/***********************license start***************
* Copyright (c) 2003-2012 Cavium Inc. (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Cavium Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
* This Software, including technical data, may be subject to U.S. export control
* laws, including the U.S. Export Administration Act and its associated
* regulations, and may be subject to export or import regulations in other
* countries.
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
* WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
* THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
* DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
* SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
* MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
* VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
* CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
* PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
***********************license end**************************************/
/**
* cvmx-mpi-defs.h
*
* Configuration and status register (CSR) type definitions for
* Octeon mpi.
*
* This file is auto generated. Do not edit.
*
* <hr>$Revision$<hr>
*
*/
#ifndef __CVMX_MPI_DEFS_H__
#define __CVMX_MPI_DEFS_H__
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MPI_CFG CVMX_MPI_CFG_FUNC()
static inline uint64_t CVMX_MPI_CFG_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN30XX) || OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN50XX) || OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MPI_CFG not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001070000001000ull);
}
#else
#define CVMX_MPI_CFG (CVMX_ADD_IO_SEG(0x0001070000001000ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MPI_DATX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 8))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 8))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 8))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 8))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 8))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 8)))))
cvmx_warn("CVMX_MPI_DATX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001070000001080ull) + ((offset) & 15) * 8;
}
#else
#define CVMX_MPI_DATX(offset) (CVMX_ADD_IO_SEG(0x0001070000001080ull) + ((offset) & 15) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MPI_STS CVMX_MPI_STS_FUNC()
static inline uint64_t CVMX_MPI_STS_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN30XX) || OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN50XX) || OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MPI_STS not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001070000001008ull);
}
#else
#define CVMX_MPI_STS (CVMX_ADD_IO_SEG(0x0001070000001008ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MPI_TX CVMX_MPI_TX_FUNC()
static inline uint64_t CVMX_MPI_TX_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN30XX) || OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN50XX) || OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MPI_TX not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001070000001010ull);
