Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
/*-
 * Copyright (C) 2008-2009 Semihalf, Michal Hajduk
 * Copyright (c) 2012, 2013 The FreeBSD Foundation
 * Copyright (c) 2015 Ian Lepore <ian@FreeBSD.org>
 * All rights reserved.
 *
 * Portions of this software were developed by Oleksandr Rybalko
 * under sponsorship from the FreeBSD Foundation.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

/*
 * I2C driver for Freescale i.MX hardware.
 *
 * Note that the hardware is capable of running as both a master and a slave.
 * This driver currently implements only master-mode operations.
 *
 * This driver supports multi-master i2c buses, by detecting bus arbitration
 * loss and returning IIC_EBUSBSY status.  Notably, it does not do any kind of
 * retries if some other master jumps onto the bus and interrupts one of our
 * transfer cycles resulting in arbitration loss in mid-transfer.  The caller
 * must handle retries in a way that makes sense for the slave being addressed.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/gpio.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/module.h>
#include <sys/resource.h>
#include <sys/sysctl.h>

#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>

#include <arm/freescale/imx/imx_ccmvar.h>

#include <dev/iicbus/iiconf.h>
#include <dev/iicbus/iicbus.h>
#include <dev/iicbus/iic_recover_bus.h>
#include "iicbus_if.h"

#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>

#include <dev/fdt/fdt_pinctrl.h>
#include <dev/gpio/gpiobusvar.h>

#define I2C_ADDR_REG		0x00 /* I2C slave address register */
#define I2C_FDR_REG		0x04 /* I2C frequency divider register */
#define I2C_CONTROL_REG		0x08 /* I2C control register */
#define I2C_STATUS_REG		0x0C /* I2C status register */
#define I2C_DATA_REG		0x10 /* I2C data register */
#define I2C_DFSRR_REG		0x14 /* I2C Digital Filter Sampling rate */

#define I2CCR_MEN		(1 << 7) /* Module enable */
#define I2CCR_MSTA		(1 << 5) /* Master/slave mode */
#define I2CCR_MTX		(1 << 4) /* Transmit/receive mode */
#define I2CCR_TXAK		(1 << 3) /* Transfer acknowledge */
#define I2CCR_RSTA		(1 << 2) /* Repeated START */

#define I2CSR_MCF		(1 << 7) /* Data transfer */
#define I2CSR_MASS		(1 << 6) /* Addressed as a slave */
#define I2CSR_MBB		(1 << 5) /* Bus busy */
#define I2CSR_MAL		(1 << 4) /* Arbitration lost */
#define I2CSR_SRW		(1 << 2) /* Slave read/write */
#define I2CSR_MIF		(1 << 1) /* Module interrupt */
#define I2CSR_RXAK		(1 << 0) /* Received acknowledge */

#define I2C_BAUD_RATE_FAST	0x31
#define I2C_BAUD_RATE_DEF	0x3F
#define I2C_DFSSR_DIV		0x10

/*
 * A table of available divisors and the associated coded values to put in the
 * FDR register to achieve that divisor.. There is no algorithmic relationship I
 * can see between divisors and the codes that go into the register.  The table
 * begins and ends with entries that handle insane configuration values.
 */
struct clkdiv {
	u_int divisor;
	u_int regcode;
};
static struct clkdiv clkdiv_table[] = {
        {    0, 0x20 }, {   22, 0x20 }, {   24, 0x21 }, {   26, 0x22 }, 
        {   28, 0x23 }, {   30, 0x00 }, {   32, 0x24 }, {   36, 0x25 }, 
        {   40, 0x26 }, {   42, 0x03 }, {   44, 0x27 }, {   48, 0x28 }, 
        {   52, 0x05 }, {   56, 0x29 }, {   60, 0x06 }, {   64, 0x2a }, 
        {   72, 0x2b }, {   80, 0x2c }, {   88, 0x09 }, {   96, 0x2d }, 
        {  104, 0x0a }, {  112, 0x2e }, {  128, 0x2f }, {  144, 0x0c }, 
        {  160, 0x30 }, {  192, 0x31 }, {  224, 0x32 }, {  240, 0x0f }, 
        {  256, 0x33 }, {  288, 0x10 }, {  320, 0x34 }, {  384, 0x35 }, 
        {  448, 0x36 }, {  480, 0x13 }, {  512, 0x37 }, {  576, 0x14 }, 
        {  640, 0x38 }, {  768, 0x39 }, {  896, 0x3a }, {  960, 0x17 }, 
        { 1024, 0x3b }, { 1152, 0x18 }, { 1280, 0x3c }, { 1536, 0x3d }, 
        { 1792, 0x3e }, { 1920, 0x1b }, { 2048, 0x3f }, { 2304, 0x1c }, 
        { 2560, 0x1d }, { 3072, 0x1e }, { 3840, 0x1f }, {UINT_MAX, 0x1f} 
};

