delivery attempt */
e->e_dtime = atol(&buf[1]);
break;
case 'L': /* Solaris Content-Length: */
case 'M': /* message */
/* ignore this; we want a new message next time */
break;
case 'N': /* number of delivery attempts */
e->e_ntries = atoi(&buf[1]);
/* if this has been tried recently, let it be */
now = curtime();
if (e->e_ntries > 0 && e->e_dtime <= now &&
now < e->e_dtime + MinQueueAge)
{
char *howlong;
howlong = pintvl(now - e->e_dtime, true);
if (Verbose)
(void) sm_io_fprintf(smioout,
SM_TIME_DEFAULT,
"%s: too young (%s)\n",
e->e_id, howlong);
if (tTd(40, 8))
sm_dprintf("%s: too young (%s)\n",
e->e_id, howlong);
if (LogLevel > 19)
sm_syslog(LOG_DEBUG, e->e_id,
"too young (%s)",
howlong);
e->e_id = NULL;
unlockqueue(e);
if (bp != buf)
sm_free(bp);
return false;
}
macdefine(&e->e_macro, A_TEMP,
macid("{ntries}"), &buf[1]);
#if NAMED_BIND
/* adjust BIND parameters immediately */
if (e->e_ntries == 0)
{
_res.retry = TimeOuts.res_retry[RES_TO_FIRST];
_res.retrans = TimeOuts.res_retrans[RES_TO_FIRST];
}
else
{
_res.retry = TimeOuts.res_retry[RES_TO_NORMAL];
_res.retrans = TimeOuts.res_retrans[RES_TO_NORMAL];
}
#endif /* NAMED_BIND */
break;
case 'P': /* message priority */
e->e_msgpriority = atol(&bp[1]) + WkTimeFact;
break;
case 'Q': /* original recipient */
orcpt = sm_rpool_strdup_x(e->e_rpool, &bp[1]);
break;
case 'r': /* final recipient */
frcpt = sm_rpool_strdup_x(e->e_rpool, &bp[1]);
break;
case 'R': /* specify recipient */
p = bp;
qflags = 0;
if (qfver >= 1)
{
/* get flag bits */
while (*++p != '\0' && *p != ':')
{
switch (*p)
{
case 'N':
qflags |= QHASNOTIFY;
break;
case 'S':
qflags |= QPINGONSUCCESS;
break;
case 'F':
qflags |= QPINGONFAILURE;
break;
case 'D':
qflags |= QPINGONDELAY;
break;
case 'P':
qflags |= QPRIMARY;
break;
case 'A':
if (ctladdr != NULL)
ctladdr->q_flags |= QALIAS;
break;
case 'B':
qflags |= QINTBCC;
break;
case QDYNMAILFLG:
qflags |= QDYNMAILER;
break;
default: /* ignore or complain? */
break;
}
}
}
else
qflags |= QPRIMARY;
macdefine(&e->e_macro, A_PERM, macid("{addr_type}"),
((qflags & QINTBCC) != 0) ? "e b" : "e r");
if (*p != '\0')
q = parseaddr(++p, NULLADDR, RF_COPYALL, '\0',
NULL, e, true);
else
q = NULL;
if (q != NULL)
{
/* make sure we keep the current qgrp */
if (ISVALIDQGRP(e->e_qgrp))
q->q_qgrp = e->e_qgrp;
q->q_alias = ctladdr;
if (qfver >= 1)
q->q_flags &= ~Q_PINGFLAGS;
q->q_flags |= qflags;
q->q_finalrcpt = frcpt;
q->q_orcpt = orcpt;
#if _FFR_RCPTFLAGS
if (bitset(QDYNMAILER, qflags))
newmodmailer(q, QDYNMAILFLG);
#endif
(void) recipient(q, &e->e_sendqueue, 0, e);
}
frcpt = NULL;
orcpt = NULL;
macdefine(&e->e_macro, A_PERM, macid("{addr_type}"),
NULL);
break;
case 'S': /* sender */
setsender(sm_rpool_strdup_x(e->e_rpool, &bp[1]),
e, NULL, '\0', true);
break;
case 'T': /* init time */
e->e_ctime = atol(&bp[1]);
break;
case 'V': /* queue file version number */
qfver = atoi(&bp[1]);
if (qfver <= QF_VERSION)
break;
syserr("Version number in queue file (%d) greater than max (%d)",
qfver, QF_VERSION);
err = "unsupported queue file version";
goto fail;
/* NOTREACHED */
break;
case 'Z': /* original envelope id from ESMTP */
e->e_envid = sm_rpool_strdup_x(e->e_rpool, &bp[1]);
macdefine(&e->e_macro, A_PERM,
macid("{dsn_envid}"), e->e_envid);
break;
case '!': /* deliver by */
/* format: flag (1 char) space long-integer */
e->e_dlvr_flag = buf[1];
e->e_deliver_by = strtol(&buf[3], NULL, 10);
case '$': /* define macro */
{
char *p;
/* XXX elimate p? */
r = macid_parse(&bp[1], &ep);
if (r == 0)
break;
p = sm_rpool_strdup_x(e->e_rpool, ep);
macdefine(&e->e_macro, A_PERM, r, p);
}
break;
case '.': /* terminate file */
nomore = true;
break;
default:
syserr("readqf: %s: line %d: bad line \"%s\"",
qf, LineNumber, shortenstring(bp, MAXSHORTSTR));
err = "unrecognized line";
goto fail;
}
if (bp != buf)
SM_FREE(bp);
}
/*
** If we haven't read any lines, this queue file is empty.
** Arrange to remove it without referencing any null pointers.
*/
if (LineNumber == 0)
{
errno = 0;
e->e_flags |= EF_CLRQUEUE|EF_FATALERRS|EF_RESPONSE;
return true;
}
/* Check to make sure we have a complete queue file read */
if (!nomore)
{
syserr("readqf: %s: incomplete queue file read", qf);
(void) sm_io_close(qfp, SM_TIME_DEFAULT);
return false;
}
#if _FFR_QF_PARANOIA
/* Check to make sure key fields were read */
if (e->e_from.q_mailer == NULL)
{
syserr("readqf: %s: sender not specified in queue file", qf);
(void) sm_io_close(qfp, SM_TIME_DEFAULT);
return false;
}
/* other checks? */
#endif /* _FFR_QF_PARANOIA */
/* possibly set ${dsn_ret} macro */
if (bitset(EF_RET_PARAM, e->e_flags))
{
if (bitset(EF_NO_BODY_RETN, e->e_flags))
macdefine(&e->e_macro, A_PERM,
macid("{dsn_ret}"), "hdrs");
else
macdefine(&e->e_macro, A_PERM,
macid("{dsn_ret}"), "full");
}
/*
** Arrange to read the data file.
*/
p = queuename(e, DATAFL_LETTER);
e->e_dfp = sm_io_open(SmFtStdio, SM_TIME_DEFAULT, p, SM_IO_RDONLY_B,
NULL);
if (e->e_dfp == NULL)
{
syserr("readqf: cannot open %s", p);
}
else
{
e->e_flags |= EF_HAS_DF;
if (fstat(sm_io_getinfo(e->e_dfp, SM_IO_WHAT_FD, NULL), &st)
>= 0)
{
e->e_msgsize = st.st_size + hdrsize;
e->e_dfdev = st.st_dev;
e->e_dfino = ST_INODE(st);
(void) sm_snprintf(buf, sizeof(buf), "%ld",
PRT_NONNEGL(e->e_msgsize));
macdefine(&e->e_macro, A_TEMP, macid("{msg_size}"),
buf);
}
}
return true;
fail:
/*
** There was some error reading the qf file (reason is in err var.)
** Cleanup:
** close file; clear e_lockfp since it is the same as qfp,
** hence it is invalid (as file) after qfp is closed;
** the qf file is on disk, so set the flag to avoid calling
** queueup() with bogus data.
*/
if (bp != buf)
SM_FREE(bp);
if (qfp != NULL)
(void) sm_io_close(qfp, SM_TIME_DEFAULT);
e->e_lockfp = NULL;
e->e_flags |= EF_INQUEUE;
loseqfile(e, err);
return false;
}
/*
** PRTSTR -- print a string, "unprintable" characters are shown as \oct
**
** Parameters:
** s -- string to print
** ml -- maximum length of output
**
** Returns:
** number of entries
**
** Side Effects:
** Prints a string on stdout.
*/
static void prtstr __P((char *, int));
#if _FFR_BOUNCE_QUEUE
# define SKIP_BOUNCE_QUEUE \
if (i == BounceQueue) \
continue;
#else
# define SKIP_BOUNCE_QUEUE
#endif
static void
prtstr(s, ml)
char *s;
int ml;
{
int c;
if (s == NULL)
return;
while (ml-- > 0 && ((c = *s++) != '\0'))
{
if (c == '\\')
{
if (ml-- > 0)
{
(void) sm_io_putc(smioout, SM_TIME_DEFAULT, c);
(void) sm_io_putc(smioout, SM_TIME_DEFAULT, c);
}
}
else if (isascii(c) && isprint(c))
(void) sm_io_putc(smioout, SM_TIME_DEFAULT, c);
else
{
if ((ml -= 3) > 0)
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT,
"\\%03o", c & 0xFF);
}
}
}
/*
** PRINTNQE -- print out number of entries in the mail queue
**
** Parameters:
** out -- output file pointer.
** prefix -- string to output in front of each line.
**
** Returns:
** none.
*/
void
printnqe(out, prefix)
SM_FILE_T *out;
char *prefix;
{
#if SM_CONF_SHM
int i, k = 0, nrequests = 0;
bool unknown = false;
if (ShmId == SM_SHM_NO_ID)
{
if (prefix == NULL)
(void) sm_io_fprintf(out, SM_TIME_DEFAULT,
"Data unavailable: shared memory not updated\n");
else
(void) sm_io_fprintf(out, SM_TIME_DEFAULT,
"%sNOTCONFIGURED:-1\r\n", prefix);
return;
}
for (i = 0; i < NumQueue && Queue[i] != NULL; i++)
{
int j;
SKIP_BOUNCE_QUEUE
k++;
for (j = 0; j < Queue[i]->qg_numqueues; j++)
{
int n;
if (StopRequest)
stop_sendmail();
n = QSHM_ENTRIES(Queue[i]->qg_qpaths[j].qp_idx);
if (prefix != NULL)
(void) sm_io_fprintf(out, SM_TIME_DEFAULT,
"%s%s:%d\r\n",
prefix, qid_printqueue(i, j), n);
else if (n < 0)
{
(void) sm_io_fprintf(out, SM_TIME_DEFAULT,
"%s: unknown number of entries\n",
qid_printqueue(i, j));
unknown = true;
}
else if (n == 0)
{
(void) sm_io_fprintf(out, SM_TIME_DEFAULT,
"%s is empty\n",
qid_printqueue(i, j));
}
else if (n > 0)
{
(void) sm_io_fprintf(out, SM_TIME_DEFAULT,
"%s: entries=%d\n",
qid_printqueue(i, j), n);
nrequests += n;
k++;
}
}
}
if (prefix == NULL && k > 1)
(void) sm_io_fprintf(out, SM_TIME_DEFAULT,
"\t\tTotal requests: %d%s\n",
nrequests, unknown ? " (about)" : "");
#else /* SM_CONF_SHM */
if (prefix == NULL)
(void) sm_io_fprintf(out, SM_TIME_DEFAULT,
"Data unavailable without shared memory support\n");
else
(void) sm_io_fprintf(out, SM_TIME_DEFAULT,
"%sNOTAVAILABLE:-1\r\n", prefix);
#endif /* SM_CONF_SHM */
}
/*
** PRINTQUEUE -- print out a representation of the mail queue
**
** Parameters:
** none.
**
** Returns:
** none.
**
** Side Effects:
** Prints a listing of the mail queue on the standard output.
*/
void
printqueue()
{
int i, k = 0, nrequests = 0;
for (i = 0; i < NumQueue && Queue[i] != NULL; i++)
{
int j;
k++;
for (j = 0; j < Queue[i]->qg_numqueues; j++)
{
if (StopRequest)
stop_sendmail();
nrequests += print_single_queue(i, j);
k++;
}
}
if (k > 1)
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT,
"\t\tTotal requests: %d\n",
nrequests);
}
/*
** PRINT_SINGLE_QUEUE -- print out a representation of a single mail queue
**
** Parameters:
** qgrp -- the index of the queue group.
** qdir -- the queue directory.
**
** Returns:
** number of requests in mail queue.
**
** Side Effects:
** Prints a listing of the mail queue on the standard output.
*/
int
print_single_queue(qgrp, qdir)
int qgrp;
int qdir;
{
register WORK *w;
SM_FILE_T *f;
int nrequests;
char qd[MAXPATHLEN];
char qddf[MAXPATHLEN];
char buf[MAXLINE];
if (qdir == NOQDIR)
{
(void) sm_strlcpy(qd, ".", sizeof(qd));
(void) sm_strlcpy(qddf, ".", sizeof(qddf));
}
else
{
(void) sm_strlcpyn(qd, sizeof(qd), 2,
Queue[qgrp]->qg_qpaths[qdir].qp_name,
(bitset(QP_SUBQF,
Queue[qgrp]->qg_qpaths[qdir].qp_subdirs)
? "/qf" : ""));
(void) sm_strlcpyn(qddf, sizeof(qddf), 2,
Queue[qgrp]->qg_qpaths[qdir].qp_name,
(bitset(QP_SUBDF,
Queue[qgrp]->qg_qpaths[qdir].qp_subdirs)
? "/df" : ""));
}
/*
** Check for permission to print the queue
*/
if (bitset(PRIV_RESTRICTMAILQ, PrivacyFlags) && RealUid != 0)
{
struct stat st;
#ifdef NGROUPS_MAX
int n;
extern GIDSET_T InitialGidSet[NGROUPS_MAX];
#endif /* NGROUPS_MAX */
if (stat(qd, &st) < 0)
{
syserr("Cannot stat %s",
qid_printqueue(qgrp, qdir));
return 0;
}
#ifdef NGROUPS_MAX
n = NGROUPS_MAX;
while (--n >= 0)
{
if (InitialGidSet[n] == st.st_gid)
break;
}
if (n < 0 && RealGid != st.st_gid)
#else /* NGROUPS_MAX */
if (RealGid != st.st_gid)
#endif /* NGROUPS_MAX */
{
usrerr("510 You are not permitted to see the queue");
setstat(EX_NOPERM);
return 0;
}
}
/*
** Read and order the queue.
*/
nrequests = gatherq(qgrp, qdir, true, NULL, NULL, NULL);
(void) sortq(Queue[qgrp]->qg_maxlist);
/*
** Print the work list that we have read.
*/
/* first see if there is anything */
if (nrequests <= 0)
{
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT, "%s is empty\n",
qid_printqueue(qgrp, qdir));
return 0;
}
sm_getla(); /* get load average */
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT, "\t\t%s (%d request%s",
qid_printqueue(qgrp, qdir),
nrequests, nrequests == 1 ? "" : "s");
if (MaxQueueRun > 0 && nrequests > MaxQueueRun)
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT,
", only %d printed", MaxQueueRun);
if (Verbose)
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT,
")\n-----Q-ID----- --Size-- -Priority- ---Q-Time--- --------Sender/Recipient--------\n");
else
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT,
")\n-----Q-ID----- --Size-- -----Q-Time----- ------------Sender/Recipient-----------\n");
for (w = WorkQ; w != NULL; w = w->w_next)
{
struct stat st;
auto time_t submittime = 0;
long dfsize;
int flags = 0;
int qfver;
char quarmsg[MAXLINE];
char statmsg[MAXLINE];
char bodytype[MAXNAME + 1];
char qf[MAXPATHLEN];
if (StopRequest)
stop_sendmail();
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT, "%13s",
w->w_name + 2);
(void) sm_strlcpyn(qf, sizeof(qf), 3, qd, "/", w->w_name);
f = sm_io_open(SmFtStdio, SM_TIME_DEFAULT, qf, SM_IO_RDONLY_B,
NULL);
if (f == NULL)
{
if (errno == EPERM)
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT,
" (permission denied)\n");
else if (errno == ENOENT)
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT,
" (job completed)\n");
else
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT,
" (%s)\n",
sm_errstring(errno));
errno = 0;
continue;
}
w->w_name[0] = DATAFL_LETTER;
(void) sm_strlcpyn(qf, sizeof(qf), 3, qddf, "/", w->w_name);
if (stat(qf, &st) >= 0)
dfsize = st.st_size;
else
{
ENVELOPE e;