}
#else
#define CVMX_MPI_TX (CVMX_ADD_IO_SEG(0x0001070000001010ull))
#endif
/**
* cvmx_mpi_cfg
*
* SPI_MPI interface
*
*
* Notes:
* Some of the SPI/MPI pins are muxed with UART pins.
* SPI_CLK : spi clock, dedicated pin
* SPI_DI : spi input, shared with UART0_DCD_N/SPI_DI, enabled when MPI_CFG[ENABLE]=1
* SPI_DO : spi output, mux to UART0_DTR_N/SPI_DO, enabled when MPI_CFG[ENABLE]=1
* SPI_CS0_L : chips select 0, mux to BOOT_CE_N<6>/SPI_CS0_L pin, enabled when MPI_CFG[CSENA0]=1 and MPI_CFG[ENABLE]=1
* SPI_CS1_L : chips select 1, mux to BOOT_CE_N<7>/SPI_CS1_L pin, enabled when MPI_CFG[CSENA1]=1 and MPI_CFG[ENABLE]=1
*/
union cvmx_mpi_cfg {
uint64_t u64;
struct cvmx_mpi_cfg_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_29_63 : 35;
uint64_t clkdiv : 13; /**< Fspi_clk = Fsclk / (2 * CLKDIV) | NS
CLKDIV = Fsclk / (2 * Fspi_clk) */
uint64_t csena3 : 1; /**< If 0, UART1_RTS_L/SPI_CS3_L pin is UART pin | NS
1, UART1_RTS_L/SPI_CS3_L pin is SPI pin
SPI_CS3_L drives UART1_RTS_L/SPI_CS3_L */
uint64_t csena2 : 1; /**< If 0, UART0_RTS_L/SPI_CS2_L pin is UART pin | NS
1, UART0_RTS_L/SPI_CS2_L pin is SPI pin
SPI_CS2_L drives UART0_RTS_L/SPI_CS2_L */
uint64_t csena1 : 1; /**< If 0, BOOT_CE_N<7>/SPI_CS1_L pin is BOOT pin | NS
1, BOOT_CE_N<7>/SPI_CS1_L pin is SPI pin
SPI_CS1_L drives BOOT_CE_N<7>/SPI_CS1_L */
uint64_t csena0 : 1; /**< If 0, BOOT_CE_N<6>/SPI_CS0_L pin is BOOT pin | NS
1, BOOT_CE_N<6>/SPI_CS0_L pin is SPI pin
SPI_CS0_L drives BOOT_CE_N<6>/SPI_CS0_L */
uint64_t cslate : 1; /**< If 0, SPI_CS asserts 1/2 SCLK before transaction | NS
1, SPI_CS assert coincident with transaction
NOTE: This control apply for 2 CSs */
uint64_t tritx : 1; /**< If 0, SPI_DO pin is driven when slave is not | NS
expected to be driving
1, SPI_DO pin is tristated when not transmitting
NOTE: only used when WIREOR==1 */
uint64_t idleclks : 2; /**< Guarantee IDLECLKS idle sclk cycles between | NS
commands. */
uint64_t cshi : 1; /**< If 0, CS is low asserted | NS
1, CS is high asserted */
uint64_t csena : 1; /**< If 0, the MPI_CS is a GPIO, not used by MPI_TX
1, CS is driven per MPI_TX intruction */
uint64_t int_ena : 1; /**< If 0, polling is required | NS
1, MPI engine interrupts X end of transaction */
uint64_t lsbfirst : 1; /**< If 0, shift MSB first | NS
1, shift LSB first */
uint64_t wireor : 1; /**< If 0, SPI_DO and SPI_DI are separate wires (SPI) | NS
SPI_DO pin is always driven
1, SPI_DO/DI is all from SPI_DO pin (MPI)
SPI_DO pin is tristated when not transmitting
NOTE: if WIREOR==1, SPI_DI pin is not used by the
MPI engine */
uint64_t clk_cont : 1; /**< If 0, clock idles to value given by IDLELO after | NS
completion of MPI transaction
1, clock never idles, requires CS deassertion
assertion between commands */
uint64_t idlelo : 1; /**< If 0, SPI_CLK idles high, 1st transition is hi->lo | NS
1, SPI_CLK idles low, 1st transition is lo->hi */
uint64_t enable : 1; /**< If 0, UART0_DTR_L/SPI_DO, UART0_DCD_L/SPI_DI | NS
BOOT_CE_N<7:6>/SPI_CSx_L
pins are UART/BOOT pins
1, UART0_DTR_L/SPI_DO and UART0_DCD_L/SPI_DI
pins are SPI/MPI pins.
BOOT_CE_N<6>/SPI_CS0_L is SPI pin if CSENA0=1
