Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
/***********************license start***************
 * Copyright (c) 2003-2012  Cavium Inc. (support@cavium.com). All rights
 * reserved.
 *
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.

 *   * Neither the name of Cavium Inc. nor the names of
 *     its contributors may be used to endorse or promote products
 *     derived from this software without specific prior written
 *     permission.

 * This Software, including technical data, may be subject to U.S. export  control
 * laws, including the U.S. Export Administration Act and its  associated
 * regulations, and may be subject to export or import  regulations in other
 * countries.

 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
 * AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
 * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE  RISK ARISING OUT OF USE OR
 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
 ***********************license end**************************************/


/**
 * cvmx-mpi-defs.h
 *
 * Configuration and status register (CSR) type definitions for
 * Octeon mpi.
 *
 * This file is auto generated. Do not edit.
 *
 * <hr>$Revision$<hr>
 *
 */
#ifndef __CVMX_MPI_DEFS_H__
#define __CVMX_MPI_DEFS_H__

#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MPI_CFG CVMX_MPI_CFG_FUNC()
static inline uint64_t CVMX_MPI_CFG_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN30XX) || OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN50XX) || OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
		cvmx_warn("CVMX_MPI_CFG not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001070000001000ull);
}
#else
#define CVMX_MPI_CFG (CVMX_ADD_IO_SEG(0x0001070000001000ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MPI_DATX(unsigned long offset)
{
	if (!(
	      (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 8))) ||
	      (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 8))) ||
	      (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 8))) ||
	      (OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 8))) ||
	      (OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 8))) ||
	      (OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 8)))))
		cvmx_warn("CVMX_MPI_DATX(%lu) is invalid on this chip\n", offset);
	return CVMX_ADD_IO_SEG(0x0001070000001080ull) + ((offset) & 15) * 8;
}
#else
#define CVMX_MPI_DATX(offset) (CVMX_ADD_IO_SEG(0x0001070000001080ull) + ((offset) & 15) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MPI_STS CVMX_MPI_STS_FUNC()
static inline uint64_t CVMX_MPI_STS_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN30XX) || OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN50XX) || OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
		cvmx_warn("CVMX_MPI_STS not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001070000001008ull);
}
#else
#define CVMX_MPI_STS (CVMX_ADD_IO_SEG(0x0001070000001008ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MPI_TX CVMX_MPI_TX_FUNC()
static inline uint64_t CVMX_MPI_TX_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN30XX) || OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN50XX) || OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
		cvmx_warn("CVMX_MPI_TX not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001070000001010ull);
}
#else
#define CVMX_MPI_TX (CVMX_ADD_IO_SEG(0x0001070000001010ull))
#endif

/**
 * cvmx_mpi_cfg
 *
 * SPI_MPI interface
 *
 *
 * Notes:
 * Some of the SPI/MPI pins are muxed with UART pins.
 * SPI_CLK         : spi clock, dedicated pin
 * SPI_DI          : spi input, shared with UART0_DCD_N/SPI_DI, enabled when MPI_CFG[ENABLE]=1
 * SPI_DO          : spi output, mux to UART0_DTR_N/SPI_DO, enabled when MPI_CFG[ENABLE]=1
 * SPI_CS0_L       : chips select 0, mux to BOOT_CE_N<6>/SPI_CS0_L pin, enabled when MPI_CFG[CSENA0]=1 and MPI_CFG[ENABLE]=1
 * SPI_CS1_L       : chips select 1, mux to BOOT_CE_N<7>/SPI_CS1_L pin, enabled when MPI_CFG[CSENA1]=1 and MPI_CFG[ENABLE]=1
 */
union cvmx_mpi_cfg {
	uint64_t u64;
	struct cvmx_mpi_cfg_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_29_63               : 35;
	uint64_t clkdiv                       : 13; /**< Fspi_clk = Fsclk / (2 * CLKDIV)                    |          NS
                                                         CLKDIV = Fsclk / (2 * Fspi_clk) */
	uint64_t csena3                       : 1;  /**< If 0, UART1_RTS_L/SPI_CS3_L pin is UART pin        |          NS
