Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
/*-
 * Copyright (c) 2012 Andrey V. Elsukov <ae@FreeBSD.org>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <stand.h>
#include <sys/param.h>
#include <sys/diskmbr.h>
#include <sys/disklabel.h>
#include <sys/endian.h>
#include <sys/gpt.h>
#include <sys/stddef.h>
#include <sys/queue.h>
#include <sys/vtoc.h>

#include <fs/cd9660/iso.h>

#include <crc32.h>
#include <part.h>
#include <uuid.h>

#ifdef PART_DEBUG
#define	DEBUG(fmt, args...) printf("%s: " fmt "\n", __func__, ## args)
#else
#define	DEBUG(fmt, args...)
#endif

#ifdef LOADER_GPT_SUPPORT
#define	MAXTBLSZ	64
static const uuid_t gpt_uuid_unused = GPT_ENT_TYPE_UNUSED;
static const uuid_t gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA;
static const uuid_t gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
static const uuid_t gpt_uuid_efi = GPT_ENT_TYPE_EFI;
static const uuid_t gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD;
static const uuid_t gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
static const uuid_t gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS;
static const uuid_t gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
static const uuid_t gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
static const uuid_t gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
#endif

struct pentry {
	struct ptable_entry	part;
	uint64_t		flags;
	union {
		uint8_t bsd;
		uint8_t	mbr;
		uuid_t	gpt;
		uint16_t vtoc8;
	} type;
	STAILQ_ENTRY(pentry)	entry;
};

struct ptable {
	enum ptable_type	type;
	uint16_t		sectorsize;
	uint64_t		sectors;

	STAILQ_HEAD(, pentry)	entries;
};

static struct parttypes {
	enum partition_type	type;
	const char		*desc;
} ptypes[] = {
	{ PART_UNKNOWN,		"Unknown" },
	{ PART_EFI,		"EFI" },
	{ PART_FREEBSD,		"FreeBSD" },
	{ PART_FREEBSD_BOOT,	"FreeBSD boot" },
	{ PART_FREEBSD_NANDFS,	"FreeBSD nandfs" },
	{ PART_FREEBSD_UFS,	"FreeBSD UFS" },
	{ PART_FREEBSD_ZFS,	"FreeBSD ZFS" },
	{ PART_FREEBSD_SWAP,	"FreeBSD swap" },
	{ PART_FREEBSD_VINUM,	"FreeBSD vinum" },
	{ PART_LINUX,		"Linux" },
	{ PART_LINUX_SWAP,	"Linux swap" },
	{ PART_DOS,		"DOS/Windows" },
	{ PART_ISO9660,		"ISO9660" },
};

const char *
parttype2str(enum partition_type type)
{
	size_t i;

	for (i = 0; i < nitems(ptypes); i++)
		if (ptypes[i].type == type)
			return (ptypes[i].desc);
	return (ptypes[0].desc);
}

#ifdef LOADER_GPT_SUPPORT
static void
uuid_letoh(uuid_t *uuid)
{

	uuid->time_low = le32toh(uuid->time_low);
	uuid->time_mid = le16toh(uuid->time_mid);
	uuid->time_hi_and_version = le16toh(uuid->time_hi_and_version);
}

static enum partition_type
gpt_parttype(uuid_t type)
{

	if (uuid_equal(&type, &gpt_uuid_efi, NULL))
		return (PART_EFI);
	else if (uuid_equal(&type, &gpt_uuid_ms_basic_data, NULL))
		return (PART_DOS);
	else if (uuid_equal(&type, &gpt_uuid_freebsd_boot, NULL))
		return (PART_FREEBSD_BOOT);
	else if (uuid_equal(&type, &gpt_uuid_freebsd_ufs, NULL))
		return (PART_FREEBSD_UFS);
	else if (uuid_equal(&type, &gpt_uuid_freebsd_zfs, NULL))
		return (PART_FREEBSD_ZFS);
	else if (uuid_equal(&type, &gpt_uuid_freebsd_swap, NULL))
		return (PART_FREEBSD_SWAP);
	else if (uuid_equal(&type, &gpt_uuid_freebsd_vinum, NULL))
		return (PART_FREEBSD_VINUM);
	else if (uuid_equal(&type, &gpt_uuid_freebsd_nandfs, NULL))
		return (PART_FREEBSD_NANDFS);
	else if (uuid_equal(&type, &gpt_uuid_freebsd, NULL))
		return (PART_FREEBSD);
	return (PART_UNKNOWN);
}

