Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
/*-
 * SPDX-License-Identifier: ISC
 *
 * Copyright (c) 2010-2011 Atheros Communications, Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 * $FreeBSD$
 */
#include "opt_ah.h"

#include "ah.h"
#include "ah_internal.h"
#include "ah_devid.h"
#include "ah_desc.h"                    /* NB: for HAL_PHYERR* */

#include "ar5416/ar5416.h"
#include "ar5416/ar5416reg.h"
#include "ar5416/ar5416phy.h"

#include "ah_eeprom_v14.h"	/* for owl_get_ntxchains() */

/*
 * These are default parameters for the AR5416 and
 * later 802.11n NICs.  They simply enable some
 * radar pulse event generation.
 *
 * These are very likely not valid for the AR5212 era
 * NICs.
 *
 * Since these define signal sizing and threshold
 * parameters, they may need changing based on the
 * specific antenna and receive amplifier
 * configuration.
 */
#define	AR5416_DFS_FIRPWR	-33
#define	AR5416_DFS_RRSSI	20
#define	AR5416_DFS_HEIGHT	10
#define	AR5416_DFS_PRSSI	15
#define	AR5416_DFS_INBAND	15
#define	AR5416_DFS_RELPWR	8
#define	AR5416_DFS_RELSTEP	12
#define	AR5416_DFS_MAXLEN	255

HAL_BOOL
ar5416GetDfsDefaultThresh(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
{

	/*
	 * These are general examples of the parameter values
	 * to use when configuring radar pulse detection for
	 * the AR5416, AR91xx, AR92xx NICs.  They are only
	 * for testing and do require tuning depending upon the
	 * hardware and deployment specifics.
	 */
	pe->pe_firpwr = AR5416_DFS_FIRPWR;
	pe->pe_rrssi = AR5416_DFS_RRSSI;
	pe->pe_height = AR5416_DFS_HEIGHT;
	pe->pe_prssi = AR5416_DFS_PRSSI;
	pe->pe_inband = AR5416_DFS_INBAND;
	pe->pe_relpwr = AR5416_DFS_RELPWR;
	pe->pe_relstep = AR5416_DFS_RELSTEP;
	pe->pe_maxlen = AR5416_DFS_MAXLEN;

	return (AH_TRUE);
}

/*
 * Get the radar parameter values and return them in the pe
 * structure
 */
void
ar5416GetDfsThresh(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
{
	uint32_t val, temp;

	val = OS_REG_READ(ah, AR_PHY_RADAR_0);

	temp = MS(val,AR_PHY_RADAR_0_FIRPWR);
	temp |= 0xFFFFFF80;
	pe->pe_firpwr = temp;
	pe->pe_rrssi = MS(val, AR_PHY_RADAR_0_RRSSI);
	pe->pe_height =  MS(val, AR_PHY_RADAR_0_HEIGHT);
	pe->pe_prssi = MS(val, AR_PHY_RADAR_0_PRSSI);
	pe->pe_inband = MS(val, AR_PHY_RADAR_0_INBAND);

	/* RADAR_1 values */
	val = OS_REG_READ(ah, AR_PHY_RADAR_1);
	pe->pe_relpwr = MS(val, AR_PHY_RADAR_1_RELPWR_THRESH);
	pe->pe_relstep = MS(val, AR_PHY_RADAR_1_RELSTEP_THRESH);
	pe->pe_maxlen = MS(val, AR_PHY_RADAR_1_MAXLEN);

	pe->pe_extchannel = !! (OS_REG_READ(ah, AR_PHY_RADAR_EXT) &
	    AR_PHY_RADAR_EXT_ENA);

	pe->pe_usefir128 = !! (OS_REG_READ(ah, AR_PHY_RADAR_1) &
	    AR_PHY_RADAR_1_USE_FIR128);
	pe->pe_blockradar = !! (OS_REG_READ(ah, AR_PHY_RADAR_1) &
	    AR_PHY_RADAR_1_BLOCK_CHECK);
	pe->pe_enmaxrssi = !! (OS_REG_READ(ah, AR_PHY_RADAR_1) &
	    AR_PHY_RADAR_1_MAX_RRSSI);
	pe->pe_enabled = !!
	    (OS_REG_READ(ah, AR_PHY_RADAR_0) & AR_PHY_RADAR_0_ENA);
	pe->pe_enrelpwr = !! (OS_REG_READ(ah, AR_PHY_RADAR_1) &
	    AR_PHY_RADAR_1_RELPWR_ENA);
	pe->pe_en_relstep_check = !! (OS_REG_READ(ah, AR_PHY_RADAR_1) &
	    AR_PHY_RADAR_1_RELSTEP_CHECK);
}