                                                         1, UART1_RTS_L/SPI_CS3_L pin is SPI pin
                                                            SPI_CS3_L drives UART1_RTS_L/SPI_CS3_L */
	uint64_t csena2                       : 1;  /**< If 0, UART0_RTS_L/SPI_CS2_L pin is UART pin        |          NS
                                                         1, UART0_RTS_L/SPI_CS2_L pin is SPI pin
                                                            SPI_CS2_L drives  UART0_RTS_L/SPI_CS2_L */
	uint64_t csena1                       : 1;  /**< If 0, BOOT_CE_N<7>/SPI_CS1_L pin is BOOT pin       |          NS
                                                         1, BOOT_CE_N<7>/SPI_CS1_L pin is SPI pin
                                                            SPI_CS1_L drives BOOT_CE_N<7>/SPI_CS1_L */
	uint64_t csena0                       : 1;  /**< If 0, BOOT_CE_N<6>/SPI_CS0_L pin is BOOT pin       |          NS
                                                         1, BOOT_CE_N<6>/SPI_CS0_L pin is SPI pin
                                                            SPI_CS0_L drives BOOT_CE_N<6>/SPI_CS0_L */
	uint64_t cslate                       : 1;  /**< If 0, SPI_CS asserts 1/2 SCLK before transaction   |          NS
                                                            1, SPI_CS assert coincident with transaction
                                                         NOTE: This control apply for 2 CSs */
	uint64_t tritx                        : 1;  /**< If 0, SPI_DO pin is driven when slave is not       |          NS
                                                               expected to be driving
                                                            1, SPI_DO pin is tristated when not transmitting
                                                         NOTE: only used when WIREOR==1 */
	uint64_t idleclks                     : 2;  /**< Guarantee IDLECLKS idle sclk cycles between        |          NS
                                                         commands. */
	uint64_t cshi                         : 1;  /**< If 0, CS is low asserted                           |          NS
                                                         1, CS is high asserted */
	uint64_t csena                        : 1;  /**< If 0, the MPI_CS is a GPIO, not used by MPI_TX
                                                         1, CS is driven per MPI_TX intruction */
	uint64_t int_ena                      : 1;  /**< If 0, polling is required                          |          NS
                                                         1, MPI engine interrupts X end of transaction */
	uint64_t lsbfirst                     : 1;  /**< If 0, shift MSB first                              |          NS
                                                         1, shift LSB first */
	uint64_t wireor                       : 1;  /**< If 0, SPI_DO and SPI_DI are separate wires (SPI)   |          NS
                                                               SPI_DO pin is always driven
                                                            1, SPI_DO/DI is all from SPI_DO pin (MPI)
                                                               SPI_DO pin is tristated when not transmitting
                                                         NOTE: if WIREOR==1, SPI_DI pin is not used by the
                                                               MPI engine */
	uint64_t clk_cont                     : 1;  /**< If 0, clock idles to value given by IDLELO after   |          NS
                                                            completion of MPI transaction
                                                         1, clock never idles, requires CS deassertion
                                                            assertion between commands */
	uint64_t idlelo                       : 1;  /**< If 0, SPI_CLK idles high, 1st transition is hi->lo |          NS
                                                         1, SPI_CLK idles low, 1st transition is lo->hi */
	uint64_t enable                       : 1;  /**< If 0, UART0_DTR_L/SPI_DO, UART0_DCD_L/SPI_DI       |          NS
                                                            BOOT_CE_N<7:6>/SPI_CSx_L
                                                            pins are UART/BOOT pins
                                                         1, UART0_DTR_L/SPI_DO and UART0_DCD_L/SPI_DI
                                                            pins are SPI/MPI pins.
