/*-
* SPDX-License-Identifier: ISC
*
* Copyright (c) 2010-2011 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ah_devid.h"
#include "ah_desc.h" /* NB: for HAL_PHYERR* */
#include "ar5416/ar5416.h"
#include "ar5416/ar5416reg.h"
#include "ar5416/ar5416phy.h"
#include "ah_eeprom_v14.h" /* for owl_get_ntxchains() */
/*
* These are default parameters for the AR5416 and
* later 802.11n NICs. They simply enable some
* radar pulse event generation.
*
* These are very likely not valid for the AR5212 era
* NICs.
*
* Since these define signal sizing and threshold
* parameters, they may need changing based on the
* specific antenna and receive amplifier
* configuration.
*/
#define AR5416_DFS_FIRPWR -33
#define AR5416_DFS_RRSSI 20
#define AR5416_DFS_HEIGHT 10
#define AR5416_DFS_PRSSI 15
#define AR5416_DFS_INBAND 15
#define AR5416_DFS_RELPWR 8
#define AR5416_DFS_RELSTEP 12
#define AR5416_DFS_MAXLEN 255
HAL_BOOL
ar5416GetDfsDefaultThresh(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
{
/*
* These are general examples of the parameter values
* to use when configuring radar pulse detection for
* the AR5416, AR91xx, AR92xx NICs. They are only
* for testing and do require tuning depending upon the
* hardware and deployment specifics.
*/
pe->pe_firpwr = AR5416_DFS_FIRPWR;
pe->pe_rrssi = AR5416_DFS_RRSSI;
pe->pe_height = AR5416_DFS_HEIGHT;
pe->pe_prssi = AR5416_DFS_PRSSI;
pe->pe_inband = AR5416_DFS_INBAND;
pe->pe_relpwr = AR5416_DFS_RELPWR;
pe->pe_relstep = AR5416_DFS_RELSTEP;
pe->pe_maxlen = AR5416_DFS_MAXLEN;
return (AH_TRUE);
}
/*
* Get the radar parameter values and return them in the pe
* structure
*/
void
ar5416GetDfsThresh(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
{
uint32_t val, temp;
val = OS_REG_READ(ah, AR_PHY_RADAR_0);
temp = MS(val,AR_PHY_RADAR_0_FIRPWR);
temp |= 0xFFFFFF80;
pe->pe_firpwr = temp;
pe->pe_rrssi = MS(val, AR_PHY_RADAR_0_RRSSI);
pe->pe_height = MS(val, AR_PHY_RADAR_0_HEIGHT);
pe->pe_prssi = MS(val, AR_PHY_RADAR_0_PRSSI);
pe->pe_inband = MS(val, AR_PHY_RADAR_0_INBAND);
/* RADAR_1 values */
val = OS_REG_READ(ah, AR_PHY_RADAR_1);
pe->pe_relpwr = MS(val, AR_PHY_RADAR_1_RELPWR_THRESH);
pe->pe_relstep = MS(val, AR_PHY_RADAR_1_RELSTEP_THRESH);
pe->pe_maxlen = MS(val, AR_PHY_RADAR_1_MAXLEN);
pe->pe_extchannel = !! (OS_REG_READ(ah, AR_PHY_RADAR_EXT) &
AR_PHY_RADAR_EXT_ENA);
pe->pe_usefir128 = !! (OS_REG_READ(ah, AR_PHY_RADAR_1) &
AR_PHY_RADAR_1_USE_FIR128);
pe->pe_blockradar = !! (OS_REG_READ(ah, AR_PHY_RADAR_1) &
AR_PHY_RADAR_1_BLOCK_CHECK);
pe->pe_enmaxrssi = !! (OS_REG_READ(ah, AR_PHY_RADAR_1) &
AR_PHY_RADAR_1_MAX_RRSSI);
pe->pe_enabled = !!