/*
 * Enable radar detection and set the radar parameters per the
 * values in pe
 */
void
ar5416EnableDfs(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
{
	uint32_t val;

	val = OS_REG_READ(ah, AR_PHY_RADAR_0);

	if (pe->pe_firpwr != HAL_PHYERR_PARAM_NOVAL) {
		val &= ~AR_PHY_RADAR_0_FIRPWR;
		val |= SM(pe->pe_firpwr, AR_PHY_RADAR_0_FIRPWR);
	}
	if (pe->pe_rrssi != HAL_PHYERR_PARAM_NOVAL) {
		val &= ~AR_PHY_RADAR_0_RRSSI;
		val |= SM(pe->pe_rrssi, AR_PHY_RADAR_0_RRSSI);
	}
	if (pe->pe_height != HAL_PHYERR_PARAM_NOVAL) {
		val &= ~AR_PHY_RADAR_0_HEIGHT;
		val |= SM(pe->pe_height, AR_PHY_RADAR_0_HEIGHT);
	}
	if (pe->pe_prssi != HAL_PHYERR_PARAM_NOVAL) {
		val &= ~AR_PHY_RADAR_0_PRSSI;
		val |= SM(pe->pe_prssi, AR_PHY_RADAR_0_PRSSI);
	}
	if (pe->pe_inband != HAL_PHYERR_PARAM_NOVAL) {
		val &= ~AR_PHY_RADAR_0_INBAND;
		val |= SM(pe->pe_inband, AR_PHY_RADAR_0_INBAND);
	}

	/*Enable FFT data*/
	val |= AR_PHY_RADAR_0_FFT_ENA;
	OS_REG_WRITE(ah, AR_PHY_RADAR_0, val);

	/* Implicitly enable */
	if (pe->pe_enabled == 1)
		OS_REG_SET_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
	else if (pe->pe_enabled == 0)
		OS_REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);

	if (pe->pe_usefir128 == 1)
		OS_REG_SET_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_USE_FIR128);
	else if (pe->pe_usefir128 == 0)
		OS_REG_CLR_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_USE_FIR128);

	if (pe->pe_enmaxrssi == 1)
		OS_REG_SET_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_MAX_RRSSI);
	else if (pe->pe_enmaxrssi == 0)
		OS_REG_CLR_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_MAX_RRSSI);

	if (pe->pe_blockradar == 1)
		OS_REG_SET_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_BLOCK_CHECK);
	else if (pe->pe_blockradar == 0)
		OS_REG_CLR_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_BLOCK_CHECK);

	if (pe->pe_relstep != HAL_PHYERR_PARAM_NOVAL) {
		val = OS_REG_READ(ah, AR_PHY_RADAR_1);
		val &= ~AR_PHY_RADAR_1_RELSTEP_THRESH;
		val |= SM(pe->pe_relstep, AR_PHY_RADAR_1_RELSTEP_THRESH);
		OS_REG_WRITE(ah, AR_PHY_RADAR_1, val);
	}
	if (pe->pe_relpwr != HAL_PHYERR_PARAM_NOVAL) {
		val = OS_REG_READ(ah, AR_PHY_RADAR_1);
		val &= ~AR_PHY_RADAR_1_RELPWR_THRESH;
		val |= SM(pe->pe_relpwr, AR_PHY_RADAR_1_RELPWR_THRESH);
		OS_REG_WRITE(ah, AR_PHY_RADAR_1, val);
	}

	if (pe->pe_en_relstep_check == 1)
		OS_REG_SET_BIT(ah, AR_PHY_RADAR_1,
		    AR_PHY_RADAR_1_RELSTEP_CHECK);
	else if (pe->pe_en_relstep_check == 0)
		OS_REG_CLR_BIT(ah, AR_PHY_RADAR_1,
		    AR_PHY_RADAR_1_RELSTEP_CHECK);