                                                            BOOT_CE_N<6>/SPI_CS0_L is SPI pin if CSENA0=1
                                                            BOOT_CE_N<7>/SPI_CS1_L is SPI pin if CSENA1=1 */
#else
	uint64_t enable                       : 1;
	uint64_t idlelo                       : 1;
	uint64_t clk_cont                     : 1;
	uint64_t wireor                       : 1;
	uint64_t lsbfirst                     : 1;
	uint64_t int_ena                      : 1;
	uint64_t csena                        : 1;
	uint64_t cshi                         : 1;
	uint64_t idleclks                     : 2;
	uint64_t tritx                        : 1;
	uint64_t cslate                       : 1;
	uint64_t csena0                       : 1;
	uint64_t csena1                       : 1;
	uint64_t csena2                       : 1;
	uint64_t csena3                       : 1;
	uint64_t clkdiv                       : 13;
	uint64_t reserved_29_63               : 35;
#endif
	} s;
	struct cvmx_mpi_cfg_cn30xx {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_29_63               : 35;
	uint64_t clkdiv                       : 13; /**< Fsclk = Feclk / (2 * CLKDIV)
                                                         CLKDIV = Feclk / (2 * Fsclk) */
	uint64_t reserved_12_15               : 4;
	uint64_t cslate                       : 1;  /**< If 0, MPI_CS asserts 1/2 SCLK before transaction
                                                            1, MPI_CS assert coincident with transaction
                                                         NOTE: only used if CSENA == 1 */
	uint64_t tritx                        : 1;  /**< If 0, MPI_TX pin is driven when slave is not
                                                               expected to be driving
                                                            1, MPI_TX pin is tristated when not transmitting
                                                         NOTE: only used when WIREOR==1 */
	uint64_t idleclks                     : 2;  /**< Guarantee IDLECLKS idle sclk cycles between
                                                         commands. */
	uint64_t cshi                         : 1;  /**< If 0, CS is low asserted
                                                         1, CS is high asserted */
	uint64_t csena                        : 1;  /**< If 0, the MPI_CS is a GPIO, not used by MPI_TX
                                                         1, CS is driven per MPI_TX intruction */
	uint64_t int_ena                      : 1;  /**< If 0, polling is required
                                                         1, MPI engine interrupts X end of transaction */
	uint64_t lsbfirst                     : 1;  /**< If 0, shift MSB first
                                                         1, shift LSB first */
	uint64_t wireor                       : 1;  /**< If 0, MPI_TX and MPI_RX are separate wires (SPI)
                                                               MPI_TX pin is always driven
                                                            1, MPI_TX/RX is all from MPI_TX pin (MPI)
                                                               MPI_TX pin is tristated when not transmitting
                                                         NOTE: if WIREOR==1, MPI_RX pin is not used by the
                                                               MPI engine */
	uint64_t clk_cont                     : 1;  /**< If 0, clock idles to value given by IDLELO after
                                                            completion of MPI transaction
                                                         1, clock never idles, requires CS deassertion
                                                            assertion between commands */
	uint64_t idlelo                       : 1;  /**< If 0, MPI_CLK idles high, 1st transition is hi->lo
                                                         1, MPI_CLK idles low, 1st transition is lo->hi */
	uint64_t enable                       : 1;  /**< If 0, all MPI pins are GPIOs
                                                         1, MPI_CLK, MPI_CS, and MPI_TX are driven */
#else
	uint64_t enable                       : 1;
	uint64_t idlelo                       : 1;
	uint64_t clk_cont                     : 1;
	uint64_t wireor                       : 1;
	uint64_t lsbfirst                     : 1;
	uint64_t int_ena                      : 1;
	uint64_t csena                        : 1;
	uint64_t cshi                         : 1;
	uint64_t idleclks                     : 2;
	uint64_t tritx                        : 1;
	uint64_t cslate                       : 1;
	uint64_t reserved_12_15               : 4;
	uint64_t clkdiv                       : 13;
	uint64_t reserved_29_63               : 35;
#endif
	} cn30xx;