BOOT_CE_N<7>/SPI_CS1_L is SPI pin if CSENA1=1 */
#else
uint64_t enable : 1;
uint64_t idlelo : 1;
uint64_t clk_cont : 1;
uint64_t wireor : 1;
uint64_t lsbfirst : 1;
uint64_t int_ena : 1;
uint64_t csena : 1;
uint64_t cshi : 1;
uint64_t idleclks : 2;
uint64_t tritx : 1;
uint64_t cslate : 1;
uint64_t csena0 : 1;
uint64_t csena1 : 1;
uint64_t csena2 : 1;
uint64_t csena3 : 1;
uint64_t clkdiv : 13;
uint64_t reserved_29_63 : 35;
#endif
} s;
struct cvmx_mpi_cfg_cn30xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_29_63 : 35;
uint64_t clkdiv : 13; /**< Fsclk = Feclk / (2 * CLKDIV)
CLKDIV = Feclk / (2 * Fsclk) */
uint64_t reserved_12_15 : 4;
uint64_t cslate : 1; /**< If 0, MPI_CS asserts 1/2 SCLK before transaction
1, MPI_CS assert coincident with transaction
NOTE: only used if CSENA == 1 */
uint64_t tritx : 1; /**< If 0, MPI_TX pin is driven when slave is not
expected to be driving
1, MPI_TX pin is tristated when not transmitting
NOTE: only used when WIREOR==1 */
uint64_t idleclks : 2; /**< Guarantee IDLECLKS idle sclk cycles between
commands. */
uint64_t cshi : 1; /**< If 0, CS is low asserted
1, CS is high asserted */
uint64_t csena : 1; /**< If 0, the MPI_CS is a GPIO, not used by MPI_TX
1, CS is driven per MPI_TX intruction */
uint64_t int_ena : 1; /**< If 0, polling is required
1, MPI engine interrupts X end of transaction */
uint64_t lsbfirst : 1; /**< If 0, shift MSB first
1, shift LSB first */
uint64_t wireor : 1; /**< If 0, MPI_TX and MPI_RX are separate wires (SPI)
MPI_TX pin is always driven
1, MPI_TX/RX is all from MPI_TX pin (MPI)
MPI_TX pin is tristated when not transmitting
NOTE: if WIREOR==1, MPI_RX pin is not used by the
MPI engine */
uint64_t clk_cont : 1; /**< If 0, clock idles to value given by IDLELO after
completion of MPI transaction
1, clock never idles, requires CS deassertion
assertion between commands */
uint64_t idlelo : 1; /**< If 0, MPI_CLK idles high, 1st transition is hi->lo
1, MPI_CLK idles low, 1st transition is lo->hi */
uint64_t enable : 1; /**< If 0, all MPI pins are GPIOs
1, MPI_CLK, MPI_CS, and MPI_TX are driven */
#else
uint64_t enable : 1;
uint64_t idlelo : 1;
uint64_t clk_cont : 1;
uint64_t wireor : 1;
uint64_t lsbfirst : 1;
uint64_t int_ena : 1;
uint64_t csena : 1;
uint64_t cshi : 1;
uint64_t idleclks : 2;
uint64_t tritx : 1;
uint64_t cslate : 1;
uint64_t reserved_12_15 : 4;
uint64_t clkdiv : 13;
uint64_t reserved_29_63 : 35;
#endif
} cn30xx;
struct cvmx_mpi_cfg_cn31xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_29_63 : 35;
uint64_t clkdiv : 13; /**< Fsclk = Feclk / (2 * CLKDIV)
CLKDIV = Feclk / (2 * Fsclk) */
uint64_t reserved_11_15 : 5;
uint64_t tritx : 1; /**< If 0, MPI_TX pin is driven when slave is not
expected to be driving
1, MPI_TX pin is tristated when not transmitting
NOTE: only used when WIREOR==1 */
uint64_t idleclks : 2; /**< Guarantee IDLECLKS idle sclk cycles between
commands. */
uint64_t cshi : 1; /**< If 0, CS is low asserted
1, CS is high asserted */
uint64_t csena : 1; /**< If 0, the MPI_CS is a GPIO, not used by MPI_TX
1, CS is driven per MPI_TX intruction */
uint64_t int_ena : 1; /**< If 0, polling is required
1, MPI engine interrupts X end of transaction */