/*
** Maybe the df file can't be statted because
** it is in a different directory than the qf file.
** In order to find out, we must read the qf file.
*/
newenvelope(&e, &BlankEnvelope, sm_rpool_new_x(NULL));
e.e_id = w->w_name + 2;
e.e_qgrp = qgrp;
e.e_qdir = qdir;
dfsize = -1;
if (readqf(&e, false))
{
char *df = queuename(&e, DATAFL_LETTER);
if (stat(df, &st) >= 0)
dfsize = st.st_size;
}
if (e.e_lockfp != NULL)
{
(void) sm_io_close(e.e_lockfp, SM_TIME_DEFAULT);
e.e_lockfp = NULL;
}
clearenvelope(&e, false, e.e_rpool);
sm_rpool_free(e.e_rpool);
}
if (w->w_lock)
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT, "*");
else if (QueueMode == QM_LOST)
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT, "?");
else if (w->w_tooyoung)
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT, "-");
else if (shouldqueue(w->w_pri, w->w_ctime))
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT, "X");
else
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT, " ");
errno = 0;
quarmsg[0] = '\0';
statmsg[0] = bodytype[0] = '\0';
qfver = 0;
while (sm_io_fgets(f, SM_TIME_DEFAULT, buf, sizeof(buf)) >= 0)
{
register int i;
register char *p;
if (StopRequest)
stop_sendmail();
fixcrlf(buf, true);
switch (buf[0])
{
case 'V': /* queue file version */
qfver = atoi(&buf[1]);
break;
case 'M': /* error message */
if ((i = strlen(&buf[1])) >= sizeof(statmsg))
i = sizeof(statmsg) - 1;
memmove(statmsg, &buf[1], i);
statmsg[i] = '\0';
break;
case 'q': /* quarantine reason */
if ((i = strlen(&buf[1])) >= sizeof(quarmsg))
i = sizeof(quarmsg) - 1;
memmove(quarmsg, &buf[1], i);
quarmsg[i] = '\0';
break;
case 'B': /* body type */
if ((i = strlen(&buf[1])) >= sizeof(bodytype))
i = sizeof(bodytype) - 1;
memmove(bodytype, &buf[1], i);
bodytype[i] = '\0';
break;
case 'S': /* sender name */
if (Verbose)
{
(void) sm_io_fprintf(smioout,
SM_TIME_DEFAULT,
"%8ld %10ld%c%.12s ",
dfsize,
w->w_pri,
bitset(EF_WARNING, flags)
? '+' : ' ',
ctime(&submittime) + 4);
prtstr(&buf[1], 78);
}
else
{
(void) sm_io_fprintf(smioout,
SM_TIME_DEFAULT,
"%8ld %.16s ",
dfsize,
ctime(&submittime));
prtstr(&buf[1], 39);
}
if (quarmsg[0] != '\0')
{
(void) sm_io_fprintf(smioout,
SM_TIME_DEFAULT,
"\n QUARANTINE: %.*s",
Verbose ? 100 : 60,
quarmsg);
quarmsg[0] = '\0';
}
if (statmsg[0] != '\0' || bodytype[0] != '\0')
{
(void) sm_io_fprintf(smioout,
SM_TIME_DEFAULT,
"\n %10.10s",
bodytype);
if (statmsg[0] != '\0')
(void) sm_io_fprintf(smioout,
SM_TIME_DEFAULT,
" (%.*s)",
Verbose ? 100 : 60,
statmsg);
statmsg[0] = '\0';
}
break;
case 'C': /* controlling user */
if (Verbose)
(void) sm_io_fprintf(smioout,
SM_TIME_DEFAULT,
"\n\t\t\t\t\t\t(---%.64s---)",
&buf[1]);
break;
case 'R': /* recipient name */
p = &buf[1];
if (qfver >= 1)
{
p = strchr(p, ':');
if (p == NULL)
break;
p++;
}
if (Verbose)
{
(void) sm_io_fprintf(smioout,
SM_TIME_DEFAULT,
"\n\t\t\t\t\t\t");
prtstr(p, 71);
}
else
{
(void) sm_io_fprintf(smioout,
SM_TIME_DEFAULT,
"\n\t\t\t\t\t ");
prtstr(p, 38);
}
if (Verbose && statmsg[0] != '\0')
{
(void) sm_io_fprintf(smioout,
SM_TIME_DEFAULT,
"\n\t\t (%.100s)",
statmsg);
statmsg[0] = '\0';
}
break;
case 'T': /* creation time */
submittime = atol(&buf[1]);
break;
case 'F': /* flag bits */
for (p = &buf[1]; *p != '\0'; p++)
{
switch (*p)
{
case 'w':
flags |= EF_WARNING;
break;
}
}
}
}
if (submittime == (time_t) 0)
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT,
" (no control file)");
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT, "\n");
(void) sm_io_close(f, SM_TIME_DEFAULT);
}
return nrequests;
}
/*
** QUEUE_LETTER -- get the proper queue letter for the current QueueMode.
**
** Parameters:
** e -- envelope to build it in/from.
** type -- the file type, used as the first character
** of the file name.
**
** Returns:
** the letter to use
*/
static char
queue_letter(e, type)
ENVELOPE *e;
int type;
{
/* Change type according to QueueMode */
if (type == ANYQFL_LETTER)
{
if (e->e_quarmsg != NULL)
type = QUARQF_LETTER;
else
{
switch (QueueMode)
{
case QM_NORMAL:
type = NORMQF_LETTER;
break;
case QM_QUARANTINE:
type = QUARQF_LETTER;
break;
case QM_LOST:
type = LOSEQF_LETTER;
break;
default:
/* should never happen */
abort();
/* NOTREACHED */
}
}
}
return type;
}
/*
** QUEUENAME -- build a file name in the queue directory for this envelope.
**
** Parameters:
** e -- envelope to build it in/from.
** type -- the file type, used as the first character
** of the file name.
**
** Returns:
** a pointer to the queue name (in a static buffer).
**
** Side Effects:
** If no id code is already assigned, queuename() will
** assign an id code with assign_queueid(). If no queue
** directory is assigned, one will be set with setnewqueue().
*/
char *
queuename(e, type)
register ENVELOPE *e;
int type;
{
int qd, qg;
char *sub = "/";
char pref[3];
static char buf[MAXPATHLEN];
/* Assign an ID if needed */
if (e->e_id == NULL)
{
if (IntSig)
return NULL;
assign_queueid(e);
}
type = queue_letter(e, type);
/* begin of filename */
pref[0] = (char) type;
pref[1] = 'f';
pref[2] = '\0';
/* Assign a queue group/directory if needed */
if (type == XSCRPT_LETTER)
{
/*
** We don't want to call setnewqueue() if we are fetching
** the pathname of the transcript file, because setnewqueue
** chooses a queue, and sometimes we need to write to the
** transcript file before we have gathered enough information
** to choose a queue.
*/
if (e->e_xfqgrp == NOQGRP || e->e_xfqdir == NOQDIR)
{
if (e->e_qgrp != NOQGRP && e->e_qdir != NOQDIR)
{
e->e_xfqgrp = e->e_qgrp;
e->e_xfqdir = e->e_qdir;
}
else
{
e->e_xfqgrp = 0;
if (Queue[e->e_xfqgrp]->qg_numqueues <= 1)
e->e_xfqdir = 0;
else
{
e->e_xfqdir = get_rand_mod(
Queue[e->e_xfqgrp]->qg_numqueues);
}
}
}
qd = e->e_xfqdir;
qg = e->e_xfqgrp;
}
else
{
if (e->e_qgrp == NOQGRP || e->e_qdir == NOQDIR)
{
if (IntSig)
return NULL;
(void) setnewqueue(e);
}
if (type == DATAFL_LETTER)
{
qd = e->e_dfqdir;
qg = e->e_dfqgrp;
}
else
{
qd = e->e_qdir;
qg = e->e_qgrp;
}
}
/* xf files always have a valid qd and qg picked above */
if ((qd == NOQDIR || qg == NOQGRP) && type != XSCRPT_LETTER)
(void) sm_strlcpyn(buf, sizeof(buf), 2, pref, e->e_id);
else
{
switch (type)
{
case DATAFL_LETTER:
if (bitset(QP_SUBDF, Queue[qg]->qg_qpaths[qd].qp_subdirs))
sub = "/df/";
break;
case QUARQF_LETTER:
case TEMPQF_LETTER:
case NEWQFL_LETTER:
case LOSEQF_LETTER:
case NORMQF_LETTER:
if (bitset(QP_SUBQF, Queue[qg]->qg_qpaths[qd].qp_subdirs))
sub = "/qf/";
break;
case XSCRPT_LETTER:
if (bitset(QP_SUBXF, Queue[qg]->qg_qpaths[qd].qp_subdirs))
sub = "/xf/";
break;
default:
if (IntSig)
return NULL;
sm_abort("queuename: bad queue file type %d", type);
}
(void) sm_strlcpyn(buf, sizeof(buf), 4,
Queue[qg]->qg_qpaths[qd].qp_name,
sub, pref, e->e_id);
}
if (tTd(7, 2))
sm_dprintf("queuename: %s\n", buf);
return buf;
}
/*
** INIT_QID_ALG -- Initialize the (static) parameters that are used to
** generate a queue ID.
**
** This function is called by the daemon to reset
** LastQueueTime and LastQueuePid which are used by assign_queueid().
** Otherwise the algorithm may cause problems because
** LastQueueTime and LastQueuePid are set indirectly by main()
** before the daemon process is started, hence LastQueuePid is not
** the pid of the daemon and therefore a child of the daemon can
** actually have the same pid as LastQueuePid which means the section
** in assign_queueid():
** * see if we need to get a new base time/pid *
** is NOT triggered which will cause the same queue id to be generated.
**
** Parameters:
** none
**
** Returns:
** none.
*/
void
init_qid_alg()
{
LastQueueTime = 0;
LastQueuePid = -1;
}
/*
** ASSIGN_QUEUEID -- assign a queue ID for this envelope.
**
** Assigns an id code if one does not already exist.
** This code assumes that nothing will remain in the queue for
** longer than 60 years. It is critical that files with the given
** name do not already exist in the queue.
** [No longer initializes e_qdir to NOQDIR.]
**
** Parameters:
** e -- envelope to set it in.
**
** Returns:
** none.
*/
static const char QueueIdChars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
# define QIC_LEN 60
# define QIC_LEN_R 62
/*
** Note: the length is "officially" 60 because minutes and seconds are
** usually only 0-59. However (Linux):
** tm_sec The number of seconds after the minute, normally in
** the range 0 to 59, but can be up to 61 to allow for
** leap seconds.
** Hence the real length of the string is 62 to take this into account.
** Alternatively % QIC_LEN can (should) be used for access everywhere.
*/
# define queuenextid() CurrentPid
#define QIC_LEN_SQR (QIC_LEN * QIC_LEN)
void
assign_queueid(e)
register ENVELOPE *e;
{
pid_t pid = queuenextid();
static unsigned int cX = 0;
static unsigned int random_offset;
struct tm *tm;
char idbuf[MAXQFNAME - 2];
unsigned int seq;
if (e->e_id != NULL)
return;
/* see if we need to get a new base time/pid */
if (cX >= QIC_LEN_SQR || LastQueueTime == 0 || LastQueuePid != pid)
{
time_t then = LastQueueTime;
/* if the first time through, pick a random offset */
if (LastQueueTime == 0)
random_offset = ((unsigned int)get_random())
% QIC_LEN_SQR;
while ((LastQueueTime = curtime()) == then &&
LastQueuePid == pid)
{
(void) sleep(1);
}
LastQueuePid = queuenextid();
cX = 0;
}
/*
** Generate a new sequence number between 0 and QIC_LEN_SQR-1.
** This lets us generate up to QIC_LEN_SQR unique queue ids
** per second, per process. With envelope splitting,
** a single message can consume many queue ids.
*/
seq = (cX + random_offset) % QIC_LEN_SQR;
++cX;
if (tTd(7, 50))
sm_dprintf("assign_queueid: random_offset=%u (%u)\n",
random_offset, seq);
tm = gmtime(&LastQueueTime);
idbuf[0] = QueueIdChars[tm->tm_year % QIC_LEN];
idbuf[1] = QueueIdChars[tm->tm_mon];
idbuf[2] = QueueIdChars[tm->tm_mday];
idbuf[3] = QueueIdChars[tm->tm_hour];
idbuf[4] = QueueIdChars[tm->tm_min % QIC_LEN_R];
idbuf[5] = QueueIdChars[tm->tm_sec % QIC_LEN_R];
idbuf[6] = QueueIdChars[seq / QIC_LEN];
idbuf[7] = QueueIdChars[seq % QIC_LEN];
(void) sm_snprintf(&idbuf[8], sizeof(idbuf) - 8, "%06d",
(int) LastQueuePid);
e->e_id = sm_rpool_strdup_x(e->e_rpool, idbuf);
macdefine(&e->e_macro, A_PERM, 'i', e->e_id);
#if 0
/* XXX: inherited from MainEnvelope */
e->e_qgrp = NOQGRP; /* too early to do anything else */
e->e_qdir = NOQDIR;
e->e_xfqgrp = NOQGRP;
#endif /* 0 */
/* New ID means it's not on disk yet */
e->e_qfletter = '\0';
if (tTd(7, 1))
sm_dprintf("assign_queueid: assigned id %s, e=%p\n",
e->e_id, e);
if (LogLevel > 93)
sm_syslog(LOG_DEBUG, e->e_id, "assigned id");
}
/*
** SYNC_QUEUE_TIME -- Assure exclusive PID in any given second
**
** Make sure one PID can't be used by two processes in any one second.
**
** If the system rotates PIDs fast enough, may get the
** same pid in the same second for two distinct processes.
** This will interfere with the queue file naming system.
**
** Parameters:
** none
**
** Returns:
** none
*/
void
sync_queue_time()
{
#if FAST_PID_RECYCLE
if (OpMode != MD_TEST &&
OpMode != MD_CHECKCONFIG &&
OpMode != MD_VERIFY &&
LastQueueTime > 0 &&
LastQueuePid == CurrentPid &&
curtime() == LastQueueTime)
(void) sleep(1);
#endif /* FAST_PID_RECYCLE */
}
/*
** UNLOCKQUEUE -- unlock the queue entry for a specified envelope
**
** Parameters:
** e -- the envelope to unlock.
**
** Returns:
** none
**
** Side Effects:
** unlocks the queue for `e'.
*/
void
unlockqueue(e)
ENVELOPE *e;
{
if (tTd(51, 4))
sm_dprintf("unlockqueue(%s)\n",
e->e_id == NULL ? "NOQUEUE" : e->e_id);
/* if there is a lock file in the envelope, close it */
if (e->e_lockfp != NULL)
(void) sm_io_close(e->e_lockfp, SM_TIME_DEFAULT);
e->e_lockfp = NULL;
/* don't create a queue id if we don't already have one */
if (e->e_id == NULL)
return;
/* remove the transcript */
if (LogLevel > 87)
sm_syslog(LOG_DEBUG, e->e_id, "unlock");
if (!tTd(51, 104))
(void) xunlink(queuename(e, XSCRPT_LETTER));