	struct cvmx_mpi_cfg_cn31xx {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_29_63               : 35;
	uint64_t clkdiv                       : 13; /**< Fsclk = Feclk / (2 * CLKDIV)
                                                         CLKDIV = Feclk / (2 * Fsclk) */
	uint64_t reserved_11_15               : 5;
	uint64_t tritx                        : 1;  /**< If 0, MPI_TX pin is driven when slave is not
                                                               expected to be driving
                                                            1, MPI_TX pin is tristated when not transmitting
                                                         NOTE: only used when WIREOR==1 */
	uint64_t idleclks                     : 2;  /**< Guarantee IDLECLKS idle sclk cycles between
                                                         commands. */
	uint64_t cshi                         : 1;  /**< If 0, CS is low asserted
                                                         1, CS is high asserted */
	uint64_t csena                        : 1;  /**< If 0, the MPI_CS is a GPIO, not used by MPI_TX
                                                         1, CS is driven per MPI_TX intruction */
	uint64_t int_ena                      : 1;  /**< If 0, polling is required
                                                         1, MPI engine interrupts X end of transaction */
	uint64_t lsbfirst                     : 1;  /**< If 0, shift MSB first
                                                         1, shift LSB first */
	uint64_t wireor                       : 1;  /**< If 0, MPI_TX and MPI_RX are separate wires (SPI)
                                                               MPI_TX pin is always driven
                                                            1, MPI_TX/RX is all from MPI_TX pin (MPI)
                                                               MPI_TX pin is tristated when not transmitting
                                                         NOTE: if WIREOR==1, MPI_RX pin is not used by the
                                                               MPI engine */
	uint64_t clk_cont                     : 1;  /**< If 0, clock idles to value given by IDLELO after
                                                            completion of MPI transaction
                                                         1, clock never idles, requires CS deassertion
                                                            assertion between commands */
	uint64_t idlelo                       : 1;  /**< If 0, MPI_CLK idles high, 1st transition is hi->lo
                                                         1, MPI_CLK idles low, 1st transition is lo->hi */
	uint64_t enable                       : 1;  /**< If 0, all MPI pins are GPIOs
                                                         1, MPI_CLK, MPI_CS, and MPI_TX are driven */
#else
	uint64_t enable                       : 1;
	uint64_t idlelo                       : 1;
	uint64_t clk_cont                     : 1;
	uint64_t wireor                       : 1;
	uint64_t lsbfirst                     : 1;
	uint64_t int_ena                      : 1;
	uint64_t csena                        : 1;
	uint64_t cshi                         : 1;
	uint64_t idleclks                     : 2;
	uint64_t tritx                        : 1;
	uint64_t reserved_11_15               : 5;
	uint64_t clkdiv                       : 13;
	uint64_t reserved_29_63               : 35;
#endif
	} cn31xx;
	struct cvmx_mpi_cfg_cn30xx            cn50xx;
	struct cvmx_mpi_cfg_cn61xx {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_29_63               : 35;
	uint64_t clkdiv                       : 13; /**< Fspi_clk = Fsclk / (2 * CLKDIV)                    |          NS
                                                         CLKDIV = Fsclk / (2 * Fspi_clk) */
	uint64_t reserved_14_15               : 2;
	uint64_t csena1                       : 1;  /**< If 0, BOOT_CE_N<7>/SPI_CS1_L pin is BOOT pin       |          NS
                                                         1, BOOT_CE_N<7>/SPI_CS1_L pin is SPI pin
                                                            SPI_CS1_L drives BOOT_CE_N<7>/SPI_CS1_L */
	uint64_t csena0                       : 1;  /**< If 0, BOOT_CE_N<6>/SPI_CS0_L pin is BOOT pin       |          NS
                                                         1, BOOT_CE_N<6>/SPI_CS0_L pin is SPI pin
                                                            SPI_CS0_L drives BOOT_CE_N<6>/SPI_CS0_L */
	uint64_t cslate                       : 1;  /**< If 0, SPI_CS asserts 1/2 SCLK before transaction   |          NS
                                                            1, SPI_CS assert coincident with transaction
                                                         NOTE: This control apply for 2 CSs */