static struct ofw_compat_data compat_data[] = {
	{"fsl,imx6q-i2c",  1},
	{"fsl,imx-i2c",	   1},
	{NULL,             0}
};

struct i2c_softc {
	device_t		dev;
	device_t		iicbus;
	struct resource		*res;
	int			rid;
	sbintime_t		byte_time_sbt;
	int			rb_pinctl_idx;
	gpio_pin_t		rb_sclpin;
	gpio_pin_t 		rb_sdapin;
	u_int			debug;
	u_int			slave;
};

#define DEVICE_DEBUGF(sc, lvl, fmt, args...) \
    if ((lvl) <= (sc)->debug) \
        device_printf((sc)->dev, fmt, ##args)

#define DEBUGF(sc, lvl, fmt, args...) \
    if ((lvl) <= (sc)->debug) \
        printf(fmt, ##args)

static phandle_t i2c_get_node(device_t, device_t);
static int i2c_probe(device_t);
static int i2c_attach(device_t);
static int i2c_detach(device_t);

static int i2c_repeated_start(device_t, u_char, int);
static int i2c_start(device_t, u_char, int);
static int i2c_stop(device_t);
static int i2c_reset(device_t, u_char, u_char, u_char *);
static int i2c_read(device_t, char *, int, int *, int, int);
static int i2c_write(device_t, const char *, int, int *, int);

static device_method_t i2c_methods[] = {
	DEVMETHOD(device_probe,			i2c_probe),
	DEVMETHOD(device_attach,		i2c_attach),
	DEVMETHOD(device_detach,		i2c_detach),

	/* OFW methods */
	DEVMETHOD(ofw_bus_get_node,		i2c_get_node),

	DEVMETHOD(iicbus_callback,		iicbus_null_callback),
	DEVMETHOD(iicbus_repeated_start,	i2c_repeated_start),
	DEVMETHOD(iicbus_start,			i2c_start),
	DEVMETHOD(iicbus_stop,			i2c_stop),
	DEVMETHOD(iicbus_reset,			i2c_reset),
	DEVMETHOD(iicbus_read,			i2c_read),
	DEVMETHOD(iicbus_write,			i2c_write),
	DEVMETHOD(iicbus_transfer,		iicbus_transfer_gen),

	DEVMETHOD_END
};

static driver_t i2c_driver = {
	"imx_i2c",
	i2c_methods,
	sizeof(struct i2c_softc),
};
static devclass_t  i2c_devclass;

DRIVER_MODULE(imx_i2c, simplebus, i2c_driver, i2c_devclass, 0, 0);
DRIVER_MODULE(ofw_iicbus, imx_i2c, ofw_iicbus_driver, ofw_iicbus_devclass, 0, 0);
MODULE_DEPEND(imx_i2c, iicbus, 1, 1, 1);
MODULE_DEPEND(imx_i2c, ofw_iicbus, 1, 1, 1);

static phandle_t
i2c_get_node(device_t bus, device_t dev)
{
	/*
	 * Share controller node with iicbus device
	 */
	return ofw_bus_get_node(bus);
}

static __inline void
i2c_write_reg(struct i2c_softc *sc, bus_size_t off, uint8_t val)
{

	bus_write_1(sc->res, off, val);
}

static __inline uint8_t
i2c_read_reg(struct i2c_softc *sc, bus_size_t off)
{

	return (bus_read_1(sc->res, off));
}

static __inline void
i2c_flag_set(struct i2c_softc *sc, bus_size_t off, uint8_t mask)
{
	uint8_t status;

	status = i2c_read_reg(sc, off);
	status |= mask;
	i2c_write_reg(sc, off, status);
}