(OS_REG_READ(ah, AR_PHY_RADAR_0) & AR_PHY_RADAR_0_ENA);
pe->pe_enrelpwr = !! (OS_REG_READ(ah, AR_PHY_RADAR_1) &
AR_PHY_RADAR_1_RELPWR_ENA);
pe->pe_en_relstep_check = !! (OS_REG_READ(ah, AR_PHY_RADAR_1) &
AR_PHY_RADAR_1_RELSTEP_CHECK);
}
/*
* Enable radar detection and set the radar parameters per the
* values in pe
*/
void
ar5416EnableDfs(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
{
uint32_t val;
val = OS_REG_READ(ah, AR_PHY_RADAR_0);
if (pe->pe_firpwr != HAL_PHYERR_PARAM_NOVAL) {
val &= ~AR_PHY_RADAR_0_FIRPWR;
val |= SM(pe->pe_firpwr, AR_PHY_RADAR_0_FIRPWR);
}
if (pe->pe_rrssi != HAL_PHYERR_PARAM_NOVAL) {
val &= ~AR_PHY_RADAR_0_RRSSI;
val |= SM(pe->pe_rrssi, AR_PHY_RADAR_0_RRSSI);
}
if (pe->pe_height != HAL_PHYERR_PARAM_NOVAL) {
val &= ~AR_PHY_RADAR_0_HEIGHT;
val |= SM(pe->pe_height, AR_PHY_RADAR_0_HEIGHT);
}
if (pe->pe_prssi != HAL_PHYERR_PARAM_NOVAL) {
val &= ~AR_PHY_RADAR_0_PRSSI;
val |= SM(pe->pe_prssi, AR_PHY_RADAR_0_PRSSI);
}
if (pe->pe_inband != HAL_PHYERR_PARAM_NOVAL) {
val &= ~AR_PHY_RADAR_0_INBAND;
val |= SM(pe->pe_inband, AR_PHY_RADAR_0_INBAND);
}
/*Enable FFT data*/
val |= AR_PHY_RADAR_0_FFT_ENA;
OS_REG_WRITE(ah, AR_PHY_RADAR_0, val);
/* Implicitly enable */
if (pe->pe_enabled == 1)
OS_REG_SET_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
else if (pe->pe_enabled == 0)
OS_REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
if (pe->pe_usefir128 == 1)
OS_REG_SET_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_USE_FIR128);
else if (pe->pe_usefir128 == 0)
OS_REG_CLR_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_USE_FIR128);
if (pe->pe_enmaxrssi == 1)
OS_REG_SET_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_MAX_RRSSI);
else if (pe->pe_enmaxrssi == 0)
OS_REG_CLR_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_MAX_RRSSI);
if (pe->pe_blockradar == 1)
OS_REG_SET_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_BLOCK_CHECK);
else if (pe->pe_blockradar == 0)
OS_REG_CLR_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_BLOCK_CHECK);
if (pe->pe_relstep != HAL_PHYERR_PARAM_NOVAL) {
val = OS_REG_READ(ah, AR_PHY_RADAR_1);
val &= ~AR_PHY_RADAR_1_RELSTEP_THRESH;
val |= SM(pe->pe_relstep, AR_PHY_RADAR_1_RELSTEP_THRESH);
OS_REG_WRITE(ah, AR_PHY_RADAR_1, val);
}
if (pe->pe_relpwr != HAL_PHYERR_PARAM_NOVAL) {
val = OS_REG_READ(ah, AR_PHY_RADAR_1);
val &= ~AR_PHY_RADAR_1_RELPWR_THRESH;
val |= SM(pe->pe_relpwr, AR_PHY_RADAR_1_RELPWR_THRESH);
OS_REG_WRITE(ah, AR_PHY_RADAR_1, val);
}
if (pe->pe_en_relstep_check == 1)
OS_REG_SET_BIT(ah, AR_PHY_RADAR_1,
AR_PHY_RADAR_1_RELSTEP_CHECK);
else if (pe->pe_en_relstep_check == 0)
OS_REG_CLR_BIT(ah, AR_PHY_RADAR_1,
AR_PHY_RADAR_1_RELSTEP_CHECK);
if (pe->pe_enrelpwr == 1)
OS_REG_SET_BIT(ah, AR_PHY_RADAR_1,
AR_PHY_RADAR_1_RELPWR_ENA);
else if (pe->pe_enrelpwr == 0)
OS_REG_CLR_BIT(ah, AR_PHY_RADAR_1,
AR_PHY_RADAR_1_RELPWR_ENA);
if (pe->pe_maxlen != HAL_PHYERR_PARAM_NOVAL) {
val = OS_REG_READ(ah, AR_PHY_RADAR_1);
val &= ~AR_PHY_RADAR_1_MAXLEN;
val |= SM(pe->pe_maxlen, AR_PHY_RADAR_1_MAXLEN);
OS_REG_WRITE(ah, AR_PHY_RADAR_1, val);
}
/*
* Enable HT/40 if the upper layer asks;
* it should check the channel is HT/40 and HAL_CAP_EXT_CHAN_DFS
* is available.
