/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2013 Ruslan Bukin <br@bsdpad.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Vybrid Family NAND Flash Controller (NFC)
* Chapter 31, Vybrid Reference Manual, Rev. 5, 07/2013
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/rman.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/time.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/nand/nand.h>
#include <dev/nand/nandbus.h>
#include <machine/bus.h>
#include "nfc_if.h"
#include <arm/freescale/vybrid/vf_common.h>
enum addr_type {
ADDR_NONE,
ADDR_ID,
ADDR_ROW,
ADDR_ROWCOL
};
struct fsl_nfc_fcm {
uint32_t addr_bits;
enum addr_type addr_type;
uint32_t col_addr_bits;
uint32_t row_addr_bits;
u_int read_ptr;
u_int addr_ptr;
u_int command;
u_int code;
};
struct vf_nand_softc {
struct nand_softc nand_dev;
bus_space_handle_t bsh;
bus_space_tag_t bst;
struct resource *res[2];
struct fsl_nfc_fcm fcm;
};
static struct resource_spec nfc_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ -1, 0 }
};
static int vf_nand_attach(device_t);
static int vf_nand_probe(device_t);
static int vf_nand_send_command(device_t, uint8_t);
static int vf_nand_send_address(device_t, uint8_t);
static int vf_nand_start_command(device_t);
static uint8_t vf_nand_read_byte(device_t);
static void vf_nand_read_buf(device_t, void *, uint32_t);
static void vf_nand_write_buf(device_t, void *, uint32_t);
static int vf_nand_select_cs(device_t, uint8_t);
static int vf_nand_read_rnb(device_t);
#define CMD_READ_PAGE 0x7EE0
#define CMD_PROG_PAGE 0x7FC0
#define CMD_PROG_PAGE_DMA 0xFFC8
#define CMD_ERASE 0x4EC0
#define CMD_READ_ID 0x4804
#define CMD_READ_STATUS 0x4068
#define CMD_RESET 0x4040
#define CMD_RANDOM_IN 0x7140
#define CMD_RANDOM_OUT 0x70E0
#define CMD_BYTE2_PROG_PAGE 0x10
#define CMD_BYTE2_PAGE_READ 0x30
#define CMD_BYTE2_ERASE 0xD0
#define NFC_CMD1 0x3F00 /* Flash command 1 */
#define NFC_CMD2 0x3F04 /* Flash command 2 */
#define NFC_CAR 0x3F08 /* Column address */
#define NFC_RAR 0x3F0C /* Row address */
#define NFC_RPT 0x3F10 /* Flash command repeat */
#define NFC_RAI 0x3F14 /* Row address increment */
#define NFC_SR1 0x3F18 /* Flash status 1 */
#define NFC_SR2 0x3F1C /* Flash status 2 */
#define NFC_DMA_CH1 0x3F20 /* DMA channel 1 address */
#define NFC_DMACFG 0x3F24 /* DMA configuration */
#define NFC_SWAP 0x3F28 /* Cach swap */
#define NFC_SECSZ 0x3F2C /* Sector size */
#define NFC_CFG 0x3F30 /* Flash configuration */
#define NFC_DMA_CH2 0x3F34 /* DMA channel 2 address */
#define NFC_ISR 0x3F38 /* Interrupt status */
#define ECCMODE_SHIFT 17
#define AIAD_SHIFT 5
#define AIBN_SHIFT 4
#define PAGECOUNT_SHIFT 0
#define BITWIDTH_SHIFT 7
#define BITWIDTH8 0
#define BITWIDTH16 1
#define PAGECOUNT_MASK 0xf
#define CMD2_BYTE1_SHIFT 24
#define CMD2_CODE_SHIFT 8
#define CMD2_BUFNO_SHIFT 1
#define CMD2_START_SHIFT 0
static device_method_t vf_nand_methods[] = {
DEVMETHOD(device_probe, vf_nand_probe),
DEVMETHOD(device_attach, vf_nand_attach),
DEVMETHOD(nfc_start_command, vf_nand_start_command),
DEVMETHOD(nfc_send_command, vf_nand_send_command),
DEVMETHOD(nfc_send_address, vf_nand_send_address),
DEVMETHOD(nfc_read_byte, vf_nand_read_byte),
DEVMETHOD(nfc_read_buf, vf_nand_read_buf),
DEVMETHOD(nfc_write_buf, vf_nand_write_buf),
DEVMETHOD(nfc_select_cs, vf_nand_select_cs),
DEVMETHOD(nfc_read_rnb, vf_nand_read_rnb),
{ 0, 0 },
};
static driver_t vf_nand_driver = {
"nand",
vf_nand_methods,
sizeof(struct vf_nand_softc),
};
static devclass_t vf_nand_devclass;
DRIVER_MODULE(vf_nand, simplebus, vf_nand_driver, vf_nand_devclass, 0, 0);
static int
vf_nand_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (!ofw_bus_is_compatible(dev, "fsl,mvf600-nand"))
return (ENXIO);
device_set_desc(dev, "Vybrid Family NAND controller");
return (BUS_PROBE_DEFAULT);
}
static int
vf_nand_attach(device_t dev)
{
struct vf_nand_softc *sc;
int err;
int reg;
sc = device_get_softc(dev);
if (bus_alloc_resources(dev, nfc_spec, sc->res)) {
device_printf(dev, "could not allocate resources!\n");
return (ENXIO);
}
sc->bst = rman_get_bustag(sc->res[0]);
sc->bsh = rman_get_bushandle(sc->res[0]);
/* Size in bytes of one elementary transfer unit */
WRITE4(sc, NFC_SECSZ, 2048);
/* Flash mode width */
reg = READ4(sc, NFC_CFG);
reg |= (BITWIDTH16 << BITWIDTH_SHIFT);
/* No correction, ECC bypass */
reg &= ~(0x7 << ECCMODE_SHIFT);
/* Disable Auto-incrementing of flash row address */
reg &= ~(0x1 << AIAD_SHIFT);
/* Disable Auto-incrementing of buffer numbers */
reg &= ~(0x1 << AIBN_SHIFT);
/*
* Number of virtual pages (in one physical flash page)
* to be programmed or read, etc.