/* Wait for bus to become busy or not-busy. */
static int
wait_for_busbusy(struct i2c_softc *sc, int wantbusy)
{
	int retry, srb;

	retry = 1000;
	while (retry --) {
		srb = i2c_read_reg(sc, I2C_STATUS_REG) & I2CSR_MBB;
		if ((srb && wantbusy) || (!srb && !wantbusy))
			return (IIC_NOERR);
		DELAY(1);
	}
	return (IIC_ETIMEOUT);
}

/* Wait for transfer to complete, optionally check RXAK. */
static int
wait_for_xfer(struct i2c_softc *sc, int checkack)
{
	int retry, sr;

	/*
	 * Sleep for about the time it takes to transfer a byte (with precision
	 * set to tolerate 5% oversleep).  We calculate the approximate byte
	 * transfer time when we set the bus speed divisor.  Slaves are allowed
	 * to do clock-stretching so the actual transfer time can be larger, but
	 * this gets the bulk of the waiting out of the way without tying up the
	 * processor the whole time.
	 */
	pause_sbt("imxi2c", sc->byte_time_sbt, sc->byte_time_sbt / 20, 0);

	retry = 10000;
	while (retry --) {
		sr = i2c_read_reg(sc, I2C_STATUS_REG);
		if (sr & I2CSR_MIF) {
                        if (sr & I2CSR_MAL) 
				return (IIC_EBUSERR);
			else if (checkack && (sr & I2CSR_RXAK))
				return (IIC_ENOACK);
			else
				return (IIC_NOERR);
		}
		DELAY(1);
	}
	return (IIC_ETIMEOUT);
}

/*
 * Implement the error handling shown in the state diagram of the imx6 reference
 * manual.  If there was an error, then:
 *  - Clear master mode (MSTA and MTX).
 *  - Wait for the bus to become free or for a timeout to happen.
 *  - Disable the controller.
 */
static int
i2c_error_handler(struct i2c_softc *sc, int error)
{

	if (error != 0) {
		i2c_write_reg(sc, I2C_STATUS_REG, 0);
		i2c_write_reg(sc, I2C_CONTROL_REG, I2CCR_MEN);
		wait_for_busbusy(sc, false);
		i2c_write_reg(sc, I2C_CONTROL_REG, 0);
	}
	return (error);
}

static int
i2c_recover_getsda(void *ctx)
{
	bool active;

	gpio_pin_is_active(((struct i2c_softc *)ctx)->rb_sdapin, &active);
	return (active);
}

static void
i2c_recover_setsda(void *ctx, int value)
{

	gpio_pin_set_active(((struct i2c_softc *)ctx)->rb_sdapin, value);
}

static int
i2c_recover_getscl(void *ctx)
{
	bool active;

	gpio_pin_is_active(((struct i2c_softc *)ctx)->rb_sclpin, &active);
	return (active);

}

static void
i2c_recover_setscl(void *ctx, int value)
{

	gpio_pin_set_active(((struct i2c_softc *)ctx)->rb_sclpin, value);
}

static int
i2c_recover_bus(struct i2c_softc *sc)
{
	struct iicrb_pin_access pins;
	int err;