}
/*
** SETCTLUSER -- create a controlling address
**
** Create a fake "address" given only a local login name; this is
** used as a "controlling user" for future recipient addresses.
**
** Parameters:
** user -- the user name of the controlling user.
** qfver -- the version stamp of this queue file.
** e -- envelope
**
** Returns:
** An address descriptor for the controlling user,
** using storage allocated from e->e_rpool.
**
*/
static ADDRESS *
setctluser(user, qfver, e)
char *user;
int qfver;
ENVELOPE *e;
{
register ADDRESS *a;
struct passwd *pw;
char *p;
/*
** See if this clears our concept of controlling user.
*/
if (user == NULL || *user == '\0')
return NULL;
/*
** Set up addr fields for controlling user.
*/
a = (ADDRESS *) sm_rpool_malloc_x(e->e_rpool, sizeof(*a));
memset((char *) a, '\0', sizeof(*a));
if (*user == ':')
{
p = &user[1];
a->q_user = sm_rpool_strdup_x(e->e_rpool, p);
}
else
{
p = strtok(user, ":");
a->q_user = sm_rpool_strdup_x(e->e_rpool, user);
if (qfver >= 2)
{
if ((p = strtok(NULL, ":")) != NULL)
a->q_uid = atoi(p);
if ((p = strtok(NULL, ":")) != NULL)
a->q_gid = atoi(p);
if ((p = strtok(NULL, ":")) != NULL)
{
char *o;
a->q_flags |= QGOODUID;
/* if there is another ':': restore it */
if ((o = strtok(NULL, ":")) != NULL && o > p)
o[-1] = ':';
}
}
else if ((pw = sm_getpwnam(user)) != NULL)
{
if (*pw->pw_dir == '\0')
a->q_home = NULL;
else if (strcmp(pw->pw_dir, "/") == 0)
a->q_home = "";
else
a->q_home = sm_rpool_strdup_x(e->e_rpool, pw->pw_dir);
a->q_uid = pw->pw_uid;
a->q_gid = pw->pw_gid;
a->q_flags |= QGOODUID;
}
}
a->q_flags |= QPRIMARY; /* flag as a "ctladdr" */
a->q_mailer = LocalMailer;
if (p == NULL)
a->q_paddr = sm_rpool_strdup_x(e->e_rpool, a->q_user);
else
a->q_paddr = sm_rpool_strdup_x(e->e_rpool, p);
return a;
}
/*
** LOSEQFILE -- rename queue file with LOSEQF_LETTER & try to let someone know
**
** Parameters:
** e -- the envelope (e->e_id will be used).
** why -- reported to whomever can hear.
**
** Returns:
** none.
*/
void
loseqfile(e, why)
register ENVELOPE *e;
char *why;
{
bool loseit = true;
char *p;
char buf[MAXPATHLEN];
if (e == NULL || e->e_id == NULL)
return;
p = queuename(e, ANYQFL_LETTER);
if (sm_strlcpy(buf, p, sizeof(buf)) >= sizeof(buf))
return;
if (!bitset(EF_INQUEUE, e->e_flags))
queueup(e, false, true);
else if (QueueMode == QM_LOST)
loseit = false;
/* if already lost, no need to re-lose */
if (loseit)
{
p = queuename(e, LOSEQF_LETTER);
if (rename(buf, p) < 0)
syserr("cannot rename(%s, %s), uid=%ld",
buf, p, (long) geteuid());
else if (LogLevel > 0)
sm_syslog(LOG_ALERT, e->e_id,
"Losing %s: %s", buf, why);
}
if (e->e_dfp != NULL)
{
(void) sm_io_close(e->e_dfp, SM_TIME_DEFAULT);
e->e_dfp = NULL;
}
e->e_flags &= ~EF_HAS_DF;
}
/*
** NAME2QID -- translate a queue group name to a queue group id
**
** Parameters:
** queuename -- name of queue group.
**
** Returns:
** queue group id if found.
** NOQGRP otherwise.
*/
int
name2qid(queuename)
char *queuename;
{
register STAB *s;
s = stab(queuename, ST_QUEUE, ST_FIND);
if (s == NULL)
return NOQGRP;
return s->s_quegrp->qg_index;
}
/*
** QID_PRINTNAME -- create externally printable version of queue id
**
** Parameters:
** e -- the envelope.
**
** Returns:
** a printable version
*/
char *
qid_printname(e)
ENVELOPE *e;
{
char *id;
static char idbuf[MAXQFNAME + 34];
if (e == NULL)
return "";
if (e->e_id == NULL)
id = "";
else
id = e->e_id;
if (e->e_qdir == NOQDIR)
return id;
(void) sm_snprintf(idbuf, sizeof(idbuf), "%.32s/%s",
Queue[e->e_qgrp]->qg_qpaths[e->e_qdir].qp_name,
id);
return idbuf;
}
/*
** QID_PRINTQUEUE -- create full version of queue directory for data files
**
** Parameters:
** qgrp -- index in queue group.
** qdir -- the short version of the queue directory
**
** Returns:
** the full pathname to the queue (might point to a static var)
*/
char *
qid_printqueue(qgrp, qdir)
int qgrp;
int qdir;
{
char *subdir;
static char dir[MAXPATHLEN];
if (qdir == NOQDIR)
return Queue[qgrp]->qg_qdir;
if (strcmp(Queue[qgrp]->qg_qpaths[qdir].qp_name, ".") == 0)
subdir = NULL;
else
subdir = Queue[qgrp]->qg_qpaths[qdir].qp_name;
(void) sm_strlcpyn(dir, sizeof(dir), 4,
Queue[qgrp]->qg_qdir,
subdir == NULL ? "" : "/",
subdir == NULL ? "" : subdir,
(bitset(QP_SUBDF,
Queue[qgrp]->qg_qpaths[qdir].qp_subdirs)
? "/df" : ""));
return dir;
}
/*
** PICKQDIR -- Pick a queue directory from a queue group
**
** Parameters:
** qg -- queue group
** fsize -- file size in bytes
** e -- envelope, or NULL
**
** Result:
** NOQDIR if no queue directory in qg has enough free space to
** hold a file of size 'fsize', otherwise the index of
** a randomly selected queue directory which resides on a
** file system with enough disk space.
** XXX This could be extended to select a queuedir with
** a few (the fewest?) number of entries. That data
** is available if shared memory is used.
**
** Side Effects:
** If the request fails and e != NULL then sm_syslog is called.
*/
int
pickqdir(qg, fsize, e)
QUEUEGRP *qg;
long fsize;
ENVELOPE *e;
{
int qdir;
int i;
long avail = 0;
/* Pick a random directory, as a starting point. */
if (qg->qg_numqueues <= 1)
qdir = 0;
else
qdir = get_rand_mod(qg->qg_numqueues);
#if _FFR_TESTS
if (tTd(4, 101))
return NOQDIR;
#endif /* _FFR_TESTS */
if (MinBlocksFree <= 0 && fsize <= 0)
return qdir;
/*
** Now iterate over the queue directories,
** looking for a directory with enough space for this message.
*/
i = qdir;
do
{
QPATHS *qp = &qg->qg_qpaths[i];
long needed = 0;
long fsavail = 0;
if (fsize > 0)
needed += fsize / FILE_SYS_BLKSIZE(qp->qp_fsysidx)
+ ((fsize % FILE_SYS_BLKSIZE(qp->qp_fsysidx)
> 0) ? 1 : 0);
if (MinBlocksFree > 0)
needed += MinBlocksFree;
fsavail = FILE_SYS_AVAIL(qp->qp_fsysidx);
#if SM_CONF_SHM
if (fsavail <= 0)
{
long blksize;
/*
** might be not correctly updated,
** let's try to get the info directly.
*/
fsavail = freediskspace(FILE_SYS_NAME(qp->qp_fsysidx),
&blksize);
if (fsavail < 0)
fsavail = 0;
}
#endif /* SM_CONF_SHM */
if (needed <= fsavail)
return i;
if (avail < fsavail)
avail = fsavail;
if (qg->qg_numqueues > 0)
i = (i + 1) % qg->qg_numqueues;
} while (i != qdir);
if (e != NULL && LogLevel > 0)
sm_syslog(LOG_ALERT, e->e_id,
"low on space (%s needs %ld bytes + %ld blocks in %s), max avail: %ld",
CurHostName == NULL ? "SMTP-DAEMON" : CurHostName,
fsize, MinBlocksFree,
qg->qg_qdir, avail);
return NOQDIR;
}
/*
** SETNEWQUEUE -- Sets a new queue group and directory
**
** Assign a queue group and directory to an envelope and store the
** directory in e->e_qdir.
**
** Parameters:
** e -- envelope to assign a queue for.
**
** Returns:
** true if successful
** false otherwise
**
** Side Effects:
** On success, e->e_qgrp and e->e_qdir are non-negative.
** On failure (not enough disk space),
** e->qgrp = NOQGRP, e->e_qdir = NOQDIR
** and usrerr() is invoked (which could raise an exception).
*/
bool
setnewqueue(e)
ENVELOPE *e;
{
if (tTd(41, 20))
sm_dprintf("setnewqueue: called\n");
/* not set somewhere else */
if (e->e_qgrp == NOQGRP)
{
ADDRESS *q;
/*
** Use the queue group of the "first" recipient, as set by
** the "queuegroup" rule set. If that is not defined, then
** use the queue group of the mailer of the first recipient.
** If that is not defined either, then use the default
** queue group.
** Notice: "first" depends on the sorting of sendqueue
** in recipient().
** To avoid problems with "bad" recipients look
** for a valid address first.
*/
q = e->e_sendqueue;
while (q != NULL &&
(QS_IS_BADADDR(q->q_state) || QS_IS_DEAD(q->q_state)))
{
q = q->q_next;
}
if (q == NULL)
e->e_qgrp = 0;
else if (q->q_qgrp >= 0)
e->e_qgrp = q->q_qgrp;
else if (q->q_mailer != NULL &&
ISVALIDQGRP(q->q_mailer->m_qgrp))
e->e_qgrp = q->q_mailer->m_qgrp;
else
e->e_qgrp = 0;
e->e_dfqgrp = e->e_qgrp;
}
if (ISVALIDQDIR(e->e_qdir) && ISVALIDQDIR(e->e_dfqdir))
{
if (tTd(41, 20))
sm_dprintf("setnewqueue: e_qdir already assigned (%s)\n",
qid_printqueue(e->e_qgrp, e->e_qdir));
return true;
}
filesys_update();
e->e_qdir = pickqdir(Queue[e->e_qgrp], e->e_msgsize, e);
if (e->e_qdir == NOQDIR)
{
e->e_qgrp = NOQGRP;
if (!bitset(EF_FATALERRS, e->e_flags))
usrerr("452 4.4.5 Insufficient disk space; try again later");
e->e_flags |= EF_FATALERRS;
return false;
}
if (tTd(41, 3))
sm_dprintf("setnewqueue: Assigned queue directory %s\n",
qid_printqueue(e->e_qgrp, e->e_qdir));
if (e->e_xfqgrp == NOQGRP || e->e_xfqdir == NOQDIR)
{
e->e_xfqgrp = e->e_qgrp;
e->e_xfqdir = e->e_qdir;
}
e->e_dfqdir = e->e_qdir;
return true;
}
/*
** CHKQDIR -- check a queue directory
**
** Parameters:
** name -- name of queue directory
** sff -- flags for safefile()
**
** Returns:
** is it a queue directory?
*/
static bool chkqdir __P((char *, long));
static bool
chkqdir(name, sff)
char *name;
long sff;
{
struct stat statb;
int i;
/* skip over . and .. directories */
if (name[0] == '.' &&
(name[1] == '\0' || (name[1] == '.' && name[2] == '\0')))
return false;
#if HASLSTAT
if (lstat(name, &statb) < 0)
#else /* HASLSTAT */
if (stat(name, &statb) < 0)
#endif /* HASLSTAT */
{
if (tTd(41, 2))
sm_dprintf("chkqdir: stat(\"%s\"): %s\n",
name, sm_errstring(errno));
return false;
}
#if HASLSTAT
if (S_ISLNK(statb.st_mode))
{
/*
** For a symlink we need to make sure the
** target is a directory
*/
if (stat(name, &statb) < 0)
{
if (tTd(41, 2))
sm_dprintf("chkqdir: stat(\"%s\"): %s\n",
name, sm_errstring(errno));
return false;
}
}
#endif /* HASLSTAT */
if (!S_ISDIR(statb.st_mode))
{
if (tTd(41, 2))
sm_dprintf("chkqdir: \"%s\": Not a directory\n",
name);
return false;
}
/* Print a warning if unsafe (but still use it) */
/* XXX do this only if we want the warning? */
i = safedirpath(name, RunAsUid, RunAsGid, NULL, sff, 0, 0);
if (i != 0)
{
if (tTd(41, 2))
sm_dprintf("chkqdir: \"%s\": Not safe: %s\n",
name, sm_errstring(i));
#if _FFR_CHK_QUEUE
if (LogLevel > 8)
sm_syslog(LOG_WARNING, NOQID,
"queue directory \"%s\": Not safe: %s",
name, sm_errstring(i));
#endif /* _FFR_CHK_QUEUE */
}
return true;
}
/*
** MULTIQUEUE_CACHE -- cache a list of paths to queues.
**
** Each potential queue is checked as the cache is built.
** Thereafter, each is blindly trusted.
** Note that we can be called again after a timeout to rebuild
** (although code for that is not ready yet).
**
** Parameters:
** basedir -- base of all queue directories.
** blen -- strlen(basedir).
** qg -- queue group.
** qn -- number of queue directories already cached.
** phash -- pointer to hash value over queue dirs.
#if SM_CONF_SHM
** only used if shared memory is active.
#endif * SM_CONF_SHM *
**
** Returns:
** new number of queue directories.
*/
#define INITIAL_SLOTS 20
#define ADD_SLOTS 10
static int
multiqueue_cache(basedir, blen, qg, qn, phash)
char *basedir;
int blen;
QUEUEGRP *qg;
int qn;
unsigned int *phash;
{
char *cp;
int i, len;
int slotsleft = 0;
long sff = SFF_ANYFILE;
char qpath[MAXPATHLEN];
char subdir[MAXPATHLEN];
char prefix[MAXPATHLEN]; /* dir relative to basedir */
if (tTd(41, 20))
sm_dprintf("multiqueue_cache: called\n");
/* Initialize to current directory */
prefix[0] = '.';
prefix[1] = '\0';
if (qg->qg_numqueues != 0 && qg->qg_qpaths != NULL)
{
for (i = 0; i < qg->qg_numqueues; i++)
{
if (qg->qg_qpaths[i].qp_name != NULL)
(void) sm_free(qg->qg_qpaths[i].qp_name); /* XXX */
}
(void) sm_free((char *) qg->qg_qpaths); /* XXX */
qg->qg_qpaths = NULL;
qg->qg_numqueues = 0;
}
/* If running as root, allow safedirpath() checks to use privs */
if (RunAsUid == 0)
sff |= SFF_ROOTOK;
#if _FFR_CHK_QUEUE
sff |= SFF_SAFEDIRPATH|SFF_NOWWFILES;
if (!UseMSP)
sff |= SFF_NOGWFILES;
#endif /* _FFR_CHK_QUEUE */
if (!SM_IS_DIR_START(qg->qg_qdir))