static struct gpt_hdr *
gpt_checkhdr(struct gpt_hdr *hdr, uint64_t lba_self, uint64_t lba_last,
    uint16_t sectorsize)
{
	uint32_t sz, crc;

	if (memcmp(hdr->hdr_sig, GPT_HDR_SIG, sizeof(hdr->hdr_sig)) != 0) {
		DEBUG("no GPT signature");
		return (NULL);
	}
	sz = le32toh(hdr->hdr_size);
	if (sz < 92 || sz > sectorsize) {
		DEBUG("invalid GPT header size: %d", sz);
		return (NULL);
	}
	crc = le32toh(hdr->hdr_crc_self);
	hdr->hdr_crc_self = 0;
	if (crc32(hdr, sz) != crc) {
		DEBUG("GPT header's CRC doesn't match");
		return (NULL);
	}
	hdr->hdr_crc_self = crc;
	hdr->hdr_revision = le32toh(hdr->hdr_revision);
	if (hdr->hdr_revision < GPT_HDR_REVISION) {
		DEBUG("unsupported GPT revision %d", hdr->hdr_revision);
		return (NULL);
	}
	hdr->hdr_lba_self = le64toh(hdr->hdr_lba_self);
	if (hdr->hdr_lba_self != lba_self) {
		DEBUG("self LBA doesn't match");
		return (NULL);
	}
	hdr->hdr_lba_alt = le64toh(hdr->hdr_lba_alt);
	if (hdr->hdr_lba_alt == hdr->hdr_lba_self) {
		DEBUG("invalid alternate LBA");
		return (NULL);
	}
	hdr->hdr_entries = le32toh(hdr->hdr_entries);
	hdr->hdr_entsz = le32toh(hdr->hdr_entsz);
	if (hdr->hdr_entries == 0 ||
	    hdr->hdr_entsz < sizeof(struct gpt_ent) ||
	    sectorsize % hdr->hdr_entsz != 0) {
		DEBUG("invalid entry size or number of entries");
		return (NULL);
	}
	hdr->hdr_lba_start = le64toh(hdr->hdr_lba_start);
	hdr->hdr_lba_end = le64toh(hdr->hdr_lba_end);
	hdr->hdr_lba_table = le64toh(hdr->hdr_lba_table);
	hdr->hdr_crc_table = le32toh(hdr->hdr_crc_table);
	uuid_letoh(&hdr->hdr_uuid);
	return (hdr);
}

static int
gpt_checktbl(const struct gpt_hdr *hdr, uint8_t *tbl, size_t size,
    uint64_t lba_last)
{
	struct gpt_ent *ent;
	uint32_t i, cnt;

	cnt = size / hdr->hdr_entsz;
	if (hdr->hdr_entries <= cnt) {
		cnt = hdr->hdr_entries;
		/* Check CRC only when buffer size is enough for table. */
		if (hdr->hdr_crc_table !=
		    crc32(tbl, hdr->hdr_entries * hdr->hdr_entsz)) {
			DEBUG("GPT table's CRC doesn't match");
			return (-1);
		}
	}
	for (i = 0; i < cnt; i++) {
		ent = (struct gpt_ent *)(tbl + i * hdr->hdr_entsz);
		uuid_letoh(&ent->ent_type);
		if (uuid_equal(&ent->ent_type, &gpt_uuid_unused, NULL))
			continue;
		ent->ent_lba_start = le64toh(ent->ent_lba_start);
		ent->ent_lba_end = le64toh(ent->ent_lba_end);
	}
	return (0);
}