	uint64_t tritx                        : 1;  /**< If 0, SPI_DO pin is driven when slave is not       |          NS
                                                               expected to be driving
                                                            1, SPI_DO pin is tristated when not transmitting
                                                         NOTE: only used when WIREOR==1 */
	uint64_t idleclks                     : 2;  /**< Guarantee IDLECLKS idle sclk cycles between        |          NS
                                                         commands. */
	uint64_t cshi                         : 1;  /**< If 0, CS is low asserted                           |          NS
                                                         1, CS is high asserted */
	uint64_t reserved_6_6                 : 1;
	uint64_t int_ena                      : 1;  /**< If 0, polling is required                          |          NS
                                                         1, MPI engine interrupts X end of transaction */
	uint64_t lsbfirst                     : 1;  /**< If 0, shift MSB first                              |          NS
                                                         1, shift LSB first */
	uint64_t wireor                       : 1;  /**< If 0, SPI_DO and SPI_DI are separate wires (SPI)   |          NS
                                                               SPI_DO pin is always driven
                                                            1, SPI_DO/DI is all from SPI_DO pin (MPI)
                                                               SPI_DO pin is tristated when not transmitting
                                                         NOTE: if WIREOR==1, SPI_DI pin is not used by the
                                                               MPI engine */
	uint64_t clk_cont                     : 1;  /**< If 0, clock idles to value given by IDLELO after   |          NS
                                                            completion of MPI transaction
                                                         1, clock never idles, requires CS deassertion
                                                            assertion between commands */
	uint64_t idlelo                       : 1;  /**< If 0, SPI_CLK idles high, 1st transition is hi->lo |          NS
                                                         1, SPI_CLK idles low, 1st transition is lo->hi */
	uint64_t enable                       : 1;  /**< If 0, UART0_DTR_L/SPI_DO, UART0_DCD_L/SPI_DI       |          NS
                                                            BOOT_CE_N<7:6>/SPI_CSx_L
                                                            pins are UART/BOOT pins
                                                         1, UART0_DTR_L/SPI_DO and UART0_DCD_L/SPI_DI
                                                            pins are SPI/MPI pins.
                                                            BOOT_CE_N<6>/SPI_CS0_L is SPI pin if CSENA0=1
                                                            BOOT_CE_N<7>/SPI_CS1_L is SPI pin if CSENA1=1 */
#else
	uint64_t enable                       : 1;
	uint64_t idlelo                       : 1;
	uint64_t clk_cont                     : 1;
	uint64_t wireor                       : 1;
	uint64_t lsbfirst                     : 1;
	uint64_t int_ena                      : 1;
	uint64_t reserved_6_6                 : 1;
	uint64_t cshi                         : 1;
	uint64_t idleclks                     : 2;
	uint64_t tritx                        : 1;
	uint64_t cslate                       : 1;
	uint64_t csena0                       : 1;
	uint64_t csena1                       : 1;
	uint64_t reserved_14_15               : 2;
	uint64_t clkdiv                       : 13;
	uint64_t reserved_29_63               : 35;
#endif
	} cn61xx;
	struct cvmx_mpi_cfg_cn66xx {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_29_63               : 35;
	uint64_t clkdiv                       : 13; /**< Fspi_clk = Fsclk / (2 * CLKDIV)                    |          NS
                                                         CLKDIV = Fsclk / (2 * Fspi_clk) */
	uint64_t csena3                       : 1;  /**< If 0, UART1_RTS_L/SPI_CS3_L pin is UART pin        |          NS
                                                         1, UART1_RTS_L/SPI_CS3_L pin is SPI pin
                                                            SPI_CS3_L drives UART1_RTS_L/SPI_CS3_L */
	uint64_t csena2                       : 1;  /**< If 0, UART0_RTS_L/SPI_CS2_L pin is UART pin        |          NS
                                                         1, UART0_RTS_L/SPI_CS2_L pin is SPI pin
                                                            SPI_CS2_L drives  UART0_RTS_L/SPI_CS2_L */