{
/*
** XXX we could add basedir, but then we have to realloc()
** the string... Maybe another time.
*/
syserr("QueuePath %s not absolute", qg->qg_qdir);
ExitStat = EX_CONFIG;
return qn;
}
/* qpath: directory of current workgroup */
len = sm_strlcpy(qpath, qg->qg_qdir, sizeof(qpath));
if (len >= sizeof(qpath))
{
syserr("QueuePath %.256s too long (%d max)",
qg->qg_qdir, (int) sizeof(qpath));
ExitStat = EX_CONFIG;
return qn;
}
/* begin of qpath must be same as basedir */
if (strncmp(basedir, qpath, blen) != 0 &&
(strncmp(basedir, qpath, blen - 1) != 0 || len != blen - 1))
{
syserr("QueuePath %s not subpath of QueueDirectory %s",
qpath, basedir);
ExitStat = EX_CONFIG;
return qn;
}
/* Do we have a nested subdirectory? */
if (blen < len && SM_FIRST_DIR_DELIM(qg->qg_qdir + blen) != NULL)
{
/* Copy subdirectory into prefix for later use */
if (sm_strlcpy(prefix, qg->qg_qdir + blen, sizeof(prefix)) >=
sizeof(prefix))
{
syserr("QueuePath %.256s too long (%d max)",
qg->qg_qdir, (int) sizeof(qpath));
ExitStat = EX_CONFIG;
return qn;
}
cp = SM_LAST_DIR_DELIM(prefix);
SM_ASSERT(cp != NULL);
*cp = '\0'; /* cut off trailing / */
}
/* This is guaranteed by the basedir check above */
SM_ASSERT(len >= blen - 1);
cp = &qpath[len - 1];
if (*cp == '*')
{
register DIR *dp;
register struct dirent *d;
int off;
char *delim;
char relpath[MAXPATHLEN];
*cp = '\0'; /* Overwrite wildcard */
if ((cp = SM_LAST_DIR_DELIM(qpath)) == NULL)
{
syserr("QueueDirectory: can not wildcard relative path");
if (tTd(41, 2))
sm_dprintf("multiqueue_cache: \"%s*\": Can not wildcard relative path.\n",
qpath);
ExitStat = EX_CONFIG;
return qn;
}
if (cp == qpath)
{
/*
** Special case of top level wildcard, like /foo*
** Change to //foo*
*/
(void) sm_strlcpy(qpath + 1, qpath, sizeof(qpath) - 1);
++cp;
}
delim = cp;
*(cp++) = '\0'; /* Replace / with \0 */
len = strlen(cp); /* Last component of queue directory */
/*
** Path relative to basedir, with trailing /
** It will be modified below to specify the subdirectories
** so they can be opened without chdir().
*/
off = sm_strlcpyn(relpath, sizeof(relpath), 2, prefix, "/");
SM_ASSERT(off < sizeof(relpath));
if (tTd(41, 2))
sm_dprintf("multiqueue_cache: prefix=\"%s%s\"\n",
relpath, cp);
/* It is always basedir: we don't need to store it per group */
/* XXX: optimize this! -> one more global? */
qg->qg_qdir = newstr(basedir);
qg->qg_qdir[blen - 1] = '\0'; /* cut off trailing / */
/*
** XXX Should probably wrap this whole loop in a timeout
** in case some wag decides to NFS mount the queues.
*/
/* Test path to get warning messages. */
if (qn == 0)
{
/* XXX qg_runasuid and qg_runasgid for specials? */
i = safedirpath(basedir, RunAsUid, RunAsGid, NULL,
sff, 0, 0);
if (i != 0 && tTd(41, 2))
sm_dprintf("multiqueue_cache: \"%s\": Not safe: %s\n",
basedir, sm_errstring(i));
}
if ((dp = opendir(prefix)) == NULL)
{
syserr("can not opendir(%s/%s)", qg->qg_qdir, prefix);
if (tTd(41, 2))
sm_dprintf("multiqueue_cache: opendir(\"%s/%s\"): %s\n",
qg->qg_qdir, prefix,
sm_errstring(errno));
ExitStat = EX_CONFIG;
return qn;
}
while ((d = readdir(dp)) != NULL)
{
/* Skip . and .. directories */
if (strcmp(d->d_name, ".") == 0 ||
strcmp(d->d_name, "..") == 0)
continue;
i = strlen(d->d_name);
if (i < len || strncmp(d->d_name, cp, len) != 0)
{
if (tTd(41, 5))
sm_dprintf("multiqueue_cache: \"%s\", skipped\n",
d->d_name);
continue;
}
/* Create relative pathname: prefix + local directory */
i = sizeof(relpath) - off;
if (sm_strlcpy(relpath + off, d->d_name, i) >= i)
continue; /* way too long */
if (!chkqdir(relpath, sff))
continue;
if (qg->qg_qpaths == NULL)
{
slotsleft = INITIAL_SLOTS;
qg->qg_qpaths = (QPATHS *)xalloc((sizeof(*qg->qg_qpaths)) *
slotsleft);
qg->qg_numqueues = 0;
}
else if (slotsleft < 1)
{
qg->qg_qpaths = (QPATHS *)sm_realloc((char *)qg->qg_qpaths,
(sizeof(*qg->qg_qpaths)) *
(qg->qg_numqueues +
ADD_SLOTS));
if (qg->qg_qpaths == NULL)
{
(void) closedir(dp);
return qn;
}
slotsleft += ADD_SLOTS;
}
/* check subdirs */
qg->qg_qpaths[qg->qg_numqueues].qp_subdirs = QP_NOSUB;
#define CHKRSUBDIR(name, flag) \
(void) sm_strlcpyn(subdir, sizeof(subdir), 3, relpath, "/", name); \
if (chkqdir(subdir, sff)) \
qg->qg_qpaths[qg->qg_numqueues].qp_subdirs |= flag; \
else
CHKRSUBDIR("qf", QP_SUBQF);
CHKRSUBDIR("df", QP_SUBDF);
CHKRSUBDIR("xf", QP_SUBXF);
/* assert(strlen(d->d_name) < MAXPATHLEN - 14) */
/* maybe even - 17 (subdirs) */
if (prefix[0] != '.')
qg->qg_qpaths[qg->qg_numqueues].qp_name =
newstr(relpath);
else
qg->qg_qpaths[qg->qg_numqueues].qp_name =
newstr(d->d_name);
if (tTd(41, 2))
sm_dprintf("multiqueue_cache: %d: \"%s\" cached (%x).\n",
qg->qg_numqueues, relpath,
qg->qg_qpaths[qg->qg_numqueues].qp_subdirs);
#if SM_CONF_SHM
qg->qg_qpaths[qg->qg_numqueues].qp_idx = qn;
*phash = hash_q(relpath, *phash);
#endif /* SM_CONF_SHM */
qg->qg_numqueues++;
++qn;
slotsleft--;
}
(void) closedir(dp);
/* undo damage */
*delim = '/';
}
if (qg->qg_numqueues == 0)
{
qg->qg_qpaths = (QPATHS *) xalloc(sizeof(*qg->qg_qpaths));
/* test path to get warning messages */
i = safedirpath(qpath, RunAsUid, RunAsGid, NULL, sff, 0, 0);
if (i == ENOENT)
{
syserr("can not opendir(%s)", qpath);
if (tTd(41, 2))
sm_dprintf("multiqueue_cache: opendir(\"%s\"): %s\n",
qpath, sm_errstring(i));
ExitStat = EX_CONFIG;
return qn;
}
qg->qg_qpaths[0].qp_subdirs = QP_NOSUB;
qg->qg_numqueues = 1;
/* check subdirs */
#define CHKSUBDIR(name, flag) \
(void) sm_strlcpyn(subdir, sizeof(subdir), 3, qg->qg_qdir, "/", name); \
if (chkqdir(subdir, sff)) \
qg->qg_qpaths[0].qp_subdirs |= flag; \
else
CHKSUBDIR("qf", QP_SUBQF);
CHKSUBDIR("df", QP_SUBDF);
CHKSUBDIR("xf", QP_SUBXF);
if (qg->qg_qdir[blen - 1] != '\0' &&
qg->qg_qdir[blen] != '\0')
{
/*
** Copy the last component into qpaths and
** cut off qdir
*/
qg->qg_qpaths[0].qp_name = newstr(qg->qg_qdir + blen);
qg->qg_qdir[blen - 1] = '\0';
}
else
qg->qg_qpaths[0].qp_name = newstr(".");
#if SM_CONF_SHM
qg->qg_qpaths[0].qp_idx = qn;
*phash = hash_q(qg->qg_qpaths[0].qp_name, *phash);
#endif /* SM_CONF_SHM */
++qn;
}
return qn;
}
/*
** FILESYS_FIND -- find entry in FileSys table, or add new one
**
** Given the pathname of a directory, determine the file system
** in which that directory resides, and return a pointer to the
** entry in the FileSys table that describes the file system.
** A new entry is added if necessary (and requested).
** If the directory does not exist, -1 is returned.
**
** Parameters:
** name -- name of directory (must be persistent!)
** path -- pathname of directory (name plus maybe "/df")
** add -- add to structure if not found.
**
** Returns:
** >=0: found: index in file system table
** <0: some error, i.e.,
** FSF_TOO_MANY: too many filesystems (-> syserr())
** FSF_STAT_FAIL: can't stat() filesystem (-> syserr())
** FSF_NOT_FOUND: not in list
*/
static short filesys_find __P((const char *, const char *, bool));
#define FSF_NOT_FOUND (-1)
#define FSF_STAT_FAIL (-2)
#define FSF_TOO_MANY (-3)
static short
filesys_find(name, path, add)
const char *name;
const char *path;
bool add;
{
struct stat st;
short i;
if (stat(path, &st) < 0)
{
syserr("cannot stat queue directory %s", path);
return FSF_STAT_FAIL;
}
for (i = 0; i < NumFileSys; ++i)
{
if (FILE_SYS_DEV(i) == st.st_dev)
{
/*
** Make sure the file system (FS) name is set:
** even though the source code indicates that
** FILE_SYS_DEV() is only set below, it could be
** set via shared memory, hence we need to perform
** this check/assignment here.
*/
if (NULL == FILE_SYS_NAME(i))
FILE_SYS_NAME(i) = name;
return i;
}
}
if (i >= MAXFILESYS)
{
syserr("too many queue file systems (%d max)", MAXFILESYS);
return FSF_TOO_MANY;
}
if (!add)
return FSF_NOT_FOUND;
++NumFileSys;
FILE_SYS_NAME(i) = name;
FILE_SYS_DEV(i) = st.st_dev;
FILE_SYS_AVAIL(i) = 0;
FILE_SYS_BLKSIZE(i) = 1024; /* avoid divide by zero */
return i;
}
/*
** FILESYS_SETUP -- set up mapping from queue directories to file systems
**
** This data structure is used to efficiently check the amount of
** free space available in a set of queue directories.
**
** Parameters:
** add -- initialize structure if necessary.
**
** Returns:
** 0: success
** <0: some error, i.e.,
** FSF_NOT_FOUND: not in list
** FSF_STAT_FAIL: can't stat() filesystem (-> syserr())
** FSF_TOO_MANY: too many filesystems (-> syserr())
*/
static int filesys_setup __P((bool));
static int
filesys_setup(add)
bool add;
{
int i, j;
short fs;
int ret;
ret = 0;
for (i = 0; i < NumQueue && Queue[i] != NULL; i++)
{
for (j = 0; j < Queue[i]->qg_numqueues; ++j)
{
QPATHS *qp = &Queue[i]->qg_qpaths[j];
char qddf[MAXPATHLEN];
(void) sm_strlcpyn(qddf, sizeof(qddf), 2, qp->qp_name,
(bitset(QP_SUBDF, qp->qp_subdirs)
? "/df" : ""));
fs = filesys_find(qp->qp_name, qddf, add);
if (fs >= 0)
qp->qp_fsysidx = fs;
else
qp->qp_fsysidx = 0;
if (fs < ret)
ret = fs;
}
}
return ret;
}
/*
** FILESYS_UPDATE -- update amount of free space on all file systems
**
** The FileSys table is used to cache the amount of free space
** available on all queue directory file systems.
** This function updates the cached information if it has expired.
**
** Parameters:
** none.
**
** Returns:
** none.
**
** Side Effects:
** Updates FileSys table.
*/
void
filesys_update()
{
int i;
long avail, blksize;
time_t now;
static time_t nextupdate = 0;
#if SM_CONF_SHM
/*
** Only the daemon updates the shared memory, i.e.,
** if shared memory is available but the pid is not the
** one of the daemon, then don't do anything.
*/
if (ShmId != SM_SHM_NO_ID && DaemonPid != CurrentPid)
return;
#endif /* SM_CONF_SHM */
now = curtime();
if (now < nextupdate)
return;
nextupdate = now + FILESYS_UPDATE_INTERVAL;
for (i = 0; i < NumFileSys; ++i)
{
FILESYS *fs = &FILE_SYS(i);
avail = freediskspace(FILE_SYS_NAME(i), &blksize);
if (avail < 0 || blksize <= 0)
{
if (LogLevel > 5)
sm_syslog(LOG_ERR, NOQID,
"filesys_update failed: %s, fs=%s, avail=%ld, blocksize=%ld",
sm_errstring(errno),
FILE_SYS_NAME(i), avail, blksize);
fs->fs_avail = 0;
fs->fs_blksize = 1024; /* avoid divide by zero */
nextupdate = now + 2; /* let's do this soon again */
}
else
{
fs->fs_avail = avail;
fs->fs_blksize = blksize;
}
}
}
#if _FFR_ANY_FREE_FS
/*
** FILESYS_FREE -- check whether there is at least one fs with enough space.
**
** Parameters:
** fsize -- file size in bytes
**
** Returns:
** true iff there is one fs with more than fsize bytes free.
*/
bool
filesys_free(fsize)
long fsize;
{
int i;
if (fsize <= 0)
return true;
for (i = 0; i < NumFileSys; ++i)
{
long needed = 0;
if (FILE_SYS_AVAIL(i) < 0 || FILE_SYS_BLKSIZE(i) <= 0)
continue;
needed += fsize / FILE_SYS_BLKSIZE(i)
+ ((fsize % FILE_SYS_BLKSIZE(i)
> 0) ? 1 : 0)
+ MinBlocksFree;
if (needed <= FILE_SYS_AVAIL(i))
return true;
}
return false;
}
#endif /* _FFR_ANY_FREE_FS */
/*
** DISK_STATUS -- show amount of free space in queue directories
**
** Parameters:
** out -- output file pointer.
** prefix -- string to output in front of each line.
**
** Returns:
** none.
*/
void
disk_status(out, prefix)
SM_FILE_T *out;
char *prefix;
{
int i;
long avail, blksize;
long free;
for (i = 0; i < NumFileSys; ++i)
{
avail = freediskspace(FILE_SYS_NAME(i), &blksize);
if (avail >= 0 && blksize > 0)
{
free = (long)((double) avail *
((double) blksize / 1024));
}
else
free = -1;
(void) sm_io_fprintf(out, SM_TIME_DEFAULT,
"%s%d/%s/%ld\r\n",
prefix, i,
FILE_SYS_NAME(i),
free);
}
}
#if SM_CONF_SHM
/*
** INIT_SEM -- initialize semaphore system
**
** Parameters:
** owner -- is this the owner of semaphores?
**
** Returns:
** none.
*/
#if _FFR_USE_SEM_LOCKING
#if SM_CONF_SEM
static int SemId = -1; /* Semaphore Id */
int SemKey = SM_SEM_KEY;
#endif /* SM_CONF_SEM */
#endif /* _FFR_USE_SEM_LOCKING */
static void init_sem __P((bool));
static void
init_sem(owner)
bool owner;
{
#if _FFR_USE_SEM_LOCKING
#if SM_CONF_SEM
SemId = sm_sem_start(SemKey, 1, 0, owner);
if (SemId < 0)
{
sm_syslog(LOG_ERR, NOQID,
"func=init_sem, sem_key=%ld, sm_sem_start=%d, error=%s",
(long) SemKey, SemId, sm_errstring(-SemId));
return;
}
if (owner && RunAsUid != 0)
{
int r;
r = sm_semsetowner(SemId, RunAsUid, RunAsGid, 0660);
if (r != 0)
sm_syslog(LOG_ERR, NOQID,
"key=%ld, sm_semsetowner=%d, RunAsUid=%ld, RunAsGid=%ld",
(long) SemKey, r, (long) RunAsUid, (long) RunAsGid);
}
#endif /* SM_CONF_SEM */
#endif /* _FFR_USE_SEM_LOCKING */
return;