static struct ptable *
ptable_gptread(struct ptable *table, void *dev, diskread_t dread)
{
	struct pentry *entry;
	struct gpt_hdr *phdr, hdr;
	struct gpt_ent *ent;
	uint8_t *buf, *tbl;
	uint64_t offset;
	int pri, sec;
	size_t size, i;

	buf = malloc(table->sectorsize);
	if (buf == NULL)
		return (NULL);
	tbl = malloc(table->sectorsize * MAXTBLSZ);
	if (tbl == NULL) {
		free(buf);
		return (NULL);
	}
	/* Read the primary GPT header. */
	if (dread(dev, buf, 1, 1) != 0) {
		ptable_close(table);
		table = NULL;
		goto out;
	}
	pri = sec = 0;
	/* Check the primary GPT header. */
	phdr = gpt_checkhdr((struct gpt_hdr *)buf, 1, table->sectors - 1,
	    table->sectorsize);
	if (phdr != NULL) {
		/* Read the primary GPT table. */
		size = MIN(MAXTBLSZ,
		    howmany(phdr->hdr_entries * phdr->hdr_entsz,
		        table->sectorsize));
		if (dread(dev, tbl, size, phdr->hdr_lba_table) == 0 &&
		    gpt_checktbl(phdr, tbl, size * table->sectorsize,
		    table->sectors - 1) == 0) {
			memcpy(&hdr, phdr, sizeof(hdr));
			pri = 1;
		}
	}
	offset = pri ? hdr.hdr_lba_alt: table->sectors - 1;
	/* Read the backup GPT header. */
	if (dread(dev, buf, 1, offset) != 0)
		phdr = NULL;
	else
		phdr = gpt_checkhdr((struct gpt_hdr *)buf, offset,
		    table->sectors - 1, table->sectorsize);
	if (phdr != NULL) {
		/*
		 * Compare primary and backup headers.
		 * If they are equal, then we do not need to read backup
		 * table. If they are different, then prefer backup header
		 * and try to read backup table.
		 */
		if (pri == 0 ||
		    uuid_equal(&hdr.hdr_uuid, &phdr->hdr_uuid, NULL) == 0 ||
		    hdr.hdr_revision != phdr->hdr_revision ||
		    hdr.hdr_size != phdr->hdr_size ||
		    hdr.hdr_lba_start != phdr->hdr_lba_start ||
		    hdr.hdr_lba_end != phdr->hdr_lba_end ||
		    hdr.hdr_entries != phdr->hdr_entries ||
		    hdr.hdr_entsz != phdr->hdr_entsz ||
		    hdr.hdr_crc_table != phdr->hdr_crc_table) {
			/* Read the backup GPT table. */
			size = MIN(MAXTBLSZ,
				   howmany(phdr->hdr_entries * phdr->hdr_entsz,
				       table->sectorsize));
			if (dread(dev, tbl, size, phdr->hdr_lba_table) == 0 &&
			    gpt_checktbl(phdr, tbl, size * table->sectorsize,
			    table->sectors - 1) == 0) {
				memcpy(&hdr, phdr, sizeof(hdr));
				sec = 1;
			}
		}
	}
	if (pri == 0 && sec == 0) {
		/* Both primary and backup tables are invalid. */
		table->type = PTABLE_NONE;
		goto out;
	}
	DEBUG("GPT detected");
	size = MIN(hdr.hdr_entries * hdr.hdr_entsz,
	    MAXTBLSZ * table->sectorsize);

	/*
	 * If the disk's sector count is smaller than the sector count recorded
	 * in the disk's GPT table header, set the table->sectors to the value
	 * recorded in GPT tables. This is done to work around buggy firmware
	 * that returns truncated disk sizes.
	 *
	 * Note, this is still not a foolproof way to get disk's size. For
	 * example, an image file can be truncated when copied to smaller media.
	 */
	if (hdr.hdr_lba_alt + 1 > table->sectors)
		table->sectors = hdr.hdr_lba_alt + 1;

	for (i = 0; i < size / hdr.hdr_entsz; i++) {
		ent = (struct gpt_ent *)(tbl + i * hdr.hdr_entsz);
		if (uuid_equal(&ent->ent_type, &gpt_uuid_unused, NULL))
			continue;