uint64_t lsbfirst : 1; /**< If 0, shift MSB first
1, shift LSB first */
uint64_t wireor : 1; /**< If 0, MPI_TX and MPI_RX are separate wires (SPI)
MPI_TX pin is always driven
1, MPI_TX/RX is all from MPI_TX pin (MPI)
MPI_TX pin is tristated when not transmitting
NOTE: if WIREOR==1, MPI_RX pin is not used by the
MPI engine */
uint64_t clk_cont : 1; /**< If 0, clock idles to value given by IDLELO after
completion of MPI transaction
1, clock never idles, requires CS deassertion
assertion between commands */
uint64_t idlelo : 1; /**< If 0, MPI_CLK idles high, 1st transition is hi->lo
1, MPI_CLK idles low, 1st transition is lo->hi */
uint64_t enable : 1; /**< If 0, all MPI pins are GPIOs
1, MPI_CLK, MPI_CS, and MPI_TX are driven */
#else
uint64_t enable : 1;
uint64_t idlelo : 1;
uint64_t clk_cont : 1;
uint64_t wireor : 1;
uint64_t lsbfirst : 1;
uint64_t int_ena : 1;
uint64_t csena : 1;
uint64_t cshi : 1;
uint64_t idleclks : 2;
uint64_t tritx : 1;
uint64_t reserved_11_15 : 5;
uint64_t clkdiv : 13;
uint64_t reserved_29_63 : 35;
#endif
} cn31xx;
struct cvmx_mpi_cfg_cn30xx cn50xx;
struct cvmx_mpi_cfg_cn61xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_29_63 : 35;
uint64_t clkdiv : 13; /**< Fspi_clk = Fsclk / (2 * CLKDIV) | NS
CLKDIV = Fsclk / (2 * Fspi_clk) */
uint64_t reserved_14_15 : 2;
uint64_t csena1 : 1; /**< If 0, BOOT_CE_N<7>/SPI_CS1_L pin is BOOT pin | NS
1, BOOT_CE_N<7>/SPI_CS1_L pin is SPI pin
SPI_CS1_L drives BOOT_CE_N<7>/SPI_CS1_L */
uint64_t csena0 : 1; /**< If 0, BOOT_CE_N<6>/SPI_CS0_L pin is BOOT pin | NS
1, BOOT_CE_N<6>/SPI_CS0_L pin is SPI pin
SPI_CS0_L drives BOOT_CE_N<6>/SPI_CS0_L */
uint64_t cslate : 1; /**< If 0, SPI_CS asserts 1/2 SCLK before transaction | NS
1, SPI_CS assert coincident with transaction
NOTE: This control apply for 2 CSs */
uint64_t tritx : 1; /**< If 0, SPI_DO pin is driven when slave is not | NS
expected to be driving
1, SPI_DO pin is tristated when not transmitting
NOTE: only used when WIREOR==1 */
uint64_t idleclks : 2; /**< Guarantee IDLECLKS idle sclk cycles between | NS
commands. */
uint64_t cshi : 1; /**< If 0, CS is low asserted | NS
1, CS is high asserted */
uint64_t reserved_6_6 : 1;
uint64_t int_ena : 1; /**< If 0, polling is required | NS
1, MPI engine interrupts X end of transaction */
uint64_t lsbfirst : 1; /**< If 0, shift MSB first | NS
1, shift LSB first */
uint64_t wireor : 1; /**< If 0, SPI_DO and SPI_DI are separate wires (SPI) | NS
SPI_DO pin is always driven
1, SPI_DO/DI is all from SPI_DO pin (MPI)
SPI_DO pin is tristated when not transmitting
NOTE: if WIREOR==1, SPI_DI pin is not used by the
MPI engine */
uint64_t clk_cont : 1; /**< If 0, clock idles to value given by IDLELO after | NS
completion of MPI transaction
1, clock never idles, requires CS deassertion
assertion between commands */
uint64_t idlelo : 1; /**< If 0, SPI_CLK idles high, 1st transition is hi->lo | NS
1, SPI_CLK idles low, 1st transition is lo->hi */
uint64_t enable : 1; /**< If 0, UART0_DTR_L/SPI_DO, UART0_DCD_L/SPI_DI | NS
BOOT_CE_N<7:6>/SPI_CSx_L
pins are UART/BOOT pins
1, UART0_DTR_L/SPI_DO and UART0_DCD_L/SPI_DI
pins are SPI/MPI pins.