	uint64_t reserved_12_13               : 2;
	uint64_t cslate                       : 1;  /**< If 0, SPI_CS asserts 1/2 SCLK before transaction   |          NS
                                                            1, SPI_CS assert coincident with transaction
                                                         NOTE: This control apply for 4 CSs */
	uint64_t tritx                        : 1;  /**< If 0, SPI_DO pin is driven when slave is not       |          NS
                                                               expected to be driving
                                                            1, SPI_DO pin is tristated when not transmitting
                                                         NOTE: only used when WIREOR==1 */
	uint64_t idleclks                     : 2;  /**< Guarantee IDLECLKS idle sclk cycles between        |          NS
                                                         commands. */
	uint64_t cshi                         : 1;  /**< If 0, CS is low asserted                           |          NS
                                                         1, CS is high asserted */
	uint64_t reserved_6_6                 : 1;
	uint64_t int_ena                      : 1;  /**< If 0, polling is required                          |          NS
                                                         1, MPI engine interrupts X end of transaction */
	uint64_t lsbfirst                     : 1;  /**< If 0, shift MSB first                              |          NS
                                                         1, shift LSB first */
	uint64_t wireor                       : 1;  /**< If 0, SPI_DO and SPI_DI are separate wires (SPI)   |          NS
                                                               SPI_DO pin is always driven
                                                            1, SPI_DO/DI is all from SPI_DO pin (MPI)
                                                               SPI_DO pin is tristated when not transmitting
                                                         NOTE: if WIREOR==1, SPI_DI pin is not used by the
                                                               MPI engine */
	uint64_t clk_cont                     : 1;  /**< If 0, clock idles to value given by IDLELO after   |          NS
                                                            completion of MPI transaction
                                                         1, clock never idles, requires CS deassertion
                                                            assertion between commands */
	uint64_t idlelo                       : 1;  /**< If 0, SPI_CLK idles high, 1st transition is hi->lo |          NS
                                                         1, SPI_CLK idles low, 1st transition is lo->hi */
	uint64_t enable                       : 1;  /**< If 0, UART0_DTR_L/SPI_DO, UART0_DCD_L/SPI_DI       |          NS
                                                            UART0_RTS_L/SPI_CS2_L, UART1_RTS_L/SPI_CS3_L
                                                            pins are UART pins
                                                         1, UART0_DTR_L/SPI_DO and UART0_DCD_L/SPI_DI
                                                            pins are SPI/MPI pins.
                                                            UART0_RTS_L/SPI_CS2_L is SPI pin if CSENA2=1
                                                            UART1_RTS_L/SPI_CS3_L is SPI pin if CSENA3=1 */
#else
	uint64_t enable                       : 1;
	uint64_t idlelo                       : 1;
	uint64_t clk_cont                     : 1;
	uint64_t wireor                       : 1;
	uint64_t lsbfirst                     : 1;
	uint64_t int_ena                      : 1;
	uint64_t reserved_6_6                 : 1;
	uint64_t cshi                         : 1;
	uint64_t idleclks                     : 2;
	uint64_t tritx                        : 1;
	uint64_t cslate                       : 1;
	uint64_t reserved_12_13               : 2;
	uint64_t csena2                       : 1;
	uint64_t csena3                       : 1;
	uint64_t clkdiv                       : 13;
	uint64_t reserved_29_63               : 35;
#endif
	} cn66xx;
	struct cvmx_mpi_cfg_cn61xx            cnf71xx;
};
typedef union cvmx_mpi_cfg cvmx_mpi_cfg_t;

/**
 * cvmx_mpi_dat#
 */
union cvmx_mpi_datx {
	uint64_t u64;
	struct cvmx_mpi_datx_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_8_63                : 56;
	uint64_t data                         : 8;  /**< Data to transmit/received                          |           NS */
#else
	uint64_t data                         : 8;
	uint64_t reserved_8_63                : 56;
#endif
	} s;
	struct cvmx_mpi_datx_s                cn30xx;
	struct cvmx_mpi_datx_s                cn31xx;