	/*
	 * If we have gpio pinmux config, reconfigure the pins to gpio mode,
	 * invoke iic_recover_bus which checks for a hung bus and bitbangs a
	 * recovery sequence if necessary, then configure the pins back to i2c
	 * mode (idx 0).
	 */
	if (sc->rb_pinctl_idx == 0)
		return (0);

	fdt_pinctrl_configure(sc->dev, sc->rb_pinctl_idx);

	pins.ctx = sc;
	pins.getsda = i2c_recover_getsda;
	pins.setsda = i2c_recover_setsda;
	pins.getscl = i2c_recover_getscl;
	pins.setscl = i2c_recover_setscl;
	err = iic_recover_bus(&pins);

	fdt_pinctrl_configure(sc->dev, 0);

	return (err);
}

static int
i2c_probe(device_t dev)
{

	if (!ofw_bus_status_okay(dev))
		return (ENXIO);

	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
		return (ENXIO);

	device_set_desc(dev, "Freescale i.MX I2C");

	return (BUS_PROBE_DEFAULT);
}

static int
i2c_attach(device_t dev)
{
	char wrkstr[16];
	struct i2c_softc *sc;
	phandle_t node;
	int err, cfgidx;

	sc = device_get_softc(dev);
	sc->dev = dev;
	sc->rid = 0;

	sc->res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->rid,
	    RF_ACTIVE);
	if (sc->res == NULL) {
		device_printf(dev, "could not allocate resources");
		return (ENXIO);
	}

	sc->iicbus = device_add_child(dev, "iicbus", -1);
	if (sc->iicbus == NULL) {
		device_printf(dev, "could not add iicbus child");
		return (ENXIO);
	}

	/* Set up debug-enable sysctl. */
	SYSCTL_ADD_INT(device_get_sysctl_ctx(sc->dev), 
	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
	    OID_AUTO, "debug", CTLFLAG_RWTUN, &sc->debug, 0,
	    "Enable debug; 1=reads/writes, 2=add starts/stops");

	/*
	 * Set up for bus recovery using gpio pins, if the pinctrl and gpio
	 * properties are present.  This is optional.  If all the config data is
	 * not in place, we just don't do gpio bitbang bus recovery.
	 */
	node = ofw_bus_get_node(sc->dev);

	err = gpio_pin_get_by_ofw_property(dev, node, "scl-gpios",
	    &sc->rb_sclpin);
	if (err != 0)
		goto no_recovery;
	err = gpio_pin_get_by_ofw_property(dev, node, "sda-gpios",
	    &sc->rb_sdapin);
	if (err != 0)
		goto no_recovery;

	/*
	 * Preset the gpio pins to output high (idle bus state).  The signal
	 * won't actually appear on the pins until the bus recovery code changes
	 * the pinmux config from i2c to gpio.
	 */
	gpio_pin_setflags(sc->rb_sclpin, GPIO_PIN_OUTPUT);
	gpio_pin_setflags(sc->rb_sdapin, GPIO_PIN_OUTPUT);
	gpio_pin_set_active(sc->rb_sclpin, true);
	gpio_pin_set_active(sc->rb_sdapin, true);

	/*
	 * Obtain the index of pinctrl node for bus recovery using gpio pins,
	 * then confirm that pinctrl properties exist for that index and for the
	 * default pinctrl-0.  If sc->rb_pinctl_idx is non-zero, the reset code
	 * will also do a bus recovery, so setting this value must be last.
	 */
	err = ofw_bus_find_string_index(node, "pinctrl-names", "gpio", &cfgidx);
	if (err == 0) {
		snprintf(wrkstr, sizeof(wrkstr), "pinctrl-%d", cfgidx);
		if (OF_hasprop(node, "pinctrl-0") && OF_hasprop(node, wrkstr))
			sc->rb_pinctl_idx = cfgidx;
	}

no_recovery:

	/* We don't do a hardware reset here because iicbus_attach() does it. */

	/* Probe and attach the iicbus when interrupts are available. */
	config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev);
	return (0);
}

static int
i2c_detach(device_t dev)
{
	struct i2c_softc *sc;
	int error;

	sc = device_get_softc(dev);

	if ((error = bus_generic_detach(sc->dev)) != 0) {
		device_printf(sc->dev, "cannot detach child devices\n");
		return (error);
	}

	if (sc->iicbus != NULL)
		device_delete_child(dev, sc->iicbus);

	if (sc->res != NULL)
		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->res);

	return (0);
}

static int
i2c_repeated_start(device_t dev, u_char slave, int timeout)
{
	struct i2c_softc *sc;
	int error;

	sc = device_get_softc(dev);

	if ((i2c_read_reg(sc, I2C_STATUS_REG) & I2CSR_MBB) == 0) {
		return (IIC_EBUSERR);
	}