		/* Simple sanity checks. */
		if (ent->ent_lba_start < hdr.hdr_lba_start ||
		    ent->ent_lba_end > hdr.hdr_lba_end ||
		    ent->ent_lba_start > ent->ent_lba_end)
			continue;

		entry = malloc(sizeof(*entry));
		if (entry == NULL)
			break;
		entry->part.start = ent->ent_lba_start;
		entry->part.end = ent->ent_lba_end;
		entry->part.index = i + 1;
		entry->part.type = gpt_parttype(ent->ent_type);
		entry->flags = le64toh(ent->ent_attr);
		memcpy(&entry->type.gpt, &ent->ent_type, sizeof(uuid_t));
		STAILQ_INSERT_TAIL(&table->entries, entry, entry);
		DEBUG("new GPT partition added");
	}
out:
	free(buf);
	free(tbl);
	return (table);
}
#endif /* LOADER_GPT_SUPPORT */

#ifdef LOADER_MBR_SUPPORT
/* We do not need to support too many EBR partitions in the loader */
#define	MAXEBRENTRIES		8
static enum partition_type
mbr_parttype(uint8_t type)
{

	switch (type) {
	case DOSPTYP_386BSD:
		return (PART_FREEBSD);
	case DOSPTYP_LINSWP:
		return (PART_LINUX_SWAP);
	case DOSPTYP_LINUX:
		return (PART_LINUX);
	case 0x01:
	case 0x04:
	case 0x06:
	case 0x07:
	case 0x0b:
	case 0x0c:
	case 0x0e:
		return (PART_DOS);
	}
	return (PART_UNKNOWN);
}

static struct ptable *
ptable_ebrread(struct ptable *table, void *dev, diskread_t dread)
{
	struct dos_partition *dp;
	struct pentry *e1, *entry;
	uint32_t start, end, offset;
	u_char *buf;
	int i, index;

	STAILQ_FOREACH(e1, &table->entries, entry) {
		if (e1->type.mbr == DOSPTYP_EXT ||
		    e1->type.mbr == DOSPTYP_EXTLBA)
			break;
	}
	if (e1 == NULL)
		return (table);
	index = 5;
	offset = e1->part.start;
	buf = malloc(table->sectorsize);
	if (buf == NULL)
		return (table);
	DEBUG("EBR detected");
	for (i = 0; i < MAXEBRENTRIES; i++) {
#if 0	/* Some BIOSes return an incorrect number of sectors */
		if (offset >= table->sectors)
			break;
#endif
		if (dread(dev, buf, 1, offset) != 0)
			break;
		dp = (struct dos_partition *)(buf + DOSPARTOFF);
		if (dp[0].dp_typ == 0)
			break;
		start = le32toh(dp[0].dp_start);
		if (dp[0].dp_typ == DOSPTYP_EXT &&
		    dp[1].dp_typ == 0) {
			offset = e1->part.start + start;
			continue;
		}
		end = le32toh(dp[0].dp_size);
		entry = malloc(sizeof(*entry));
		if (entry == NULL)
			break;
		entry->part.start = offset + start;
		entry->part.end = entry->part.start + end - 1;
		entry->part.index = index++;
		entry->part.type = mbr_parttype(dp[0].dp_typ);
		entry->flags = dp[0].dp_flag;
		entry->type.mbr = dp[0].dp_typ;
		STAILQ_INSERT_TAIL(&table->entries, entry, entry);
		DEBUG("new EBR partition added");
		if (dp[1].dp_typ == 0)
			break;
		offset = e1->part.start + le32toh(dp[1].dp_start);
	}
	free(buf);
	return (table);
}
#endif /* LOADER_MBR_SUPPORT */