	struct cvmx_mpi_datx_s                cn50xx;
	struct cvmx_mpi_datx_s                cn61xx;
	struct cvmx_mpi_datx_s                cn66xx;
	struct cvmx_mpi_datx_s                cnf71xx;
};
typedef union cvmx_mpi_datx cvmx_mpi_datx_t;

/**
 * cvmx_mpi_sts
 */
union cvmx_mpi_sts {
	uint64_t u64;
	struct cvmx_mpi_sts_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_13_63               : 51;
	uint64_t rxnum                        : 5;  /**< Number of bytes written for transaction            |          NS */
	uint64_t reserved_1_7                 : 7;
	uint64_t busy                         : 1;  /**< If 0, no MPI transaction in progress               |          NS
                                                         1, MPI engine is processing a transaction */
#else
	uint64_t busy                         : 1;
	uint64_t reserved_1_7                 : 7;
	uint64_t rxnum                        : 5;
	uint64_t reserved_13_63               : 51;
#endif
	} s;
	struct cvmx_mpi_sts_s                 cn30xx;
	struct cvmx_mpi_sts_s                 cn31xx;
	struct cvmx_mpi_sts_s                 cn50xx;
	struct cvmx_mpi_sts_s                 cn61xx;
	struct cvmx_mpi_sts_s                 cn66xx;
	struct cvmx_mpi_sts_s                 cnf71xx;
};
typedef union cvmx_mpi_sts cvmx_mpi_sts_t;

/**
 * cvmx_mpi_tx
 */
union cvmx_mpi_tx {
	uint64_t u64;
	struct cvmx_mpi_tx_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_22_63               : 42;
	uint64_t csid                         : 2;  /**< Which CS to assert for this transaction            |          NS */
	uint64_t reserved_17_19               : 3;
	uint64_t leavecs                      : 1;  /**< If 0, deassert CS after transaction is done        |          NS
                                                         1, leave CS asserted after transactrion is done */
	uint64_t reserved_13_15               : 3;
	uint64_t txnum                        : 5;  /**< Number of bytes to transmit                        |          NS */
	uint64_t reserved_5_7                 : 3;
	uint64_t totnum                       : 5;  /**< Number of bytes to shift (transmit + receive)      |          NS */
#else
	uint64_t totnum                       : 5;
	uint64_t reserved_5_7                 : 3;
	uint64_t txnum                        : 5;
	uint64_t reserved_13_15               : 3;
	uint64_t leavecs                      : 1;
	uint64_t reserved_17_19               : 3;
	uint64_t csid                         : 2;
	uint64_t reserved_22_63               : 42;
#endif
	} s;
	struct cvmx_mpi_tx_cn30xx {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_17_63               : 47;
	uint64_t leavecs                      : 1;  /**< If 0, deassert CS after transaction is done
                                                         1, leave CS asserted after transactrion is done */
	uint64_t reserved_13_15               : 3;
	uint64_t txnum                        : 5;  /**< Number of bytes to transmit */
	uint64_t reserved_5_7                 : 3;
	uint64_t totnum                       : 5;  /**< Number of bytes to shift (transmit + receive) */
#else
	uint64_t totnum                       : 5;
	uint64_t reserved_5_7                 : 3;
	uint64_t txnum                        : 5;
	uint64_t reserved_13_15               : 3;
	uint64_t leavecs                      : 1;
	uint64_t reserved_17_63               : 47;
#endif
	} cn30xx;
	struct cvmx_mpi_tx_cn30xx             cn31xx;
	struct cvmx_mpi_tx_cn30xx             cn50xx;
	struct cvmx_mpi_tx_cn61xx {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_21_63               : 43;
	uint64_t csid                         : 1;  /**< Which CS to assert for this transaction            |          NS */
	uint64_t reserved_17_19               : 3;
	uint64_t leavecs                      : 1;  /**< If 0, deassert CS after transaction is done        |          NS
                                                         1, leave CS asserted after transactrion is done */
	uint64_t reserved_13_15               : 3;
	uint64_t txnum                        : 5;  /**< Number of bytes to transmit                        |          NS */
	uint64_t reserved_5_7                 : 3;
	uint64_t totnum                       : 5;  /**< Number of bytes to shift (transmit + receive)      |          NS */
#else
	uint64_t totnum                       : 5;
	uint64_t reserved_5_7                 : 3;
	uint64_t txnum                        : 5;
	uint64_t reserved_13_15               : 3;
	uint64_t leavecs                      : 1;
	uint64_t reserved_17_19               : 3;
	uint64_t csid                         : 1;
	uint64_t reserved_21_63               : 43;
#endif
	} cn61xx;
	struct cvmx_mpi_tx_s                  cn66xx;
	struct cvmx_mpi_tx_cn61xx             cnf71xx;
};
typedef union cvmx_mpi_tx cvmx_mpi_tx_t;

#endif