BOOT_CE_N<6>/SPI_CS0_L is SPI pin if CSENA0=1
BOOT_CE_N<7>/SPI_CS1_L is SPI pin if CSENA1=1 */
#else
uint64_t enable : 1;
uint64_t idlelo : 1;
uint64_t clk_cont : 1;
uint64_t wireor : 1;
uint64_t lsbfirst : 1;
uint64_t int_ena : 1;
uint64_t reserved_6_6 : 1;
uint64_t cshi : 1;
uint64_t idleclks : 2;
uint64_t tritx : 1;
uint64_t cslate : 1;
uint64_t csena0 : 1;
uint64_t csena1 : 1;
uint64_t reserved_14_15 : 2;
uint64_t clkdiv : 13;
uint64_t reserved_29_63 : 35;
#endif
} cn61xx;
struct cvmx_mpi_cfg_cn66xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_29_63 : 35;
uint64_t clkdiv : 13; /**< Fspi_clk = Fsclk / (2 * CLKDIV) | NS
CLKDIV = Fsclk / (2 * Fspi_clk) */
uint64_t csena3 : 1; /**< If 0, UART1_RTS_L/SPI_CS3_L pin is UART pin | NS
1, UART1_RTS_L/SPI_CS3_L pin is SPI pin
SPI_CS3_L drives UART1_RTS_L/SPI_CS3_L */
uint64_t csena2 : 1; /**< If 0, UART0_RTS_L/SPI_CS2_L pin is UART pin | NS
1, UART0_RTS_L/SPI_CS2_L pin is SPI pin
SPI_CS2_L drives UART0_RTS_L/SPI_CS2_L */
uint64_t reserved_12_13 : 2;
uint64_t cslate : 1; /**< If 0, SPI_CS asserts 1/2 SCLK before transaction | NS
1, SPI_CS assert coincident with transaction
NOTE: This control apply for 4 CSs */
uint64_t tritx : 1; /**< If 0, SPI_DO pin is driven when slave is not | NS
expected to be driving
1, SPI_DO pin is tristated when not transmitting
NOTE: only used when WIREOR==1 */
uint64_t idleclks : 2; /**< Guarantee IDLECLKS idle sclk cycles between | NS
commands. */
uint64_t cshi : 1; /**< If 0, CS is low asserted | NS
1, CS is high asserted */
uint64_t reserved_6_6 : 1;
uint64_t int_ena : 1; /**< If 0, polling is required | NS
1, MPI engine interrupts X end of transaction */
uint64_t lsbfirst : 1; /**< If 0, shift MSB first | NS
1, shift LSB first */
uint64_t wireor : 1; /**< If 0, SPI_DO and SPI_DI are separate wires (SPI) | NS
SPI_DO pin is always driven
1, SPI_DO/DI is all from SPI_DO pin (MPI)
SPI_DO pin is tristated when not transmitting
NOTE: if WIREOR==1, SPI_DI pin is not used by the
MPI engine */
uint64_t clk_cont : 1; /**< If 0, clock idles to value given by IDLELO after | NS
completion of MPI transaction
1, clock never idles, requires CS deassertion
assertion between commands */
uint64_t idlelo : 1; /**< If 0, SPI_CLK idles high, 1st transition is hi->lo | NS
1, SPI_CLK idles low, 1st transition is lo->hi */
uint64_t enable : 1; /**< If 0, UART0_DTR_L/SPI_DO, UART0_DCD_L/SPI_DI | NS
UART0_RTS_L/SPI_CS2_L, UART1_RTS_L/SPI_CS3_L
pins are UART pins
1, UART0_DTR_L/SPI_DO and UART0_DCD_L/SPI_DI
pins are SPI/MPI pins.
UART0_RTS_L/SPI_CS2_L is SPI pin if CSENA2=1
UART1_RTS_L/SPI_CS3_L is SPI pin if CSENA3=1 */
#else
uint64_t enable : 1;
uint64_t idlelo : 1;
uint64_t clk_cont : 1;
uint64_t wireor : 1;
uint64_t lsbfirst : 1;
uint64_t int_ena : 1;
uint64_t reserved_6_6 : 1;
uint64_t cshi : 1;
uint64_t idleclks : 2;
uint64_t tritx : 1;
uint64_t cslate : 1;
uint64_t reserved_12_13 : 2;
uint64_t csena2 : 1;
uint64_t csena3 : 1;
uint64_t clkdiv : 13;
uint64_t reserved_29_63 : 35;
#endif
} cn66xx;
struct cvmx_mpi_cfg_cn61xx cnf71xx;
};
typedef union cvmx_mpi_cfg cvmx_mpi_cfg_t;
/**
* cvmx_mpi_dat#
*/
union cvmx_mpi_datx {
uint64_t u64;
struct cvmx_mpi_datx_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t data : 8; /**< Data to transmit/received | NS */