static enum partition_type
bsd_parttype(uint8_t type)
{

	switch (type) {
	case FS_NANDFS:
		return (PART_FREEBSD_NANDFS);
	case FS_SWAP:
		return (PART_FREEBSD_SWAP);
	case FS_BSDFFS:
		return (PART_FREEBSD_UFS);
	case FS_VINUM:
		return (PART_FREEBSD_VINUM);
	case FS_ZFS:
		return (PART_FREEBSD_ZFS);
	}
	return (PART_UNKNOWN);
}

static struct ptable *
ptable_bsdread(struct ptable *table, void *dev, diskread_t dread)
{
	struct disklabel *dl;
	struct partition *part;
	struct pentry *entry;
	uint8_t *buf;
	uint32_t raw_offset;
	int i;

	if (table->sectorsize < sizeof(struct disklabel)) {
		DEBUG("Too small sectorsize");
		return (table);
	}
	buf = malloc(table->sectorsize);
	if (buf == NULL)
		return (table);
	if (dread(dev, buf, 1, 1) != 0) {
		DEBUG("read failed");
		ptable_close(table);
		table = NULL;
		goto out;
	}
	dl = (struct disklabel *)buf;
	if (le32toh(dl->d_magic) != DISKMAGIC &&
	    le32toh(dl->d_magic2) != DISKMAGIC)
		goto out;
	if (le32toh(dl->d_secsize) != table->sectorsize) {
		DEBUG("unsupported sector size");
		goto out;
	}
	dl->d_npartitions = le16toh(dl->d_npartitions);
	if (dl->d_npartitions > 20 || dl->d_npartitions < 8) {
		DEBUG("invalid number of partitions");
		goto out;
	}
	DEBUG("BSD detected");
	part = &dl->d_partitions[0];
	raw_offset = le32toh(part[RAW_PART].p_offset);
	for (i = 0; i < dl->d_npartitions; i++, part++) {
		if (i == RAW_PART)
			continue;
		if (part->p_size == 0)
			continue;
		entry = malloc(sizeof(*entry));
		if (entry == NULL)
			break;
		entry->part.start = le32toh(part->p_offset) - raw_offset;
		entry->part.end = entry->part.start +
		    le32toh(part->p_size) - 1;
		entry->part.type = bsd_parttype(part->p_fstype);
		entry->part.index = i; /* starts from zero */
		entry->type.bsd = part->p_fstype;
		STAILQ_INSERT_TAIL(&table->entries, entry, entry);
		DEBUG("new BSD partition added");
	}
	table->type = PTABLE_BSD;
out:
	free(buf);
	return (table);
}

#ifdef LOADER_VTOC8_SUPPORT
static enum partition_type
vtoc8_parttype(uint16_t type)
{

	switch (type) {
	case VTOC_TAG_FREEBSD_NANDFS:
		return (PART_FREEBSD_NANDFS);
	case VTOC_TAG_FREEBSD_SWAP:
		return (PART_FREEBSD_SWAP);
	case VTOC_TAG_FREEBSD_UFS:
		return (PART_FREEBSD_UFS);
	case VTOC_TAG_FREEBSD_VINUM:
		return (PART_FREEBSD_VINUM);
	case VTOC_TAG_FREEBSD_ZFS:
		return (PART_FREEBSD_ZFS);
	}
	return (PART_UNKNOWN);
}

static struct ptable *
ptable_vtoc8read(struct ptable *table, void *dev, diskread_t dread)
{
	struct pentry *entry;
	struct vtoc8 *dl;
	uint8_t *buf;
	uint16_t sum, heads, sectors;
	int i;