	if (pe->pe_enrelpwr == 1)
		OS_REG_SET_BIT(ah, AR_PHY_RADAR_1,
		    AR_PHY_RADAR_1_RELPWR_ENA);
	else if (pe->pe_enrelpwr == 0)
		OS_REG_CLR_BIT(ah, AR_PHY_RADAR_1,
		    AR_PHY_RADAR_1_RELPWR_ENA);

	if (pe->pe_maxlen != HAL_PHYERR_PARAM_NOVAL) {
		val = OS_REG_READ(ah, AR_PHY_RADAR_1);
		val &= ~AR_PHY_RADAR_1_MAXLEN;
		val |= SM(pe->pe_maxlen, AR_PHY_RADAR_1_MAXLEN);
		OS_REG_WRITE(ah, AR_PHY_RADAR_1, val);
	}

	/*
	 * Enable HT/40 if the upper layer asks;
	 * it should check the channel is HT/40 and HAL_CAP_EXT_CHAN_DFS
	 * is available.
	 */
	if (pe->pe_extchannel == 1)
		OS_REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
	else if (pe->pe_extchannel == 0)
		OS_REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
}

/*
 * Extract the radar event information from the given phy error.
 *
 * Returns AH_TRUE if the phy error was actually a phy error,
 * AH_FALSE if the phy error wasn't a phy error.
 */

/* Flags for pulse_bw_info */
#define	PRI_CH_RADAR_FOUND		0x01
#define	EXT_CH_RADAR_FOUND		0x02
#define	EXT_CH_RADAR_EARLY_FOUND	0x04

HAL_BOOL
ar5416ProcessRadarEvent(struct ath_hal *ah, struct ath_rx_status *rxs,
    uint64_t fulltsf, const char *buf, HAL_DFS_EVENT *event)
{
	HAL_BOOL doDfsExtCh;
	HAL_BOOL doDfsEnhanced;
	HAL_BOOL doDfsCombinedRssi;

	uint8_t rssi = 0, ext_rssi = 0;
	uint8_t pulse_bw_info = 0, pulse_length_ext = 0, pulse_length_pri = 0;
	uint32_t dur = 0;
	int pri_found = 1, ext_found = 0;
	int early_ext = 0;
	int is_dc = 0;
	uint16_t datalen;		/* length from the RX status field */

	/* Check whether the given phy error is a radar event */
	if ((rxs->rs_phyerr != HAL_PHYERR_RADAR) &&
	    (rxs->rs_phyerr != HAL_PHYERR_FALSE_RADAR_EXT)) {
		return AH_FALSE;
	}

	/* Grab copies of the capabilities; just to make the code clearer */
	doDfsExtCh = AH_PRIVATE(ah)->ah_caps.halExtChanDfsSupport;
	doDfsEnhanced = AH_PRIVATE(ah)->ah_caps.halEnhancedDfsSupport;
	doDfsCombinedRssi = AH_PRIVATE(ah)->ah_caps.halUseCombinedRadarRssi;

	datalen = rxs->rs_datalen;

	/* If hardware supports it, use combined RSSI, else use chain 0 RSSI */
	if (doDfsCombinedRssi)
		rssi = (uint8_t) rxs->rs_rssi;
	else		
		rssi = (uint8_t) rxs->rs_rssi_ctl[0];

	/* Set this; but only use it if doDfsExtCh is set */
	ext_rssi = (uint8_t) rxs->rs_rssi_ext[0];

	/* Cap it at 0 if the RSSI is a negative number */
	if (rssi & 0x80)
		rssi = 0;

	if (ext_rssi & 0x80)
		ext_rssi = 0;

	/*
	 * Fetch the relevant data from the frame
	 */
	if (doDfsExtCh) {
		if (datalen < 3)
			return AH_FALSE;

		/* Last three bytes of the frame are of interest */
		pulse_length_pri = *(buf + datalen - 3);
		pulse_length_ext = *(buf + datalen - 2);
		pulse_bw_info = *(buf + datalen - 1);
		HALDEBUG(ah, HAL_DEBUG_DFS, "%s: rssi=%d, ext_rssi=%d, pulse_length_pri=%d,"
		    " pulse_length_ext=%d, pulse_bw_info=%x\n",
		    __func__, rssi, ext_rssi, pulse_length_pri, pulse_length_ext,
		    pulse_bw_info);
	} else {
		/* The pulse width is byte 0 of the data */
		if (datalen >= 1)
			dur = ((uint8_t) buf[0]) & 0xff;
		else
			dur = 0;

		if (dur == 0 && rssi == 0) {
			HALDEBUG(ah, HAL_DEBUG_DFS, "%s: dur and rssi are 0\n", __func__);
			return AH_FALSE;
		}