	/*
	 * Set repeated start condition, delay (per reference manual, min 156nS)
	 * before writing slave address, wait for ack after write.
	 */
	i2c_flag_set(sc, I2C_CONTROL_REG, I2CCR_RSTA);
	DELAY(1);
	i2c_write_reg(sc, I2C_STATUS_REG, 0x0);
	i2c_write_reg(sc, I2C_DATA_REG, slave);
	sc->slave = slave;
	DEVICE_DEBUGF(sc, 2, "rstart 0x%02x\n", sc->slave);
	error = wait_for_xfer(sc, true);
	return (i2c_error_handler(sc, error));
}

static int
i2c_start_ll(device_t dev, u_char slave, int timeout)
{
	struct i2c_softc *sc;
	int error;

	sc = device_get_softc(dev);

	i2c_write_reg(sc, I2C_CONTROL_REG, I2CCR_MEN);
	DELAY(10); /* Delay for controller to sample bus state. */
	if (i2c_read_reg(sc, I2C_STATUS_REG) & I2CSR_MBB) {
		return (i2c_error_handler(sc, IIC_EBUSERR));
	}
	i2c_write_reg(sc, I2C_CONTROL_REG, I2CCR_MEN | I2CCR_MSTA | I2CCR_MTX);
	if ((error = wait_for_busbusy(sc, true)) != IIC_NOERR)
		return (i2c_error_handler(sc, error));
	i2c_write_reg(sc, I2C_STATUS_REG, 0);
	i2c_write_reg(sc, I2C_DATA_REG, slave);
	sc->slave = slave;
	DEVICE_DEBUGF(sc, 2, "start  0x%02x\n", sc->slave);
	error = wait_for_xfer(sc, true);
	return (i2c_error_handler(sc, error));
}

static int
i2c_start(device_t dev, u_char slave, int timeout)
{
	struct i2c_softc *sc;
	int error;

	sc = device_get_softc(dev);

	/*
	 * Invoke the low-level code to put the bus into master mode and address
	 * the given slave.  If that fails, idle the controller and attempt a
	 * bus recovery, and then try again one time.  Signaling a start and
	 * addressing the slave is the only operation that a low-level driver
	 * can safely retry without any help from the upper layers that know
	 * more about the slave device.
	 */
	if ((error = i2c_start_ll(dev, slave, timeout)) != 0) {
		i2c_write_reg(sc, I2C_CONTROL_REG, 0x0);
		if ((error = i2c_recover_bus(sc)) != 0)
			return (error);
		error = i2c_start_ll(dev, slave, timeout);
	}
	return (error);
}

static int
i2c_stop(device_t dev)
{
	struct i2c_softc *sc;

	sc = device_get_softc(dev);

	i2c_write_reg(sc, I2C_CONTROL_REG, I2CCR_MEN);
	wait_for_busbusy(sc, false);
	i2c_write_reg(sc, I2C_CONTROL_REG, 0);
	DEVICE_DEBUGF(sc, 2, "stop   0x%02x\n", sc->slave);
	return (IIC_NOERR);
}

static int
i2c_reset(device_t dev, u_char speed, u_char addr, u_char *oldadr)
{
	struct i2c_softc *sc;
	u_int busfreq, div, i, ipgfreq;

	sc = device_get_softc(dev);

	DEVICE_DEBUGF(sc, 1, "reset\n");