	if (table->sectorsize != sizeof(struct vtoc8))
		return (table);
	buf = malloc(table->sectorsize);
	if (buf == NULL)
		return (table);
	if (dread(dev, buf, 1, 0) != 0) {
		DEBUG("read failed");
		ptable_close(table);
		table = NULL;
		goto out;
	}
	dl = (struct vtoc8 *)buf;
	/* Check the sum */
	for (i = sum = 0; i < sizeof(struct vtoc8); i += sizeof(sum))
		sum ^= be16dec(buf + i);
	if (sum != 0) {
		DEBUG("incorrect checksum");
		goto out;
	}
	if (be16toh(dl->nparts) != VTOC8_NPARTS) {
		DEBUG("invalid number of entries");
		goto out;
	}
	sectors = be16toh(dl->nsecs);
	heads = be16toh(dl->nheads);
	if (sectors * heads == 0) {
		DEBUG("invalid geometry");
		goto out;
	}
	DEBUG("VTOC8 detected");
	for (i = 0; i < VTOC8_NPARTS; i++) {
		dl->part[i].tag = be16toh(dl->part[i].tag);
		if (i == VTOC_RAW_PART ||
		    dl->part[i].tag == VTOC_TAG_UNASSIGNED)
			continue;
		entry = malloc(sizeof(*entry));
		if (entry == NULL)
			break;
		entry->part.start = be32toh(dl->map[i].cyl) * heads * sectors;
		entry->part.end = be32toh(dl->map[i].nblks) +
		    entry->part.start - 1;
		entry->part.type = vtoc8_parttype(dl->part[i].tag);
		entry->part.index = i; /* starts from zero */
		entry->type.vtoc8 = dl->part[i].tag;
		STAILQ_INSERT_TAIL(&table->entries, entry, entry);
		DEBUG("new VTOC8 partition added");
	}
	table->type = PTABLE_VTOC8;
out:
	free(buf);
	return (table);

}
#endif /* LOADER_VTOC8_SUPPORT */

#define cdb2devb(bno)   ((bno) * ISO_DEFAULT_BLOCK_SIZE / table->sectorsize)

static struct ptable *
ptable_iso9660read(struct ptable *table, void *dev, diskread_t dread)
{
	uint8_t *buf;
	struct iso_primary_descriptor *vd;
	struct pentry *entry;

	buf = malloc(table->sectorsize);
	if (buf == NULL)
		return (table);
		
	if (dread(dev, buf, 1, cdb2devb(16)) != 0) {
		DEBUG("read failed");
		ptable_close(table);
		table = NULL;
		goto out;
	}
	vd = (struct iso_primary_descriptor *)buf;
	if (bcmp(vd->id, ISO_STANDARD_ID, sizeof vd->id) != 0)
		goto out;

	entry = malloc(sizeof(*entry));
	if (entry == NULL)
		goto out;
	entry->part.start = 0;
	entry->part.end = table->sectors;
	entry->part.type = PART_ISO9660;
	entry->part.index = 0;
	STAILQ_INSERT_TAIL(&table->entries, entry, entry);

	table->type = PTABLE_ISO9660;

out:
	free(buf);
	return (table);
}

struct ptable *
ptable_open(void *dev, uint64_t sectors, uint16_t sectorsize,
    diskread_t *dread)
{
	struct dos_partition *dp;
	struct ptable *table;
	uint8_t *buf;
	int i, count;
#ifdef LOADER_MBR_SUPPORT
	struct pentry *entry;
	uint32_t start, end;
	int has_ext;
#endif
	table = NULL;
	buf = malloc(sectorsize);
	if (buf == NULL)
		return (NULL);
	/* First, read the MBR. */
	if (dread(dev, buf, 1, DOSBBSECTOR) != 0) {
		DEBUG("read failed");
		goto out;
	}

	table = malloc(sizeof(*table));
	if (table == NULL)
		goto out;
	table->sectors = sectors;
	table->sectorsize = sectorsize;
	table->type = PTABLE_NONE;
	STAILQ_INIT(&table->entries);

	if (ptable_iso9660read(table, dev, dread) != NULL) {
		if (table->type == PTABLE_ISO9660)
			goto out;
	}

#ifdef LOADER_VTOC8_SUPPORT
	if (be16dec(buf + offsetof(struct vtoc8, magic)) == VTOC_MAGIC) {
		if (ptable_vtoc8read(table, dev, dread) == NULL) {
			/* Read error. */
			table = NULL;
			goto out;
		} else if (table->type == PTABLE_VTOC8)
			goto out;
	}
#endif
	/* Check the BSD label. */
	if (ptable_bsdread(table, dev, dread) == NULL) { /* Read error. */
		table = NULL;
		goto out;
	} else if (table->type == PTABLE_BSD)
		goto out;