}
/*
** STOP_SEM -- stop semaphore system
**
** Parameters:
** owner -- is this the owner of semaphores?
**
** Returns:
** none.
*/
static void stop_sem __P((bool));
static void
stop_sem(owner)
bool owner;
{
#if _FFR_USE_SEM_LOCKING
#if SM_CONF_SEM
if (owner && SemId >= 0)
sm_sem_stop(SemId);
#endif /* SM_CONF_SEM */
#endif /* _FFR_USE_SEM_LOCKING */
return;
}
/*
** UPD_QS -- update information about queue when adding/deleting an entry
**
** Parameters:
** e -- envelope.
** count -- add/remove entry (+1/0/-1: add/no change/remove)
** space -- update the space available as well.
** (>0/0/<0: add/no change/remove)
** where -- caller (for logging)
**
** Returns:
** none.
**
** Side Effects:
** Modifies available space in filesystem.
** Changes number of entries in queue directory.
*/
void
upd_qs(e, count, space, where)
ENVELOPE *e;
int count;
int space;
char *where;
{
short fidx;
int idx;
# if _FFR_USE_SEM_LOCKING
int r;
# endif /* _FFR_USE_SEM_LOCKING */
long s;
if (ShmId == SM_SHM_NO_ID || e == NULL)
return;
if (e->e_qgrp == NOQGRP || e->e_qdir == NOQDIR)
return;
idx = Queue[e->e_qgrp]->qg_qpaths[e->e_qdir].qp_idx;
if (tTd(73,2))
sm_dprintf("func=upd_qs, count=%d, space=%d, where=%s, idx=%d, entries=%d\n",
count, space, where, idx, QSHM_ENTRIES(idx));
/* XXX in theory this needs to be protected with a mutex */
if (QSHM_ENTRIES(idx) >= 0 && count != 0)
{
# if _FFR_USE_SEM_LOCKING
if (SemId >= 0)
r = sm_sem_acq(SemId, 0, 1);
# endif /* _FFR_USE_SEM_LOCKING */
QSHM_ENTRIES(idx) += count;
# if _FFR_USE_SEM_LOCKING
if (SemId >= 0 && r >= 0)
r = sm_sem_rel(SemId, 0, 1);
# endif /* _FFR_USE_SEM_LOCKING */
}
fidx = Queue[e->e_qgrp]->qg_qpaths[e->e_qdir].qp_fsysidx;
if (fidx < 0)
return;
/* update available space also? (might be loseqfile) */
if (space == 0)
return;
/* convert size to blocks; this causes rounding errors */
s = e->e_msgsize / FILE_SYS_BLKSIZE(fidx);
if (s == 0)
return;
/* XXX in theory this needs to be protected with a mutex */
if (space > 0)
FILE_SYS_AVAIL(fidx) += s;
else
FILE_SYS_AVAIL(fidx) -= s;
}
static bool write_key_file __P((char *, long));
static long read_key_file __P((char *, long));
/*
** WRITE_KEY_FILE -- record some key into a file.
**
** Parameters:
** keypath -- file name.
** key -- key to write.
**
** Returns:
** true iff file could be written.
**
** Side Effects:
** writes file.
*/
static bool
write_key_file(keypath, key)
char *keypath;
long key;
{
bool ok;
long sff;
SM_FILE_T *keyf;
ok = false;
if (keypath == NULL || *keypath == '\0')
return ok;
sff = SFF_NOLINK|SFF_ROOTOK|SFF_REGONLY|SFF_CREAT;
if (TrustedUid != 0 && RealUid == TrustedUid)
sff |= SFF_OPENASROOT;
keyf = safefopen(keypath, O_WRONLY|O_TRUNC, FileMode, sff);
if (keyf == NULL)
{
sm_syslog(LOG_ERR, NOQID, "unable to write %s: %s",
keypath, sm_errstring(errno));
}
else
{
if (geteuid() == 0 && RunAsUid != 0)
{
# if HASFCHOWN
int fd;
fd = keyf->f_file;
if (fd >= 0 && fchown(fd, RunAsUid, -1) < 0)
{
int err = errno;
sm_syslog(LOG_ALERT, NOQID,
"ownership change on %s to %ld failed: %s",
keypath, (long) RunAsUid, sm_errstring(err));
}
# endif /* HASFCHOWN */
}
ok = sm_io_fprintf(keyf, SM_TIME_DEFAULT, "%ld\n", key) !=
SM_IO_EOF;
ok = (sm_io_close(keyf, SM_TIME_DEFAULT) != SM_IO_EOF) && ok;
}
return ok;
}
/*
** READ_KEY_FILE -- read a key from a file.
**
** Parameters:
** keypath -- file name.
** key -- default key.
**
** Returns:
** key.
*/
static long
read_key_file(keypath, key)
char *keypath;
long key;
{
int r;
long sff, n;
SM_FILE_T *keyf;
if (keypath == NULL || *keypath == '\0')
return key;
sff = SFF_NOLINK|SFF_ROOTOK|SFF_REGONLY;
if (RealUid == 0 || (TrustedUid != 0 && RealUid == TrustedUid))
sff |= SFF_OPENASROOT;
keyf = safefopen(keypath, O_RDONLY, FileMode, sff);
if (keyf == NULL)
{
sm_syslog(LOG_ERR, NOQID, "unable to read %s: %s",
keypath, sm_errstring(errno));
}
else
{
r = sm_io_fscanf(keyf, SM_TIME_DEFAULT, "%ld", &n);
if (r == 1)
key = n;
(void) sm_io_close(keyf, SM_TIME_DEFAULT);
}
return key;
}
/*
** INIT_SHM -- initialize shared memory structure
**
** Initialize or attach to shared memory segment.
** Currently it is not a fatal error if this doesn't work.
** However, it causes us to have a "fallback" storage location
** for everything that is supposed to be in the shared memory,
** which makes the code slightly ugly.
**
** Parameters:
** qn -- number of queue directories.
** owner -- owner of shared memory.
** hash -- identifies data that is stored in shared memory.
**
** Returns:
** none.
*/
static void init_shm __P((int, bool, unsigned int));
static void
init_shm(qn, owner, hash)
int qn;
bool owner;
unsigned int hash;
{
int i;
int count;
int save_errno;
bool keyselect;
PtrFileSys = &FileSys[0];
PNumFileSys = &Numfilesys;
/* if this "key" is specified: select one yourself */
#define SEL_SHM_KEY ((key_t) -1)
#define FIRST_SHM_KEY 25
/* This allows us to disable shared memory at runtime. */
if (ShmKey == 0)
return;
count = 0;
shms = SM_T_SIZE + qn * sizeof(QUEUE_SHM_T);
keyselect = ShmKey == SEL_SHM_KEY;
if (keyselect)
{
if (owner)
ShmKey = FIRST_SHM_KEY;
else
{
errno = 0;
ShmKey = read_key_file(ShmKeyFile, ShmKey);
keyselect = false;
if (ShmKey == SEL_SHM_KEY)
{
save_errno = (errno != 0) ? errno : EINVAL;
goto error;
}
}
}
for (;;)
{
/* allow read/write access for group? */
Pshm = sm_shmstart(ShmKey, shms,
SHM_R|SHM_W|(SHM_R>>3)|(SHM_W>>3),
&ShmId, owner);
save_errno = errno;
if (Pshm != NULL || !sm_file_exists(save_errno))
break;
if (++count >= 3)
{
if (keyselect)
{
++ShmKey;
/* back where we started? */
if (ShmKey == SEL_SHM_KEY)
break;
continue;
}
break;
}
/* only sleep if we are at the first key */
if (!keyselect || ShmKey == SEL_SHM_KEY)
sleep(count);
}
if (Pshm != NULL)
{
int *p;
if (keyselect)
(void) write_key_file(ShmKeyFile, (long) ShmKey);
if (owner && RunAsUid != 0)
{
i = sm_shmsetowner(ShmId, RunAsUid, RunAsGid, 0660);
if (i != 0)
sm_syslog(LOG_ERR, NOQID,
"key=%ld, sm_shmsetowner=%d, RunAsUid=%ld, RunAsGid=%ld",
(long) ShmKey, i, (long) RunAsUid, (long) RunAsGid);
}
p = (int *) Pshm;
if (owner)
{
*p = (int) shms;
*((pid_t *) SHM_OFF_PID(Pshm)) = CurrentPid;
p = (int *) SHM_OFF_TAG(Pshm);
*p = hash;
}
else
{
if (*p != (int) shms)
{
save_errno = EINVAL;
cleanup_shm(false);
goto error;
}
p = (int *) SHM_OFF_TAG(Pshm);
if (*p != (int) hash)
{
save_errno = EINVAL;
cleanup_shm(false);
goto error;
}
/*
** XXX how to check the pid?
** Read it from the pid-file? That does
** not need to exist.
** We could disable shm if we can't confirm
** that it is the right one.
*/
}
PtrFileSys = (FILESYS *) OFF_FILE_SYS(Pshm);
PNumFileSys = (int *) OFF_NUM_FILE_SYS(Pshm);
QShm = (QUEUE_SHM_T *) OFF_QUEUE_SHM(Pshm);
PRSATmpCnt = (int *) OFF_RSA_TMP_CNT(Pshm);
*PRSATmpCnt = 0;
if (owner)
{
/* initialize values in shared memory */
NumFileSys = 0;
for (i = 0; i < qn; i++)
QShm[i].qs_entries = -1;
}
init_sem(owner);
return;
}
error:
if (LogLevel > (owner ? 8 : 11))
{
sm_syslog(owner ? LOG_ERR : LOG_NOTICE, NOQID,
"can't %s shared memory, key=%ld: %s",
owner ? "initialize" : "attach to",
(long) ShmKey, sm_errstring(save_errno));
}
}
#endif /* SM_CONF_SHM */
/*
** SETUP_QUEUES -- set up all queue groups
**
** Parameters:
** owner -- owner of shared memory?
**
** Returns:
** none.
**
#if SM_CONF_SHM
** Side Effects:
** attaches shared memory.
#endif * SM_CONF_SHM *
*/
void
setup_queues(owner)
bool owner;
{
int i, qn, len;
unsigned int hashval;
time_t now;
char basedir[MAXPATHLEN];
struct stat st;
/*
** Determine basedir for all queue directories.
** All queue directories must be (first level) subdirectories
** of the basedir. The basedir is the QueueDir
** without wildcards, but with trailing /
*/
hashval = 0;
errno = 0;
len = sm_strlcpy(basedir, QueueDir, sizeof(basedir));
/* Provide space for trailing '/' */
if (len >= sizeof(basedir) - 1)
{
syserr("QueueDirectory: path too long: %d, max %d",
len, (int) sizeof(basedir) - 1);
ExitStat = EX_CONFIG;
return;
}
SM_ASSERT(len > 0);
if (basedir[len - 1] == '*')
{
char *cp;
cp = SM_LAST_DIR_DELIM(basedir);
if (cp == NULL)
{
syserr("QueueDirectory: can not wildcard relative path \"%s\"",
QueueDir);
if (tTd(41, 2))
sm_dprintf("setup_queues: \"%s\": Can not wildcard relative path.\n",
QueueDir);
ExitStat = EX_CONFIG;
return;
}
/* cut off wildcard pattern */
*++cp = '\0';
len = cp - basedir;
}
else if (!SM_IS_DIR_DELIM(basedir[len - 1]))
{
/* append trailing slash since it is a directory */
basedir[len] = '/';
basedir[++len] = '\0';
}
/* len counts up to the last directory delimiter */
SM_ASSERT(basedir[len - 1] == '/');
if (chdir(basedir) < 0)
{
int save_errno = errno;
syserr("can not chdir(%s)", basedir);
if (save_errno == EACCES)
(void) sm_io_fprintf(smioerr, SM_TIME_DEFAULT,
"Program mode requires special privileges, e.g., root or TrustedUser.\n");
if (tTd(41, 2))
sm_dprintf("setup_queues: \"%s\": %s\n",
basedir, sm_errstring(errno));
ExitStat = EX_CONFIG;
return;
}
#if SM_CONF_SHM
hashval = hash_q(basedir, hashval);
#endif /* SM_CONF_SHM */
/* initialize for queue runs */
DoQueueRun = false;
now = curtime();
for (i = 0; i < NumQueue && Queue[i] != NULL; i++)
Queue[i]->qg_nextrun = now;
if (UseMSP && OpMode != MD_TEST)
{
long sff = SFF_CREAT;
if (stat(".", &st) < 0)
{
syserr("can not stat(%s)", basedir);
if (tTd(41, 2))
sm_dprintf("setup_queues: \"%s\": %s\n",
basedir, sm_errstring(errno));
ExitStat = EX_CONFIG;
return;
}
if (RunAsUid == 0)
sff |= SFF_ROOTOK;
/*
** Check queue directory permissions.
** Can we write to a group writable queue directory?
*/
if (bitset(S_IWGRP, QueueFileMode) &&
bitset(S_IWGRP, st.st_mode) &&
safefile(" ", RunAsUid, RunAsGid, RunAsUserName, sff,
QueueFileMode, NULL) != 0)
{
syserr("can not write to queue directory %s (RunAsGid=%ld, required=%ld)",
basedir, (long) RunAsGid, (long) st.st_gid);
}
if (bitset(S_IWOTH|S_IXOTH, st.st_mode))
{
#if _FFR_MSP_PARANOIA
syserr("dangerous permissions=%o on queue directory %s",
(unsigned int) st.st_mode, basedir);
#else /* _FFR_MSP_PARANOIA */
if (LogLevel > 0)
sm_syslog(LOG_ERR, NOQID,
"dangerous permissions=%o on queue directory %s",
(unsigned int) st.st_mode, basedir);
#endif /* _FFR_MSP_PARANOIA */
}
#if _FFR_MSP_PARANOIA
if (NumQueue > 1)
syserr("can not use multiple queues for MSP");
#endif /* _FFR_MSP_PARANOIA */
}
/* initial number of queue directories */
qn = 0;
for (i = 0; i < NumQueue && Queue[i] != NULL; i++)
qn = multiqueue_cache(basedir, len, Queue[i], qn, &hashval);
#if SM_CONF_SHM
init_shm(qn, owner, hashval);
i = filesys_setup(owner || ShmId == SM_SHM_NO_ID);
if (i == FSF_NOT_FOUND)
{
/*
** We didn't get the right filesystem data
** This may happen if we don't have the right shared memory.
** So let's do this without shared memory.
*/
SM_ASSERT(!owner);
cleanup_shm(false); /* release shared memory */
i = filesys_setup(false);
if (i < 0)
syserr("filesys_setup failed twice, result=%d", i);
else if (LogLevel > 8)
sm_syslog(LOG_WARNING, NOQID,
"shared memory does not contain expected data, ignored");
}
#else /* SM_CONF_SHM */
i = filesys_setup(true);
#endif /* SM_CONF_SHM */
if (i < 0)
ExitStat = EX_CONFIG;
}
#if SM_CONF_SHM
/*
** CLEANUP_SHM -- do some cleanup work for shared memory etc
**
** Parameters:
** owner -- owner of shared memory?
**
** Returns:
** none.
**
** Side Effects:
** detaches shared memory.
*/
void
cleanup_shm(owner)
bool owner;
{
if (ShmId != SM_SHM_NO_ID)
{
if (sm_shmstop(Pshm, ShmId, owner) < 0 && LogLevel > 8)
sm_syslog(LOG_INFO, NOQID, "sm_shmstop failed=%s",
sm_errstring(errno));
Pshm = NULL;
ShmId = SM_SHM_NO_ID;
}
stop_sem(owner);