		HALDEBUG(ah, HAL_DEBUG_DFS, "%s: rssi=%d, dur=%d\n", __func__, rssi, dur);

		/* Single-channel only */
		pri_found = 1;
		ext_found = 0;
	}

	/*
	 * If doing extended channel data, pulse_bw_info must
	 * have one of the flags set.
	 */
	if (doDfsExtCh && pulse_bw_info == 0x0)
		return AH_FALSE;
		
	/*
	 * If the extended channel data is available, calculate
	 * which to pay attention to.
	 */
	if (doDfsExtCh) {
		/* If pulse is on DC, take the larger duration of the two */
		if ((pulse_bw_info & EXT_CH_RADAR_FOUND) &&
		    (pulse_bw_info & PRI_CH_RADAR_FOUND)) {
			is_dc = 1;
			if (pulse_length_ext > pulse_length_pri) {
				dur = pulse_length_ext;
				pri_found = 0;
				ext_found = 1;
			} else {
				dur = pulse_length_pri;
				pri_found = 1;
				ext_found = 0;
			}
		} else if (pulse_bw_info & EXT_CH_RADAR_EARLY_FOUND) {
			dur = pulse_length_ext;
			pri_found = 0;
			ext_found = 1;
			early_ext = 1;
		} else if (pulse_bw_info & PRI_CH_RADAR_FOUND) {
			dur = pulse_length_pri;
			pri_found = 1;
			ext_found = 0;
		} else if (pulse_bw_info & EXT_CH_RADAR_FOUND) {
			dur = pulse_length_ext;
			pri_found = 0;
			ext_found = 1;
		}
		
	}

	/*
	 * For enhanced DFS (Merlin and later), pulse_bw_info has
	 * implications for selecting the correct RSSI value.
	 */
	if (doDfsEnhanced) {
		switch (pulse_bw_info & 0x03) {
		case 0:
			/* No radar? */
			rssi = 0;
			break;
		case PRI_CH_RADAR_FOUND:
			/* Radar in primary channel */
			/* Cannot use ctrl channel RSSI if ext channel is stronger */
			if (ext_rssi >= (rssi + 3)) {
				rssi = 0;
			}
			break;
		case EXT_CH_RADAR_FOUND:
			/* Radar in extended channel */
			/* Cannot use ext channel RSSI if ctrl channel is stronger */
			if (rssi >= (ext_rssi + 12)) {
				rssi = 0;
			} else {
				rssi = ext_rssi;
			}
			break;
		case (PRI_CH_RADAR_FOUND | EXT_CH_RADAR_FOUND):
			/* When both are present, use stronger one */
			if (rssi < ext_rssi)
				rssi = ext_rssi;
			break;
		}
	}

	/*
	 * If not doing enhanced DFS, choose the ext channel if
	 * it is stronger than the main channel
	 */
	if (doDfsExtCh && !doDfsEnhanced) {
		if ((ext_rssi > rssi) && (ext_rssi < 128))
			rssi = ext_rssi;
	}

	/*
	 * XXX what happens if the above code decides the RSSI
	 * XXX wasn't valid, an sets it to 0?
	 */

	/*
	 * Fill out dfs_event structure.
	 */
	event->re_full_ts = fulltsf;
	event->re_ts = rxs->rs_tstamp;
	event->re_rssi = rssi;
	event->re_dur = dur;

	event->re_flags = 0;
	if (pri_found)
		event->re_flags |= HAL_DFS_EVENT_PRICH;
	if (ext_found)
		event->re_flags |= HAL_DFS_EVENT_EXTCH;
	if (early_ext)
		event->re_flags |= HAL_DFS_EVENT_EXTEARLY;
	if (is_dc)
		event->re_flags |= HAL_DFS_EVENT_ISDC;

	return AH_TRUE;
}

/*
 * Return whether fast-clock is currently enabled for this
 * channel.
 */
HAL_BOOL
ar5416IsFastClockEnabled(struct ath_hal *ah)
{
	struct ath_hal_private *ahp = AH_PRIVATE(ah);

	return IS_5GHZ_FAST_CLOCK_EN(ah, ahp->ah_curchan);
}