*/
reg &= ~(PAGECOUNT_MASK);
reg |= (1 << PAGECOUNT_SHIFT);
WRITE4(sc, NFC_CFG, reg);
nand_init(&sc->nand_dev, dev, NAND_ECC_NONE, 0, 0, NULL, NULL);
err = nandbus_create(dev);
return (err);
}
static int
vf_nand_start_command(device_t dev)
{
struct vf_nand_softc *sc;
struct fsl_nfc_fcm *fcm;
int reg;
sc = device_get_softc(dev);
fcm = &sc->fcm;
nand_debug(NDBG_DRV,"vf_nand: start command %x", fcm->command);
/* CMD2 */
reg = READ4(sc, NFC_CMD2);
reg &= ~(0xff << CMD2_BYTE1_SHIFT);
reg |= (fcm->command << CMD2_BYTE1_SHIFT);
WRITE4(sc, NFC_CMD2, reg);
/* CMD1 */
if ((fcm->command == NAND_CMD_READ) ||
(fcm->command == NAND_CMD_PROG) ||
(fcm->command == NAND_CMD_ERASE)) {
reg = READ4(sc, NFC_CMD1);
reg &= ~(0xff << 24);
if (fcm->command == NAND_CMD_READ)
reg |= (CMD_BYTE2_PAGE_READ << 24);
else if (fcm->command == NAND_CMD_PROG)
reg |= (CMD_BYTE2_PROG_PAGE << 24);
else if (fcm->command == NAND_CMD_ERASE)
reg |= (CMD_BYTE2_ERASE << 24);
WRITE4(sc, NFC_CMD1, reg);
}
/* We work with 1st buffer */
reg = READ4(sc, NFC_CMD2);
reg &= ~(0xf << CMD2_BUFNO_SHIFT);
reg |= (0 << CMD2_BUFNO_SHIFT);
WRITE4(sc, NFC_CMD2, reg);
/* Cmd CODE */
reg = READ4(sc, NFC_CMD2);
reg &= ~(0xffff << CMD2_CODE_SHIFT);
reg |= (fcm->code << CMD2_CODE_SHIFT);
WRITE4(sc, NFC_CMD2, reg);
/* Col */
if (fcm->addr_type == ADDR_ROWCOL) {
reg = READ4(sc, NFC_CAR);
reg &= ~(0xffff);
reg |= fcm->col_addr_bits;
nand_debug(NDBG_DRV,"setting CAR to 0x%08x\n", reg);
WRITE4(sc, NFC_CAR, reg);
}
/* Row */
reg = READ4(sc, NFC_RAR);
reg &= ~(0xffffff);
if (fcm->addr_type == ADDR_ID)
reg |= fcm->addr_bits;
else
reg |= fcm->row_addr_bits;
WRITE4(sc, NFC_RAR, reg);
/* Start */
reg = READ4(sc, NFC_CMD2);
reg |= (1 << CMD2_START_SHIFT);
WRITE4(sc, NFC_CMD2, reg);
/* Wait command completion */
while (READ4(sc, NFC_CMD2) & (1 << CMD2_START_SHIFT))
;
return (0);
}
static int
vf_nand_send_command(device_t dev, uint8_t command)
{
struct vf_nand_softc *sc;
struct fsl_nfc_fcm *fcm;
nand_debug(NDBG_DRV,"vf_nand: send command %x", command);
sc = device_get_softc(dev);
fcm = &sc->fcm;
if ((command == NAND_CMD_READ_END) ||
(command == NAND_CMD_PROG_END) ||
(command == NAND_CMD_ERASE_END)) {
return (0);
}
fcm->command = command;
fcm->code = 0;
fcm->read_ptr = 0;
fcm->addr_type = 0;
fcm->addr_bits = 0;
fcm->addr_ptr = 0;
fcm->col_addr_bits = 0;
fcm->row_addr_bits = 0;
switch (command) {
case NAND_CMD_READ:
fcm->code = CMD_READ_PAGE;
fcm->addr_type = ADDR_ROWCOL;
break;
case NAND_CMD_PROG:
fcm->code = CMD_PROG_PAGE;
fcm->addr_type = ADDR_ROWCOL;
break;
case NAND_CMD_PROG_END:
break;
case NAND_CMD_ERASE_END:
break;
case NAND_CMD_RESET:
fcm->code = CMD_RESET;
break;
case NAND_CMD_READ_ID:
fcm->code = CMD_READ_ID;
fcm->addr_type = ADDR_ID;
break;
case NAND_CMD_READ_PARAMETER:
fcm->code = CMD_READ_PAGE;
fcm->addr_type = ADDR_ID;
break;
case NAND_CMD_STATUS:
fcm->code = CMD_READ_STATUS;
break;
case NAND_CMD_ERASE:
fcm->code = CMD_ERASE;
fcm->addr_type = ADDR_ROW;
break;
default:
nand_debug(NDBG_DRV, "unknown command %d\n", command);
return (1);
}
return (0);
}
static int
vf_nand_send_address(device_t dev, uint8_t addr)
{
struct vf_nand_softc *sc;
struct fsl_nfc_fcm *fcm;
nand_debug(NDBG_DRV,"vf_nand: send address %x", addr);
sc = device_get_softc(dev);
fcm = &sc->fcm;
nand_debug(NDBG_DRV, "setting addr #%d to 0x%02x\n", fcm->addr_ptr, addr);
if (fcm->addr_type == ADDR_ID) {
fcm->addr_bits = addr;
} else if (fcm->addr_type == ADDR_ROWCOL) {
if (fcm->addr_ptr < 2)
fcm->col_addr_bits |= (addr << (fcm->addr_ptr * 8));
else
fcm->row_addr_bits |= (addr << ((fcm->addr_ptr - 2) * 8));
} else if (fcm->addr_type == ADDR_ROW)
fcm->row_addr_bits |= (addr << (fcm->addr_ptr * 8));
fcm->addr_ptr += 1;
return (0);
}
static uint8_t
vf_nand_read_byte(device_t dev)
{
struct vf_nand_softc *sc;
struct fsl_nfc_fcm *fcm;
uint8_t data;
int sr1, sr2;
int b;
sc = device_get_softc(dev);
fcm = &sc->fcm;
sr1 = READ4(sc, NFC_SR1);
sr2 = READ4(sc, NFC_SR2);
data = 0;
if (fcm->addr_type == ADDR_ID) {
b = 32 - ((fcm->read_ptr + 1) * 8);
data = (sr1 >> b) & 0xff;
fcm->read_ptr++;
} else if (fcm->command == NAND_CMD_STATUS) {
data = sr2 & 0xff;
}
nand_debug(NDBG_DRV,"vf_nand: read %x", data);
return (data);
}
static void
vf_nand_read_buf(device_t dev, void* buf, uint32_t len)
{
struct vf_nand_softc *sc;
struct fsl_nfc_fcm *fcm;
uint16_t *tmp;
uint8_t *b;
int i;
b = (uint8_t*)buf;
sc = device_get_softc(dev);
fcm = &sc->fcm;
nand_debug(NDBG_DRV, "vf_nand: read_buf len %d", len);
if (fcm->command == NAND_CMD_READ_PARAMETER) {
tmp = malloc(len, M_DEVBUF, M_NOWAIT);
bus_read_region_2(sc->res[0], 0x0, tmp, len);
for (i = 0; i < len; i += 2) {
b[i] = tmp[i+1];
b[i+1] = tmp[i];
}
free(tmp, M_DEVBUF);
#ifdef NAND_DEBUG
for (i = 0; i < len; i++) {
if (!(i % 16))
printf("%s", i == 0 ? "vf_nand:\n" : "\n");
printf(" %x", b[i]);
if (i == len - 1)
printf("\n");
}
#endif
} else {
for (i = 0; i < len; i++) {
b[i] = READ1(sc, i);
#ifdef NAND_DEBUG
if (!(i % 16))
printf("%s", i == 0 ? "vf_nand:\n" : "\n");
printf(" %x", b[i]);
if (i == len - 1)
printf("\n");
#endif
}
}
}
static void
vf_nand_write_buf(device_t dev, void* buf, uint32_t len)
{
struct vf_nand_softc *sc;
struct fsl_nfc_fcm *fcm;
uint8_t *b;
int i;
b = (uint8_t*)buf;
sc = device_get_softc(dev);
fcm = &sc->fcm;
nand_debug(NDBG_DRV,"vf_nand: write_buf len %d", len);
for (i = 0; i < len; i++) {
WRITE1(sc, i, b[i]);
#ifdef NAND_DEBUG
if (!(i % 16))
printf("%s", i == 0 ? "vf_nand:\n" : "\n");
printf(" %x", b[i]);
if (i == len - 1)
printf("\n");
#endif
}
}
static int
vf_nand_select_cs(device_t dev, uint8_t cs)
{
if (cs > 0)
return (ENODEV);
return (0);
}
static int
vf_nand_read_rnb(device_t dev)
{
/* no-op */
return (0); /* ready */
}