}
#endif /* SM_CONF_SHM */
/*
** CLEANUP_QUEUES -- do some cleanup work for queues
**
** Parameters:
** none.
**
** Returns:
** none.
**
*/
void
cleanup_queues()
{
sync_queue_time();
}
/*
** SET_DEF_QUEUEVAL -- set default values for a queue group.
**
** Parameters:
** qg -- queue group
** all -- set all values (true for default group)?
**
** Returns:
** none.
**
** Side Effects:
** sets default values for the queue group.
*/
void
set_def_queueval(qg, all)
QUEUEGRP *qg;
bool all;
{
if (bitnset(QD_DEFINED, qg->qg_flags))
return;
if (all)
qg->qg_qdir = QueueDir;
#if _FFR_QUEUE_GROUP_SORTORDER
qg->qg_sortorder = QueueSortOrder;
#endif /* _FFR_QUEUE_GROUP_SORTORDER */
qg->qg_maxqrun = all ? MaxRunnersPerQueue : -1;
qg->qg_nice = NiceQueueRun;
}
/*
** MAKEQUEUE -- define a new queue.
**
** Parameters:
** line -- description of queue. This is in labeled fields.
** The fields are:
** F -- the flags associated with the queue
** I -- the interval between running the queue
** J -- the maximum # of jobs in work list
** [M -- the maximum # of jobs in a queue run]
** N -- the niceness at which to run
** P -- the path to the queue
** S -- the queue sorting order
** R -- number of parallel queue runners
** r -- max recipients per envelope
** The first word is the canonical name of the queue.
** qdef -- this is a 'Q' definition from .cf
**
** Returns:
** none.
**
** Side Effects:
** enters the queue into the queue table.
*/
void
makequeue(line, qdef)
char *line;
bool qdef;
{
register char *p;
register QUEUEGRP *qg;
register STAB *s;
int i;
char fcode;
/* allocate a queue and set up defaults */
qg = (QUEUEGRP *) xalloc(sizeof(*qg));
memset((char *) qg, '\0', sizeof(*qg));
if (line[0] == '\0')
{
syserr("name required for queue");
return;
}
/* collect the queue name */
for (p = line;
*p != '\0' && *p != ',' && !(isascii(*p) && isspace(*p));
p++)
continue;
if (*p != '\0')
*p++ = '\0';
qg->qg_name = newstr(line);
/* set default values, can be overridden below */
set_def_queueval(qg, false);
/* now scan through and assign info from the fields */
while (*p != '\0')
{
auto char *delimptr;
while (*p != '\0' &&
(*p == ',' || (isascii(*p) && isspace(*p))))
p++;
/* p now points to field code */
fcode = *p;
while (*p != '\0' && *p != '=' && *p != ',')
p++;
if (*p++ != '=')
{
syserr("queue %s: `=' expected", qg->qg_name);
return;
}
while (isascii(*p) && isspace(*p))
p++;
/* p now points to the field body */
p = munchstring(p, &delimptr, ',');
/* install the field into the queue struct */
switch (fcode)
{
case 'P': /* pathname */
if (*p == '\0')
syserr("queue %s: empty path name",
qg->qg_name);
else
qg->qg_qdir = newstr(p);
break;
case 'F': /* flags */
for (; *p != '\0'; p++)
if (!(isascii(*p) && isspace(*p)))
setbitn(*p, qg->qg_flags);
break;
/*
** Do we need two intervals here:
** One for persistent queue runners,
** one for "normal" queue runs?
*/
case 'I': /* interval between running the queue */
qg->qg_queueintvl = convtime(p, 'm');
break;
case 'N': /* run niceness */
qg->qg_nice = atoi(p);
break;
case 'R': /* maximum # of runners for the group */
i = atoi(p);
/* can't have more runners than allowed total */
if (MaxQueueChildren > 0 && i > MaxQueueChildren)
{
qg->qg_maxqrun = MaxQueueChildren;
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT,
"Q=%s: R=%d exceeds MaxQueueChildren=%d, set to MaxQueueChildren\n",
qg->qg_name, i,
MaxQueueChildren);
}
else
qg->qg_maxqrun = i;
break;
case 'J': /* maximum # of jobs in work list */
qg->qg_maxlist = atoi(p);
break;
case 'r': /* max recipients per envelope */
qg->qg_maxrcpt = atoi(p);
break;
#if _FFR_QUEUE_GROUP_SORTORDER
case 'S': /* queue sorting order */
switch (*p)
{
case 'h': /* Host first */
case 'H':
qg->qg_sortorder = QSO_BYHOST;
break;
case 'p': /* Priority order */
case 'P':
qg->qg_sortorder = QSO_BYPRIORITY;
break;
case 't': /* Submission time */
case 'T':
qg->qg_sortorder = QSO_BYTIME;
break;
case 'f': /* File name */
case 'F':
qg->qg_sortorder = QSO_BYFILENAME;
break;
case 'm': /* Modification time */
case 'M':
qg->qg_sortorder = QSO_BYMODTIME;
break;
case 'r': /* Random */
case 'R':
qg->qg_sortorder = QSO_RANDOM;
break;
# if _FFR_RHS
case 's': /* Shuffled host name */
case 'S':
qg->qg_sortorder = QSO_BYSHUFFLE;
break;
# endif /* _FFR_RHS */
case 'n': /* none */
case 'N':
qg->qg_sortorder = QSO_NONE;
break;
default:
syserr("Invalid queue sort order \"%s\"", p);
}
break;
#endif /* _FFR_QUEUE_GROUP_SORTORDER */
default:
syserr("Q%s: unknown queue equate %c=",
qg->qg_name, fcode);
break;
}
p = delimptr;
}
#if !HASNICE
if (qg->qg_nice != NiceQueueRun)
{
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT,
"Q%s: Warning: N= set on system that doesn't support nice()\n",
qg->qg_name);
}
#endif /* !HASNICE */
/* do some rationality checking */
if (NumQueue >= MAXQUEUEGROUPS)
{
syserr("too many queue groups defined (%d max)",
MAXQUEUEGROUPS);
return;
}
if (qg->qg_qdir == NULL)
{
if (QueueDir == NULL || *QueueDir == '\0')
{
syserr("QueueDir must be defined before queue groups");
return;
}
qg->qg_qdir = newstr(QueueDir);
}
if (qg->qg_maxqrun > 1 && !bitnset(QD_FORK, qg->qg_flags))
{
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT,
"Warning: Q=%s: R=%d: multiple queue runners specified\n\tbut flag '%c' is not set\n",
qg->qg_name, qg->qg_maxqrun, QD_FORK);
}
/* enter the queue into the symbol table */
if (tTd(37, 8))
sm_syslog(LOG_INFO, NOQID,
"Adding %s to stab, path: %s", qg->qg_name,
qg->qg_qdir);
s = stab(qg->qg_name, ST_QUEUE, ST_ENTER);
if (s->s_quegrp != NULL)
{
i = s->s_quegrp->qg_index;
/* XXX what about the pointers inside this struct? */
sm_free(s->s_quegrp); /* XXX */
}
else
i = NumQueue++;
Queue[i] = s->s_quegrp = qg;
qg->qg_index = i;
/* set default value for max queue runners */
if (qg->qg_maxqrun < 0)
{
if (MaxRunnersPerQueue > 0)
qg->qg_maxqrun = MaxRunnersPerQueue;
else
qg->qg_maxqrun = 1;
}
if (qdef)
setbitn(QD_DEFINED, qg->qg_flags);
}
#if 0
/*
** HASHFQN -- calculate a hash value for a fully qualified host name
**
** Arguments:
** fqn -- an all lower-case host.domain string
** buckets -- the number of buckets (queue directories)
**
** Returns:
** a bucket number (signed integer)
** -1 on error
**
** Contributed by Exactis.com, Inc.
*/
int
hashfqn(fqn, buckets)
register char *fqn;
int buckets;
{
register char *p;
register int h = 0, hash, cnt;
if (fqn == NULL)
return -1;
/*
** A variation on the gdb hash
** This is the best as of Feb 19, 1996 --bcx
*/
p = fqn;
h = 0x238F13AF * strlen(p);
for (cnt = 0; *p != 0; ++p, cnt++)
{
h = (h + (*p << (cnt * 5 % 24))) & 0x7FFFFFFF;
}
h = (1103515243 * h + 12345) & 0x7FFFFFFF;
if (buckets < 2)
hash = 0;
else
hash = (h % buckets);
return hash;
}
#endif /* 0 */
/*
** A structure for sorting Queue according to maxqrun without
** screwing up Queue itself.
*/
struct sortqgrp
{
int sg_idx; /* original index */
int sg_maxqrun; /* max queue runners */
};
typedef struct sortqgrp SORTQGRP_T;
static int cmpidx __P((const void *, const void *));
static int
cmpidx(a, b)
const void *a;
const void *b;
{
/* The sort is highest to lowest, so the comparison is reversed */
if (((SORTQGRP_T *)a)->sg_maxqrun < ((SORTQGRP_T *)b)->sg_maxqrun)
return 1;
else if (((SORTQGRP_T *)a)->sg_maxqrun > ((SORTQGRP_T *)b)->sg_maxqrun)
return -1;
else
return 0;
}
/*
** MAKEWORKGROUPS -- balance queue groups into work groups per MaxQueueChildren
**
** Take the now defined queue groups and assign them to work groups.
** This is done to balance out the number of concurrently active
** queue runners such that MaxQueueChildren is not exceeded. This may
** result in more than one queue group per work group. In such a case
** the number of running queue groups in that work group will have no
** more than the work group maximum number of runners (a "fair" portion
** of MaxQueueRunners). All queue groups within a work group will get a
** chance at running.
**
** Parameters:
** none.
**
** Returns:
** nothing.
**
** Side Effects:
** Sets up WorkGrp structure.
*/
void
makeworkgroups()
{
int i, j, total_runners, dir, h;
SORTQGRP_T si[MAXQUEUEGROUPS + 1];
total_runners = 0;
if (NumQueue == 1 && strcmp(Queue[0]->qg_name, "mqueue") == 0)
{
/*
** There is only the "mqueue" queue group (a default)
** containing all of the queues. We want to provide to
** this queue group the maximum allowable queue runners.
** To match older behavior (8.10/8.11) we'll try for
** 1 runner per queue capping it at MaxQueueChildren.
** So if there are N queues, then there will be N runners
** for the "mqueue" queue group (where N is kept less than
** MaxQueueChildren).
*/
NumWorkGroups = 1;
WorkGrp[0].wg_numqgrp = 1;
WorkGrp[0].wg_qgs = (QUEUEGRP **) xalloc(sizeof(QUEUEGRP *));
WorkGrp[0].wg_qgs[0] = Queue[0];
if (MaxQueueChildren > 0 &&
Queue[0]->qg_numqueues > MaxQueueChildren)
WorkGrp[0].wg_runners = MaxQueueChildren;
else
WorkGrp[0].wg_runners = Queue[0]->qg_numqueues;
Queue[0]->qg_wgrp = 0;
/* can't have more runners than allowed total */
if (MaxQueueChildren > 0 &&
Queue[0]->qg_maxqrun > MaxQueueChildren)
Queue[0]->qg_maxqrun = MaxQueueChildren;
WorkGrp[0].wg_maxact = Queue[0]->qg_maxqrun;
WorkGrp[0].wg_lowqintvl = Queue[0]->qg_queueintvl;
return;
}
for (i = 0; i < NumQueue; i++)
{
si[i].sg_maxqrun = Queue[i]->qg_maxqrun;
si[i].sg_idx = i;
}
qsort(si, NumQueue, sizeof(si[0]), cmpidx);
NumWorkGroups = 0;
for (i = 0; i < NumQueue; i++)
{
SKIP_BOUNCE_QUEUE
total_runners += si[i].sg_maxqrun;
if (MaxQueueChildren <= 0 || total_runners <= MaxQueueChildren)
NumWorkGroups++;
else
break;
}
if (NumWorkGroups < 1)
NumWorkGroups = 1; /* gotta have one at least */
else if (NumWorkGroups > MAXWORKGROUPS)
NumWorkGroups = MAXWORKGROUPS; /* the limit */
/*
** We now know the number of work groups to pack the queue groups
** into. The queue groups in 'Queue' are sorted from highest
** to lowest for the number of runners per queue group.
** We put the queue groups with the largest number of runners
** into work groups first. Then the smaller ones are fitted in
** where it looks best.
*/
j = 0;
dir = 1;
for (i = 0; i < NumQueue; i++)
{
SKIP_BOUNCE_QUEUE
/* a to-and-fro packing scheme, continue from last position */
if (j >= NumWorkGroups)
{
dir = -1;
j = NumWorkGroups - 1;
}
else if (j < 0)
{
j = 0;
dir = 1;
}
if (WorkGrp[j].wg_qgs == NULL)
WorkGrp[j].wg_qgs = (QUEUEGRP **)sm_malloc(sizeof(QUEUEGRP *) *
(WorkGrp[j].wg_numqgrp + 1));
else
WorkGrp[j].wg_qgs = (QUEUEGRP **)sm_realloc(WorkGrp[j].wg_qgs,
sizeof(QUEUEGRP *) *
(WorkGrp[j].wg_numqgrp + 1));
if (WorkGrp[j].wg_qgs == NULL)
{
syserr("!cannot allocate memory for work queues, need %d bytes",
(int) (sizeof(QUEUEGRP *) *
(WorkGrp[j].wg_numqgrp + 1)));
}
h = si[i].sg_idx;
WorkGrp[j].wg_qgs[WorkGrp[j].wg_numqgrp] = Queue[h];
WorkGrp[j].wg_numqgrp++;
WorkGrp[j].wg_runners += Queue[h]->qg_maxqrun;
Queue[h]->qg_wgrp = j;
if (WorkGrp[j].wg_maxact == 0)
{
/* can't have more runners than allowed total */
if (MaxQueueChildren > 0 &&
Queue[h]->qg_maxqrun > MaxQueueChildren)
Queue[h]->qg_maxqrun = MaxQueueChildren;
WorkGrp[j].wg_maxact = Queue[h]->qg_maxqrun;
}
/*
** XXX: must wg_lowqintvl be the GCD?
** qg1: 2m, qg2: 3m, minimum: 2m, when do queue runs for
** qg2 occur?
*/
/* keep track of the lowest interval for a persistent runner */
if (Queue[h]->qg_queueintvl > 0 &&
WorkGrp[j].wg_lowqintvl < Queue[h]->qg_queueintvl)
WorkGrp[j].wg_lowqintvl = Queue[h]->qg_queueintvl;
j += dir;
}
if (tTd(41, 9))
{
for (i = 0; i < NumWorkGroups; i++)
{
sm_dprintf("Workgroup[%d]=", i);
for (j = 0; j < WorkGrp[i].wg_numqgrp; j++)
{
sm_dprintf("%s, ",
WorkGrp[i].wg_qgs[j]->qg_name);
}
sm_dprintf("\n");
}
}
}
/*
** DUP_DF -- duplicate envelope data file
**
** Copy the data file from the 'old' envelope to the 'new' envelope
** in the most efficient way possible.
**
** Create a hard link from the 'old' data file to the 'new' data file.
** If the old and new queue directories are on different file systems,
** then the new data file link is created in the old queue directory,
** and the new queue file will contain a 'd' record pointing to the
** directory containing the new data file.
**
** Parameters:
** old -- old envelope.
** new -- new envelope.
**
** Results:
** Returns true on success, false on failure.
**
** Side Effects:
** On success, the new data file is created.
** On fatal failure, EF_FATALERRS is set in old->e_flags.
*/
static bool dup_df __P((ENVELOPE *, ENVELOPE *));
static bool
dup_df(old, new)
ENVELOPE *old;
ENVELOPE *new;
{
int ofs, nfs, r;
char opath[MAXPATHLEN];
char npath[MAXPATHLEN];
if (!bitset(EF_HAS_DF, old->e_flags))