#if defined(LOADER_GPT_SUPPORT) || defined(LOADER_MBR_SUPPORT)
	/* Check the MBR magic. */
	if (buf[DOSMAGICOFFSET] != 0x55 ||
	    buf[DOSMAGICOFFSET + 1] != 0xaa) {
		DEBUG("magic sequence not found");
#if defined(LOADER_GPT_SUPPORT)
		/* There is no PMBR, check that we have backup GPT */
		table->type = PTABLE_GPT;
		table = ptable_gptread(table, dev, dread);
#endif
		goto out;
	}
	/* Check that we have PMBR. Also do some validation. */
	dp = (struct dos_partition *)(buf + DOSPARTOFF);
	for (i = 0, count = 0; i < NDOSPART; i++) {
		if (dp[i].dp_flag != 0 && dp[i].dp_flag != 0x80) {
			DEBUG("invalid partition flag %x", dp[i].dp_flag);
			goto out;
		}
#ifdef LOADER_GPT_SUPPORT
		if (dp[i].dp_typ == DOSPTYP_PMBR) {
			table->type = PTABLE_GPT;
			DEBUG("PMBR detected");
		}
#endif
		if (dp[i].dp_typ != 0)
			count++;
	}
	/* Do we have some invalid values? */
	if (table->type == PTABLE_GPT && count > 1) {
		if (dp[1].dp_typ != DOSPTYP_HFS) {
			table->type = PTABLE_NONE;
			DEBUG("Incorrect PMBR, ignore it");
		} else {
			DEBUG("Bootcamp detected");
		}
	}
#ifdef LOADER_GPT_SUPPORT
	if (table->type == PTABLE_GPT) {
		table = ptable_gptread(table, dev, dread);
		goto out;
	}
#endif
#ifdef LOADER_MBR_SUPPORT
	/* Read MBR. */
	DEBUG("MBR detected");
	table->type = PTABLE_MBR;
	for (i = has_ext = 0; i < NDOSPART; i++) {
		if (dp[i].dp_typ == 0)
			continue;
		start = le32dec(&(dp[i].dp_start));
		end = le32dec(&(dp[i].dp_size));
		if (start == 0 || end == 0)
			continue;
#if 0	/* Some BIOSes return an incorrect number of sectors */
		if (start + end - 1 >= sectors)
			continue;	/* XXX: ignore */
#endif
		if (dp[i].dp_typ == DOSPTYP_EXT ||
		    dp[i].dp_typ == DOSPTYP_EXTLBA)
			has_ext = 1;
		entry = malloc(sizeof(*entry));
		if (entry == NULL)
			break;
		entry->part.start = start;
		entry->part.end = start + end - 1;
		entry->part.index = i + 1;
		entry->part.type = mbr_parttype(dp[i].dp_typ);
		entry->flags = dp[i].dp_flag;
		entry->type.mbr = dp[i].dp_typ;
		STAILQ_INSERT_TAIL(&table->entries, entry, entry);
		DEBUG("new MBR partition added");
	}
	if (has_ext) {
		table = ptable_ebrread(table, dev, dread);
		/* FALLTHROUGH */
	}
#endif /* LOADER_MBR_SUPPORT */
#endif /* LOADER_MBR_SUPPORT || LOADER_GPT_SUPPORT */
out:
	free(buf);
	return (table);
}

void
ptable_close(struct ptable *table)
{
	struct pentry *entry;

	while (!STAILQ_EMPTY(&table->entries)) {
		entry = STAILQ_FIRST(&table->entries);
		STAILQ_REMOVE_HEAD(&table->entries, entry);
		free(entry);
	}
	free(table);
}

enum ptable_type
ptable_gettype(const struct ptable *table)
{

	return (table->type);
}

int
ptable_getsize(const struct ptable *table, uint64_t *sizep)
{
	uint64_t tmp = table->sectors * table->sectorsize;

	if (tmp < table->sectors)
		return (EOVERFLOW);

	if (sizep != NULL)
		*sizep = tmp;
	return (0);
}

int
ptable_getpart(const struct ptable *table, struct ptable_entry *part, int index)
{
	struct pentry *entry;

	if (part == NULL || table == NULL)
		return (EINVAL);