#else
uint64_t data : 8;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_mpi_datx_s cn30xx;
struct cvmx_mpi_datx_s cn31xx;
struct cvmx_mpi_datx_s cn50xx;
struct cvmx_mpi_datx_s cn61xx;
struct cvmx_mpi_datx_s cn66xx;
struct cvmx_mpi_datx_s cnf71xx;
};
typedef union cvmx_mpi_datx cvmx_mpi_datx_t;
/**
* cvmx_mpi_sts
*/
union cvmx_mpi_sts {
uint64_t u64;
struct cvmx_mpi_sts_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_13_63 : 51;
uint64_t rxnum : 5; /**< Number of bytes written for transaction | NS */
uint64_t reserved_1_7 : 7;
uint64_t busy : 1; /**< If 0, no MPI transaction in progress | NS
1, MPI engine is processing a transaction */
#else
uint64_t busy : 1;
uint64_t reserved_1_7 : 7;
uint64_t rxnum : 5;
uint64_t reserved_13_63 : 51;
#endif
} s;
struct cvmx_mpi_sts_s cn30xx;
struct cvmx_mpi_sts_s cn31xx;
struct cvmx_mpi_sts_s cn50xx;
struct cvmx_mpi_sts_s cn61xx;
struct cvmx_mpi_sts_s cn66xx;
struct cvmx_mpi_sts_s cnf71xx;
};
typedef union cvmx_mpi_sts cvmx_mpi_sts_t;
/**
* cvmx_mpi_tx
*/
union cvmx_mpi_tx {
uint64_t u64;
struct cvmx_mpi_tx_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_22_63 : 42;
uint64_t csid : 2; /**< Which CS to assert for this transaction | NS */
uint64_t reserved_17_19 : 3;
uint64_t leavecs : 1; /**< If 0, deassert CS after transaction is done | NS
1, leave CS asserted after transactrion is done */
uint64_t reserved_13_15 : 3;
uint64_t txnum : 5; /**< Number of bytes to transmit | NS */
uint64_t reserved_5_7 : 3;
uint64_t totnum : 5; /**< Number of bytes to shift (transmit + receive) | NS */
#else
uint64_t totnum : 5;
uint64_t reserved_5_7 : 3;
uint64_t txnum : 5;
uint64_t reserved_13_15 : 3;
uint64_t leavecs : 1;
uint64_t reserved_17_19 : 3;
uint64_t csid : 2;
uint64_t reserved_22_63 : 42;
#endif
} s;
struct cvmx_mpi_tx_cn30xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_17_63 : 47;
uint64_t leavecs : 1; /**< If 0, deassert CS after transaction is done
1, leave CS asserted after transactrion is done */
uint64_t reserved_13_15 : 3;
uint64_t txnum : 5; /**< Number of bytes to transmit */
uint64_t reserved_5_7 : 3;
uint64_t totnum : 5; /**< Number of bytes to shift (transmit + receive) */
#else
uint64_t totnum : 5;
uint64_t reserved_5_7 : 3;
uint64_t txnum : 5;
uint64_t reserved_13_15 : 3;
uint64_t leavecs : 1;
uint64_t reserved_17_63 : 47;
#endif
} cn30xx;
struct cvmx_mpi_tx_cn30xx cn31xx;
struct cvmx_mpi_tx_cn30xx cn50xx;
struct cvmx_mpi_tx_cn61xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_21_63 : 43;
uint64_t csid : 1; /**< Which CS to assert for this transaction | NS */
uint64_t reserved_17_19 : 3;
uint64_t leavecs : 1; /**< If 0, deassert CS after transaction is done | NS
1, leave CS asserted after transactrion is done */
uint64_t reserved_13_15 : 3;
uint64_t txnum : 5; /**< Number of bytes to transmit | NS */
uint64_t reserved_5_7 : 3;
uint64_t totnum : 5; /**< Number of bytes to shift (transmit + receive) | NS */
#else
uint64_t totnum : 5;
uint64_t reserved_5_7 : 3;
uint64_t txnum : 5;
uint64_t reserved_13_15 : 3;
uint64_t leavecs : 1;
uint64_t reserved_17_19 : 3;
uint64_t csid : 1;
uint64_t reserved_21_63 : 43;
#endif
} cn61xx;
struct cvmx_mpi_tx_s cn66xx;
struct cvmx_mpi_tx_cn61xx cnf71xx;
};
typedef union cvmx_mpi_tx cvmx_mpi_tx_t;
#endif