	/*
	 * Look up the divisor that gives the nearest speed that doesn't exceed
	 * the configured value for the bus.
	 */
	ipgfreq = imx_ccm_ipg_hz();
	busfreq = IICBUS_GET_FREQUENCY(sc->iicbus, speed);
	div = howmany(ipgfreq, busfreq);
	for (i = 0; i < nitems(clkdiv_table); i++) {
		if (clkdiv_table[i].divisor >= div)
			break;
	}

	/*
	 * Calculate roughly how long it will take to transfer a byte (which
	 * requires 9 clock cycles) at the new bus speed.  This value is used to
	 * pause() while waiting for transfer-complete.  With a 66MHz IPG clock
	 * and the actual i2c bus speeds that leads to, for nominal 100KHz and
	 * 400KHz bus speeds the transfer times are roughly 104uS and 22uS.
	 */
	busfreq = ipgfreq / clkdiv_table[i].divisor;
	sc->byte_time_sbt = SBT_1US * (9000000 / busfreq);

	/*
	 * Disable the controller (do the reset), and set the new clock divisor.
	 */
	i2c_write_reg(sc, I2C_STATUS_REG, 0x0);
	i2c_write_reg(sc, I2C_CONTROL_REG, 0x0);
	i2c_write_reg(sc, I2C_FDR_REG, (uint8_t)clkdiv_table[i].regcode);

	/*
	 * Now that the controller is idle, perform bus recovery.  If the bus
	 * isn't hung, this a fairly fast no-op.
	 */
	return (i2c_recover_bus(sc));
}

static int
i2c_read(device_t dev, char *buf, int len, int *read, int last, int delay)
{
	struct i2c_softc *sc;
	int error, reg;

	sc = device_get_softc(dev);
	*read = 0;

	DEVICE_DEBUGF(sc, 1, "read   0x%02x len %d: ", sc->slave, len);
	if (len) {
		if (len == 1)
			i2c_write_reg(sc, I2C_CONTROL_REG, I2CCR_MEN |
			    I2CCR_MSTA | I2CCR_TXAK);
		else
			i2c_write_reg(sc, I2C_CONTROL_REG, I2CCR_MEN |
			    I2CCR_MSTA);
                /* Dummy read to prime the receiver. */
		i2c_write_reg(sc, I2C_STATUS_REG, 0x0);
		i2c_read_reg(sc, I2C_DATA_REG);
	}

	error = 0;
	*read = 0;
	while (*read < len) {
		if ((error = wait_for_xfer(sc, false)) != IIC_NOERR)
			break;
		i2c_write_reg(sc, I2C_STATUS_REG, 0x0);
		if (last) {
			if (*read == len - 2) {
				/* NO ACK on last byte */
				i2c_write_reg(sc, I2C_CONTROL_REG, I2CCR_MEN |
				    I2CCR_MSTA | I2CCR_TXAK);
			} else if (*read == len - 1) {
				/* Transfer done, signal stop. */
				i2c_write_reg(sc, I2C_CONTROL_REG, I2CCR_MEN |
				    I2CCR_TXAK);
				wait_for_busbusy(sc, false);
			}
		}
		reg = i2c_read_reg(sc, I2C_DATA_REG);
		DEBUGF(sc, 1, "0x%02x ", reg);
		*buf++ = reg;
		(*read)++;
	}
	DEBUGF(sc, 1, "\n");

	return (i2c_error_handler(sc, error));
}

static int
i2c_write(device_t dev, const char *buf, int len, int *sent, int timeout)
{
	struct i2c_softc *sc;
	int error;

	sc = device_get_softc(dev);

	error = 0;
	*sent = 0;
	DEVICE_DEBUGF(sc, 1, "write  0x%02x len %d: ", sc->slave, len);
	while (*sent < len) {
		DEBUGF(sc, 1, "0x%02x ", *buf);
		i2c_write_reg(sc, I2C_STATUS_REG, 0x0);
		i2c_write_reg(sc, I2C_DATA_REG, *buf++);
		if ((error = wait_for_xfer(sc, true)) != IIC_NOERR)
			break;
		(*sent)++;
	}
	DEBUGF(sc, 1, "\n");
	return (i2c_error_handler(sc, error));
}