{
/*
** this can happen if: SuperSafe != True
** and a bounce mail is sent that is split.
*/
queueup(old, false, true);
}
SM_REQUIRE(ISVALIDQGRP(old->e_qgrp) && ISVALIDQDIR(old->e_qdir));
SM_REQUIRE(ISVALIDQGRP(new->e_qgrp) && ISVALIDQDIR(new->e_qdir));
(void) sm_strlcpy(opath, queuename(old, DATAFL_LETTER), sizeof(opath));
(void) sm_strlcpy(npath, queuename(new, DATAFL_LETTER), sizeof(npath));
if (old->e_dfp != NULL)
{
r = sm_io_setinfo(old->e_dfp, SM_BF_COMMIT, NULL);
if (r < 0 && errno != EINVAL)
{
syserr("@can't commit %s", opath);
old->e_flags |= EF_FATALERRS;
return false;
}
}
/*
** Attempt to create a hard link, if we think both old and new
** are on the same file system, otherwise copy the file.
**
** Don't waste time attempting a hard link unless old and new
** are on the same file system.
*/
SM_REQUIRE(ISVALIDQGRP(old->e_dfqgrp) && ISVALIDQDIR(old->e_dfqdir));
SM_REQUIRE(ISVALIDQGRP(new->e_dfqgrp) && ISVALIDQDIR(new->e_dfqdir));
ofs = Queue[old->e_dfqgrp]->qg_qpaths[old->e_dfqdir].qp_fsysidx;
nfs = Queue[new->e_dfqgrp]->qg_qpaths[new->e_dfqdir].qp_fsysidx;
if (FILE_SYS_DEV(ofs) == FILE_SYS_DEV(nfs))
{
if (link(opath, npath) == 0)
{
new->e_flags |= EF_HAS_DF;
SYNC_DIR(npath, true);
return true;
}
goto error;
}
/*
** Can't link across queue directories, so try to create a hard
** link in the same queue directory as the old df file.
** The qf file will refer to the new df file using a 'd' record.
*/
new->e_dfqgrp = old->e_dfqgrp;
new->e_dfqdir = old->e_dfqdir;
(void) sm_strlcpy(npath, queuename(new, DATAFL_LETTER), sizeof(npath));
if (link(opath, npath) == 0)
{
new->e_flags |= EF_HAS_DF;
SYNC_DIR(npath, true);
return true;
}
error:
if (LogLevel > 0)
sm_syslog(LOG_ERR, old->e_id,
"dup_df: can't link %s to %s, error=%s, envelope splitting failed",
opath, npath, sm_errstring(errno));
return false;
}
/*
** SPLIT_ENV -- Allocate a new envelope based on a given envelope.
**
** Parameters:
** e -- envelope.
** sendqueue -- sendqueue for new envelope.
** qgrp -- index of queue group.
** qdir -- queue directory.
**
** Results:
** new envelope.
**
*/
static ENVELOPE *split_env __P((ENVELOPE *, ADDRESS *, int, int));
static ENVELOPE *
split_env(e, sendqueue, qgrp, qdir)
ENVELOPE *e;
ADDRESS *sendqueue;
int qgrp;
int qdir;
{
ENVELOPE *ee;
ee = (ENVELOPE *) sm_rpool_malloc_x(e->e_rpool, sizeof(*ee));
STRUCTCOPY(*e, *ee);
ee->e_message = NULL; /* XXX use original message? */
ee->e_id = NULL;
assign_queueid(ee);
ee->e_sendqueue = sendqueue;
ee->e_flags &= ~(EF_INQUEUE|EF_CLRQUEUE|EF_FATALERRS
|EF_SENDRECEIPT|EF_RET_PARAM|EF_HAS_DF);
ee->e_flags |= EF_NORECEIPT; /* XXX really? */
ee->e_from.q_state = QS_SENDER;
ee->e_dfp = NULL;
ee->e_lockfp = NULL;
if (e->e_xfp != NULL)
ee->e_xfp = sm_io_dup(e->e_xfp);
/* failed to dup e->e_xfp, start a new transcript */
if (ee->e_xfp == NULL)
openxscript(ee);
ee->e_qgrp = ee->e_dfqgrp = qgrp;
ee->e_qdir = ee->e_dfqdir = qdir;
ee->e_errormode = EM_MAIL;
ee->e_statmsg = NULL;
if (e->e_quarmsg != NULL)
ee->e_quarmsg = sm_rpool_strdup_x(ee->e_rpool,
e->e_quarmsg);
/*
** XXX Not sure if this copying is necessary.
** sendall() does this copying, but I (dm) don't know if that is
** because of the storage management discipline we were using
** before rpools were introduced, or if it is because these lists
** can be modified later.
*/
ee->e_header = copyheader(e->e_header, ee->e_rpool);
ee->e_errorqueue = copyqueue(e->e_errorqueue, ee->e_rpool);
return ee;
}
/* return values from split functions, check also below! */
#define SM_SPLIT_FAIL (0)
#define SM_SPLIT_NONE (1)
#define SM_SPLIT_NEW(n) (1 + (n))
/*
** SPLIT_ACROSS_QUEUE_GROUPS
**
** This function splits an envelope across multiple queue groups
** based on the queue group of each recipient.
**
** Parameters:
** e -- envelope.
**
** Results:
** SM_SPLIT_FAIL on failure
** SM_SPLIT_NONE if no splitting occurred,
** or 1 + the number of additional envelopes created.
**
** Side Effects:
** On success, e->e_sibling points to a list of zero or more
** additional envelopes, and the associated data files exist
** on disk. But the queue files are not created.
**
** On failure, e->e_sibling is not changed.
** The order of recipients in e->e_sendqueue is permuted.
** Abandoned data files for additional envelopes that failed
** to be created may exist on disk.
*/
static int q_qgrp_compare __P((const void *, const void *));
static int e_filesys_compare __P((const void *, const void *));
static int
q_qgrp_compare(p1, p2)
const void *p1;
const void *p2;
{
ADDRESS **pq1 = (ADDRESS **) p1;
ADDRESS **pq2 = (ADDRESS **) p2;
return (*pq1)->q_qgrp - (*pq2)->q_qgrp;
}
static int
e_filesys_compare(p1, p2)
const void *p1;
const void *p2;
{
ENVELOPE **pe1 = (ENVELOPE **) p1;
ENVELOPE **pe2 = (ENVELOPE **) p2;
int fs1, fs2;
fs1 = Queue[(*pe1)->e_qgrp]->qg_qpaths[(*pe1)->e_qdir].qp_fsysidx;
fs2 = Queue[(*pe2)->e_qgrp]->qg_qpaths[(*pe2)->e_qdir].qp_fsysidx;
if (FILE_SYS_DEV(fs1) < FILE_SYS_DEV(fs2))
return -1;
if (FILE_SYS_DEV(fs1) > FILE_SYS_DEV(fs2))
return 1;
return 0;
}
static int split_across_queue_groups __P((ENVELOPE *));
static int
split_across_queue_groups(e)
ENVELOPE *e;
{
int naddrs, nsplits, i;
bool changed;
char **pvp;
ADDRESS *q, **addrs;
ENVELOPE *ee, *es;
ENVELOPE *splits[MAXQUEUEGROUPS];
char pvpbuf[PSBUFSIZE];
SM_REQUIRE(ISVALIDQGRP(e->e_qgrp));
/* Count addresses and assign queue groups. */
naddrs = 0;
changed = false;
for (q = e->e_sendqueue; q != NULL; q = q->q_next)
{
if (QS_IS_DEAD(q->q_state))
continue;
++naddrs;
/* bad addresses and those already sent stay put */
if (QS_IS_BADADDR(q->q_state) ||
QS_IS_SENT(q->q_state))
q->q_qgrp = e->e_qgrp;
else if (!ISVALIDQGRP(q->q_qgrp))
{
/* call ruleset which should return a queue group */
i = rscap(RS_QUEUEGROUP, q->q_user, NULL, e, &pvp,
pvpbuf, sizeof(pvpbuf));
if (i == EX_OK &&
pvp != NULL && pvp[0] != NULL &&
(pvp[0][0] & 0377) == CANONNET &&
pvp[1] != NULL && pvp[1][0] != '\0')
{
i = name2qid(pvp[1]);
if (ISVALIDQGRP(i))
{
q->q_qgrp = i;
changed = true;
if (tTd(20, 4))
sm_syslog(LOG_INFO, NOQID,
"queue group name %s -> %d",
pvp[1], i);
continue;
}
else if (LogLevel > 10)
sm_syslog(LOG_INFO, NOQID,
"can't find queue group name %s, selection ignored",
pvp[1]);
}
if (q->q_mailer != NULL &&
ISVALIDQGRP(q->q_mailer->m_qgrp))
{
changed = true;
q->q_qgrp = q->q_mailer->m_qgrp;
}
else if (ISVALIDQGRP(e->e_qgrp))
q->q_qgrp = e->e_qgrp;
else
q->q_qgrp = 0;
}
}
/* only one address? nothing to split. */
if (naddrs <= 1 && !changed)
return SM_SPLIT_NONE;
/* sort the addresses by queue group */
addrs = sm_rpool_malloc_x(e->e_rpool, naddrs * sizeof(ADDRESS *));
for (i = 0, q = e->e_sendqueue; q != NULL; q = q->q_next)
{
if (QS_IS_DEAD(q->q_state))
continue;
addrs[i++] = q;
}
qsort(addrs, naddrs, sizeof(ADDRESS *), q_qgrp_compare);
/* split into multiple envelopes, by queue group */
nsplits = 0;
es = NULL;
e->e_sendqueue = NULL;
for (i = 0; i < naddrs; ++i)
{
if (i == naddrs - 1 || addrs[i]->q_qgrp != addrs[i + 1]->q_qgrp)
addrs[i]->q_next = NULL;
else
addrs[i]->q_next = addrs[i + 1];
/* same queue group as original envelope? */
if (addrs[i]->q_qgrp == e->e_qgrp)
{
if (e->e_sendqueue == NULL)
e->e_sendqueue = addrs[i];
continue;
}
/* different queue group than original envelope */
if (es == NULL || addrs[i]->q_qgrp != es->e_qgrp)
{
ee = split_env(e, addrs[i], addrs[i]->q_qgrp, NOQDIR);
es = ee;
splits[nsplits++] = ee;
}
}
/* no splits? return right now. */
if (nsplits <= 0)
return SM_SPLIT_NONE;
/* assign a queue directory to each additional envelope */
for (i = 0; i < nsplits; ++i)
{
es = splits[i];
#if 0
es->e_qdir = pickqdir(Queue[es->e_qgrp], es->e_msgsize, es);
#endif /* 0 */
if (!setnewqueue(es))
goto failure;
}
/* sort the additional envelopes by queue file system */
qsort(splits, nsplits, sizeof(ENVELOPE *), e_filesys_compare);
/* create data files for each additional envelope */
if (!dup_df(e, splits[0]))
{
i = 0;
goto failure;
}
for (i = 1; i < nsplits; ++i)
{
/* copy or link to the previous data file */
if (!dup_df(splits[i - 1], splits[i]))
goto failure;
}
/* success: prepend the new envelopes to the e->e_sibling list */
for (i = 0; i < nsplits; ++i)
{
es = splits[i];
es->e_sibling = e->e_sibling;
e->e_sibling = es;
}
return SM_SPLIT_NEW(nsplits);
/* failure: clean up */
failure:
if (i > 0)
{
int j;
for (j = 0; j < i; j++)
(void) unlink(queuename(splits[j], DATAFL_LETTER));
}
e->e_sendqueue = addrs[0];
for (i = 0; i < naddrs - 1; ++i)
addrs[i]->q_next = addrs[i + 1];
addrs[naddrs - 1]->q_next = NULL;
return SM_SPLIT_FAIL;
}
/*
** SPLIT_WITHIN_QUEUE
**
** Split an envelope with multiple recipients into several
** envelopes within the same queue directory, if the number of
** recipients exceeds the limit for the queue group.
**
** Parameters:
** e -- envelope.
**
** Results:
** SM_SPLIT_FAIL on failure
** SM_SPLIT_NONE if no splitting occurred,
** or 1 + the number of additional envelopes created.
*/
#define SPLIT_LOG_LEVEL 8
static int split_within_queue __P((ENVELOPE *));
static int
split_within_queue(e)
ENVELOPE *e;
{
int maxrcpt, nrcpt, ndead, nsplit, i;
int j, l;
char *lsplits;
ADDRESS *q, **addrs;
ENVELOPE *ee, *firstsibling;
if (!ISVALIDQGRP(e->e_qgrp) || bitset(EF_SPLIT, e->e_flags))
return SM_SPLIT_NONE;
/* don't bother if there is no recipient limit */
maxrcpt = Queue[e->e_qgrp]->qg_maxrcpt;
if (maxrcpt <= 0)
return SM_SPLIT_NONE;
/* count recipients */
nrcpt = 0;
for (q = e->e_sendqueue; q != NULL; q = q->q_next)
{
if (QS_IS_DEAD(q->q_state))
continue;
++nrcpt;
}
if (nrcpt <= maxrcpt)
return SM_SPLIT_NONE;
/*
** Preserve the recipient list
** so that we can restore it in case of error.
** (But we discard dead addresses.)
*/
addrs = sm_rpool_malloc_x(e->e_rpool, nrcpt * sizeof(ADDRESS *));
for (i = 0, q = e->e_sendqueue; q != NULL; q = q->q_next)
{
if (QS_IS_DEAD(q->q_state))
continue;
addrs[i++] = q;
}
/*
** Partition the recipient list so that bad and sent addresses
** come first. These will go with the original envelope, and
** do not count towards the maxrcpt limit.
** addrs[] does not contain QS_IS_DEAD() addresses.
*/
ndead = 0;
for (i = 0; i < nrcpt; ++i)
{
if (QS_IS_BADADDR(addrs[i]->q_state) ||
QS_IS_SENT(addrs[i]->q_state) ||
QS_IS_DEAD(addrs[i]->q_state)) /* for paranoia's sake */
{
if (i > ndead)
{
ADDRESS *tmp = addrs[i];
addrs[i] = addrs[ndead];
addrs[ndead] = tmp;
}
++ndead;
}
}
/* Check if no splitting required. */
if (nrcpt - ndead <= maxrcpt)
return SM_SPLIT_NONE;
/* fix links */
for (i = 0; i < nrcpt - 1; ++i)
addrs[i]->q_next = addrs[i + 1];
addrs[nrcpt - 1]->q_next = NULL;
e->e_sendqueue = addrs[0];
/* prepare buffer for logging */
if (LogLevel > SPLIT_LOG_LEVEL)
{
l = MAXLINE;
lsplits = sm_malloc(l);
if (lsplits != NULL)
*lsplits = '\0';
j = 0;
}
else
{
/* get rid of stupid compiler warnings */
lsplits = NULL;
j = l = 0;
}
/* split the envelope */
firstsibling = e->e_sibling;
i = maxrcpt + ndead;
nsplit = 0;
for (;;)
{
addrs[i - 1]->q_next = NULL;
ee = split_env(e, addrs[i], e->e_qgrp, e->e_qdir);
if (!dup_df(e, ee))
{
ee = firstsibling;
while (ee != NULL)
{
(void) unlink(queuename(ee, DATAFL_LETTER));
ee = ee->e_sibling;
}
/* Error. Restore e's sibling & recipient lists. */
e->e_sibling = firstsibling;
for (i = 0; i < nrcpt - 1; ++i)
addrs[i]->q_next = addrs[i + 1];
if (lsplits != NULL)
sm_free(lsplits);
return SM_SPLIT_FAIL;
}
/* prepend the new envelope to e->e_sibling */
ee->e_sibling = e->e_sibling;
e->e_sibling = ee;
++nsplit;
if (LogLevel > SPLIT_LOG_LEVEL && lsplits != NULL)
{
if (j >= l - strlen(ee->e_id) - 3)
{
char *p;
l += MAXLINE;
p = sm_realloc(lsplits, l);
if (p == NULL)
{
/* let's try to get this done */
sm_free(lsplits);
lsplits = NULL;
}
else
lsplits = p;
}
if (lsplits != NULL)
{
if (j == 0)
j += sm_strlcat(lsplits + j,
ee->e_id,
l - j);
else
j += sm_strlcat2(lsplits + j,
"; ",
ee->e_id,
l - j);
SM_ASSERT(j < l);
}
}
if (nrcpt - i <= maxrcpt)
break;
i += maxrcpt;
}
if (LogLevel > SPLIT_LOG_LEVEL && lsplits != NULL)
{
if (nsplit > 0)
{
sm_syslog(LOG_NOTICE, e->e_id,
"split: maxrcpts=%d, rcpts=%d, count=%d, id%s=%s",
maxrcpt, nrcpt - ndead, nsplit,
nsplit > 1 ? "s" : "", lsplits);
}
sm_free(lsplits);
}
return SM_SPLIT_NEW(nsplit);