	STAILQ_FOREACH(entry, &table->entries, entry) {
		if (entry->part.index != index)
			continue;
		memcpy(part, &entry->part, sizeof(*part));
		return (0);
	}
	return (ENOENT);
}

/*
 * Search for a slice with the following preferences:
 *
 * 1: Active FreeBSD slice
 * 2: Non-active FreeBSD slice
 * 3: Active Linux slice
 * 4: non-active Linux slice
 * 5: Active FAT/FAT32 slice
 * 6: non-active FAT/FAT32 slice
 */
#define	PREF_RAWDISK	0
#define	PREF_FBSD_ACT	1
#define	PREF_FBSD	2
#define	PREF_LINUX_ACT	3
#define	PREF_LINUX	4
#define	PREF_DOS_ACT	5
#define	PREF_DOS	6
#define	PREF_NONE	7
int
ptable_getbestpart(const struct ptable *table, struct ptable_entry *part)
{
	struct pentry *entry, *best;
	int pref, preflevel;

	if (part == NULL || table == NULL)
		return (EINVAL);

	best = NULL;
	preflevel = pref = PREF_NONE;
	STAILQ_FOREACH(entry, &table->entries, entry) {
#ifdef LOADER_MBR_SUPPORT
		if (table->type == PTABLE_MBR) {
			switch (entry->type.mbr) {
			case DOSPTYP_386BSD:
				pref = entry->flags & 0x80 ? PREF_FBSD_ACT:
				    PREF_FBSD;
				break;
			case DOSPTYP_LINUX:
				pref = entry->flags & 0x80 ? PREF_LINUX_ACT:
				    PREF_LINUX;
				break;
			case 0x01:		/* DOS/Windows */
			case 0x04:
			case 0x06:
			case 0x0c:
			case 0x0e:
			case DOSPTYP_FAT32:
				pref = entry->flags & 0x80 ? PREF_DOS_ACT:
				    PREF_DOS;
				break;
			default:
				pref = PREF_NONE;
			}
		}
#endif /* LOADER_MBR_SUPPORT */
#ifdef LOADER_GPT_SUPPORT
		if (table->type == PTABLE_GPT) {
			if (entry->part.type == PART_DOS)
				pref = PREF_DOS;
			else if (entry->part.type == PART_FREEBSD_UFS ||
			    entry->part.type == PART_FREEBSD_ZFS)
				pref = PREF_FBSD;
			else
				pref = PREF_NONE;
		}
#endif /* LOADER_GPT_SUPPORT */
		if (pref < preflevel) {
			preflevel = pref;
			best = entry;
		}
	}
	if (best != NULL) {
		memcpy(part, &best->part, sizeof(*part));
		return (0);
	}
	return (ENOENT);
}

int
ptable_iterate(const struct ptable *table, void *arg, ptable_iterate_t *iter)
{
	struct pentry *entry;
	char name[32];
	int ret = 0;

	name[0] = '\0';
	STAILQ_FOREACH(entry, &table->entries, entry) {
#ifdef LOADER_MBR_SUPPORT
		if (table->type == PTABLE_MBR)
			sprintf(name, "s%d", entry->part.index);
		else
#endif
#ifdef LOADER_GPT_SUPPORT
		if (table->type == PTABLE_GPT)
			sprintf(name, "p%d", entry->part.index);
		else
#endif
#ifdef LOADER_VTOC8_SUPPORT
		if (table->type == PTABLE_VTOC8)
			sprintf(name, "%c", (uint8_t) 'a' +
			    entry->part.index);
		else
#endif
		if (table->type == PTABLE_BSD)
			sprintf(name, "%c", (uint8_t) 'a' +
			    entry->part.index);
		if ((ret = iter(arg, name, &entry->part)) != 0)
			return (ret);
	}
	return (ret);
}