}
/*
** SPLIT_BY_RECIPIENT
**
** Split an envelope with multiple recipients into multiple
** envelopes as required by the sendmail configuration.
**
** Parameters:
** e -- envelope.
**
** Results:
** Returns true on success, false on failure.
**
** Side Effects:
** see split_across_queue_groups(), split_within_queue(e)
*/
bool
split_by_recipient(e)
ENVELOPE *e;
{
int split, n, i, j, l;
char *lsplits;
ENVELOPE *ee, *next, *firstsibling;
if (OpMode == SM_VERIFY || !ISVALIDQGRP(e->e_qgrp) ||
bitset(EF_SPLIT, e->e_flags))
return true;
n = split_across_queue_groups(e);
if (n == SM_SPLIT_FAIL)
return false;
firstsibling = ee = e->e_sibling;
if (n > 1 && LogLevel > SPLIT_LOG_LEVEL)
{
l = MAXLINE;
lsplits = sm_malloc(l);
if (lsplits != NULL)
*lsplits = '\0';
j = 0;
}
else
{
/* get rid of stupid compiler warnings */
lsplits = NULL;
j = l = 0;
}
for (i = 1; i < n; ++i)
{
next = ee->e_sibling;
if (split_within_queue(ee) == SM_SPLIT_FAIL)
{
e->e_sibling = firstsibling;
return false;
}
ee->e_flags |= EF_SPLIT;
if (LogLevel > SPLIT_LOG_LEVEL && lsplits != NULL)
{
if (j >= l - strlen(ee->e_id) - 3)
{
char *p;
l += MAXLINE;
p = sm_realloc(lsplits, l);
if (p == NULL)
{
/* let's try to get this done */
sm_free(lsplits);
lsplits = NULL;
}
else
lsplits = p;
}
if (lsplits != NULL)
{
if (j == 0)
j += sm_strlcat(lsplits + j,
ee->e_id, l - j);
else
j += sm_strlcat2(lsplits + j, "; ",
ee->e_id, l - j);
SM_ASSERT(j < l);
}
}
ee = next;
}
if (LogLevel > SPLIT_LOG_LEVEL && lsplits != NULL && n > 1)
{
sm_syslog(LOG_NOTICE, e->e_id, "split: count=%d, id%s=%s",
n - 1, n > 2 ? "s" : "", lsplits);
sm_free(lsplits);
}
split = split_within_queue(e) != SM_SPLIT_FAIL;
if (split)
e->e_flags |= EF_SPLIT;
return split;
}
/*
** QUARANTINE_QUEUE_ITEM -- {un,}quarantine a single envelope
**
** Add/remove quarantine reason and requeue appropriately.
**
** Parameters:
** qgrp -- queue group for the item
** qdir -- queue directory in the given queue group
** e -- envelope information for the item
** reason -- quarantine reason, NULL means unquarantine.
**
** Results:
** true if item changed, false otherwise
**
** Side Effects:
** Changes quarantine tag in queue file and renames it.
*/
static bool
quarantine_queue_item(qgrp, qdir, e, reason)
int qgrp;
int qdir;
ENVELOPE *e;
char *reason;
{
bool dirty = false;
bool failing = false;
bool foundq = false;
bool finished = false;
int fd;
int flags;
int oldtype;
int newtype;
int save_errno;
MODE_T oldumask = 0;
SM_FILE_T *oldqfp, *tempqfp;
char *bp;
int bufsize;
char oldqf[MAXPATHLEN];
char tempqf[MAXPATHLEN];
char newqf[MAXPATHLEN];
char buf[MAXLINE];
oldtype = queue_letter(e, ANYQFL_LETTER);
(void) sm_strlcpy(oldqf, queuename(e, ANYQFL_LETTER), sizeof(oldqf));
(void) sm_strlcpy(tempqf, queuename(e, NEWQFL_LETTER), sizeof(tempqf));
/*
** Instead of duplicating all the open
** and lock code here, tell readqf() to
** do that work and return the open
** file pointer in e_lockfp. Note that
** we must release the locks properly when
** we are done.
*/
if (!readqf(e, true))
{
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT,
"Skipping %s\n", qid_printname(e));
return false;
}
oldqfp = e->e_lockfp;
/* open the new queue file */
flags = O_CREAT|O_WRONLY|O_EXCL;
if (bitset(S_IWGRP, QueueFileMode))
oldumask = umask(002);
fd = open(tempqf, flags, QueueFileMode);
if (bitset(S_IWGRP, QueueFileMode))
(void) umask(oldumask);
RELEASE_QUEUE;
if (fd < 0)
{
save_errno = errno;
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT,
"Skipping %s: Could not open %s: %s\n",
qid_printname(e), tempqf,
sm_errstring(save_errno));
(void) sm_io_close(oldqfp, SM_TIME_DEFAULT);
return false;
}
if (!lockfile(fd, tempqf, NULL, LOCK_EX|LOCK_NB))
{
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT,
"Skipping %s: Could not lock %s\n",
qid_printname(e), tempqf);
(void) close(fd);
(void) sm_io_close(oldqfp, SM_TIME_DEFAULT);
return false;
}
tempqfp = sm_io_open(SmFtStdiofd, SM_TIME_DEFAULT, (void *) &fd,
SM_IO_WRONLY_B, NULL);
if (tempqfp == NULL)
{
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT,
"Skipping %s: Could not lock %s\n",
qid_printname(e), tempqf);
(void) close(fd);
(void) sm_io_close(oldqfp, SM_TIME_DEFAULT);
return false;
}
/* Copy the data over, changing the quarantine reason */
while (bufsize = sizeof(buf),
(bp = fgetfolded(buf, &bufsize, oldqfp)) != NULL)
{
if (tTd(40, 4))
sm_dprintf("+++++ %s\n", bp);
switch (bp[0])
{
case 'q': /* quarantine reason */
foundq = true;
if (reason == NULL)
{
if (Verbose)
{
(void) sm_io_fprintf(smioout,
SM_TIME_DEFAULT,
"%s: Removed quarantine of \"%s\"\n",
e->e_id, &bp[1]);
}
sm_syslog(LOG_INFO, e->e_id, "unquarantine");
dirty = true;
}
else if (strcmp(reason, &bp[1]) == 0)
{
if (Verbose)
{
(void) sm_io_fprintf(smioout,
SM_TIME_DEFAULT,
"%s: Already quarantined with \"%s\"\n",
e->e_id, reason);
}
(void) sm_io_fprintf(tempqfp, SM_TIME_DEFAULT,
"q%s\n", reason);
}
else
{
if (Verbose)
{
(void) sm_io_fprintf(smioout,
SM_TIME_DEFAULT,
"%s: Quarantine changed from \"%s\" to \"%s\"\n",
e->e_id, &bp[1],
reason);
}
(void) sm_io_fprintf(tempqfp, SM_TIME_DEFAULT,
"q%s\n", reason);
sm_syslog(LOG_INFO, e->e_id, "quarantine=%s",
reason);
dirty = true;
}
break;
case 'S':
/*
** If we are quarantining an unquarantined item,
** need to put in a new 'q' line before it's
** too late.
*/
if (!foundq && reason != NULL)
{
if (Verbose)
{
(void) sm_io_fprintf(smioout,
SM_TIME_DEFAULT,
"%s: Quarantined with \"%s\"\n",
e->e_id, reason);
}
(void) sm_io_fprintf(tempqfp, SM_TIME_DEFAULT,
"q%s\n", reason);
sm_syslog(LOG_INFO, e->e_id, "quarantine=%s",
reason);
foundq = true;
dirty = true;
}
/* Copy the line to the new file */
(void) sm_io_fprintf(tempqfp, SM_TIME_DEFAULT,
"%s\n", bp);
break;
case '.':
finished = true;
/* FALLTHROUGH */
default:
/* Copy the line to the new file */
(void) sm_io_fprintf(tempqfp, SM_TIME_DEFAULT,
"%s\n", bp);
break;
}
if (bp != buf)
sm_free(bp);
}
/* Make sure we read the whole old file */
errno = sm_io_error(tempqfp);
if (errno != 0 && errno != SM_IO_EOF)
{
save_errno = errno;
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT,
"Skipping %s: Error reading %s: %s\n",
qid_printname(e), oldqf,
sm_errstring(save_errno));
failing = true;
}
if (!failing && !finished)
{
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT,
"Skipping %s: Incomplete file: %s\n",
qid_printname(e), oldqf);
failing = true;
}
/* Check if we actually changed anything or we can just bail now */
if (!dirty)
{
/* pretend we failed, even though we technically didn't */
failing = true;
}
/* Make sure we wrote things out safely */
if (!failing &&
(sm_io_flush(tempqfp, SM_TIME_DEFAULT) != 0 ||
((SuperSafe == SAFE_REALLY ||
SuperSafe == SAFE_REALLY_POSTMILTER ||
SuperSafe == SAFE_INTERACTIVE) &&
fsync(sm_io_getinfo(tempqfp, SM_IO_WHAT_FD, NULL)) < 0) ||
((errno = sm_io_error(tempqfp)) != 0)))
{
save_errno = errno;
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT,
"Skipping %s: Error writing %s: %s\n",
qid_printname(e), tempqf,
sm_errstring(save_errno));
failing = true;
}
/* Figure out the new filename */
newtype = (reason == NULL ? NORMQF_LETTER : QUARQF_LETTER);
if (oldtype == newtype)
{
/* going to rename tempqf to oldqf */
(void) sm_strlcpy(newqf, oldqf, sizeof(newqf));
}
else
{
/* going to rename tempqf to new name based on newtype */
(void) sm_strlcpy(newqf, queuename(e, newtype), sizeof(newqf));
}
save_errno = 0;
/* rename tempqf to newqf */
if (!failing &&
rename(tempqf, newqf) < 0)
save_errno = (errno == 0) ? EINVAL : errno;
/* Check rename() success */
if (!failing && save_errno != 0)
{
sm_syslog(LOG_DEBUG, e->e_id,
"quarantine_queue_item: rename(%s, %s): %s",
tempqf, newqf, sm_errstring(save_errno));
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT,
"Error renaming %s to %s: %s\n",
tempqf, newqf,
sm_errstring(save_errno));
if (oldtype == newtype)
{
/*
** Bail here since we don't know the state of
** the filesystem and may need to keep tempqf
** for the user to rescue us.
*/
RELEASE_QUEUE;
errno = save_errno;
syserr("!452 Error renaming control file %s", tempqf);
/* NOTREACHED */
}
else
{
/* remove new file (if rename() half completed) */
if (xunlink(newqf) < 0)
{
save_errno = errno;
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT,
"Error removing %s: %s\n",
newqf,
sm_errstring(save_errno));
}
/* tempqf removed below */
failing = true;
}
}
/* If changing file types, need to remove old type */
if (!failing && oldtype != newtype)
{
if (xunlink(oldqf) < 0)
{
save_errno = errno;
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT,
"Error removing %s: %s\n",
oldqf, sm_errstring(save_errno));
}
}
/* see if anything above failed */
if (failing)
{
/* Something failed: remove new file, old file still there */
(void) xunlink(tempqf);
}
/*
** fsync() after file operations to make sure metadata is
** written to disk on filesystems in which renames are
** not guaranteed. It's ok if they fail, mail won't be lost.
*/
if (SuperSafe != SAFE_NO)
{
/* for soft-updates */
(void) fsync(sm_io_getinfo(tempqfp,
SM_IO_WHAT_FD, NULL));
if (!failing)
{
/* for soft-updates */
(void) fsync(sm_io_getinfo(oldqfp,
SM_IO_WHAT_FD, NULL));
}
/* for other odd filesystems */
SYNC_DIR(tempqf, false);
}
/* Close up shop */
RELEASE_QUEUE;
if (tempqfp != NULL)
(void) sm_io_close(tempqfp, SM_TIME_DEFAULT);
if (oldqfp != NULL)
(void) sm_io_close(oldqfp, SM_TIME_DEFAULT);
/* All went well */
return !failing;
}
/*
** QUARANTINE_QUEUE -- {un,}quarantine matching items in the queue
**
** Read all matching queue items, add/remove quarantine
** reason, and requeue appropriately.
**
** Parameters:
** reason -- quarantine reason, "." means unquarantine.
** qgrplimit -- limit to single queue group unless NOQGRP
**
** Results:
** none.
**
** Side Effects:
** Lots of changes to the queue.
*/
void
quarantine_queue(reason, qgrplimit)
char *reason;
int qgrplimit;
{
int changed = 0;
int qgrp;
/* Convert internal representation of unquarantine */
if (reason != NULL && reason[0] == '.' && reason[1] == '\0')
reason = NULL;
if (reason != NULL)
{
/* clean it */
reason = newstr(denlstring(reason, true, true));
}
for (qgrp = 0; qgrp < NumQueue && Queue[qgrp] != NULL; qgrp++)
{
int qdir;
if (qgrplimit != NOQGRP && qgrplimit != qgrp)
continue;
for (qdir = 0; qdir < Queue[qgrp]->qg_numqueues; qdir++)
{
int i;
int nrequests;
if (StopRequest)
stop_sendmail();
nrequests = gatherq(qgrp, qdir, true, NULL, NULL, NULL);
/* first see if there is anything */
if (nrequests <= 0)
{
if (Verbose)
{
(void) sm_io_fprintf(smioout,
SM_TIME_DEFAULT, "%s: no matches\n",
qid_printqueue(qgrp, qdir));
}
continue;
}
if (Verbose)
{
(void) sm_io_fprintf(smioout,
SM_TIME_DEFAULT, "Processing %s:\n",
qid_printqueue(qgrp, qdir));
}
for (i = 0; i < WorkListCount; i++)
{
ENVELOPE e;
if (StopRequest)
stop_sendmail();
/* setup envelope */
clearenvelope(&e, true, sm_rpool_new_x(NULL));
e.e_id = WorkList[i].w_name + 2;
e.e_qgrp = qgrp;
e.e_qdir = qdir;
if (tTd(70, 101))
{
sm_io_fprintf(smioout, SM_TIME_DEFAULT,
"Would do %s\n", e.e_id);
changed++;
}
else if (quarantine_queue_item(qgrp, qdir,
&e, reason))
changed++;
/* clean up */
sm_rpool_free(e.e_rpool);
e.e_rpool = NULL;
}
if (WorkList != NULL)
sm_free(WorkList); /* XXX */
WorkList = NULL;
WorkListSize = 0;
WorkListCount = 0;
}
}
if (Verbose)
{
if (changed == 0)
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT,
"No changes\n");
else
(void) sm_io_fprintf(smioout, SM_TIME_DEFAULT,
"%d change%s\n",
changed,
changed == 1 ? "" : "s");
}
}