*/
if (pe->pe_extchannel == 1)
OS_REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
else if (pe->pe_extchannel == 0)
OS_REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
}
/*
* Extract the radar event information from the given phy error.
*
* Returns AH_TRUE if the phy error was actually a phy error,
* AH_FALSE if the phy error wasn't a phy error.
*/
/* Flags for pulse_bw_info */
#define PRI_CH_RADAR_FOUND 0x01
#define EXT_CH_RADAR_FOUND 0x02
#define EXT_CH_RADAR_EARLY_FOUND 0x04
HAL_BOOL
ar5416ProcessRadarEvent(struct ath_hal *ah, struct ath_rx_status *rxs,
uint64_t fulltsf, const char *buf, HAL_DFS_EVENT *event)
{
HAL_BOOL doDfsExtCh;
HAL_BOOL doDfsEnhanced;
HAL_BOOL doDfsCombinedRssi;
uint8_t rssi = 0, ext_rssi = 0;
uint8_t pulse_bw_info = 0, pulse_length_ext = 0, pulse_length_pri = 0;
uint32_t dur = 0;
int pri_found = 1, ext_found = 0;
int early_ext = 0;
int is_dc = 0;
uint16_t datalen; /* length from the RX status field */
/* Check whether the given phy error is a radar event */
if ((rxs->rs_phyerr != HAL_PHYERR_RADAR) &&
(rxs->rs_phyerr != HAL_PHYERR_FALSE_RADAR_EXT)) {
return AH_FALSE;
}
/* Grab copies of the capabilities; just to make the code clearer */
doDfsExtCh = AH_PRIVATE(ah)->ah_caps.halExtChanDfsSupport;
doDfsEnhanced = AH_PRIVATE(ah)->ah_caps.halEnhancedDfsSupport;
doDfsCombinedRssi = AH_PRIVATE(ah)->ah_caps.halUseCombinedRadarRssi;
datalen = rxs->rs_datalen;
/* If hardware supports it, use combined RSSI, else use chain 0 RSSI */
if (doDfsCombinedRssi)
rssi = (uint8_t) rxs->rs_rssi;
else
rssi = (uint8_t) rxs->rs_rssi_ctl[0];
/* Set this; but only use it if doDfsExtCh is set */
ext_rssi = (uint8_t) rxs->rs_rssi_ext[0];
/* Cap it at 0 if the RSSI is a negative number */
if (rssi & 0x80)
rssi = 0;
if (ext_rssi & 0x80)
ext_rssi = 0;
/*
* Fetch the relevant data from the frame
*/
if (doDfsExtCh) {
if (datalen < 3)
return AH_FALSE;
/* Last three bytes of the frame are of interest */
pulse_length_pri = *(buf + datalen - 3);
pulse_length_ext = *(buf + datalen - 2);
pulse_bw_info = *(buf + datalen - 1);
HALDEBUG(ah, HAL_DEBUG_DFS, "%s: rssi=%d, ext_rssi=%d, pulse_length_pri=%d,"
" pulse_length_ext=%d, pulse_bw_info=%x\n",
__func__, rssi, ext_rssi, pulse_length_pri, pulse_length_ext,
pulse_bw_info);
} else {
/* The pulse width is byte 0 of the data */
if (datalen >= 1)
dur = ((uint8_t) buf[0]) & 0xff;
else
dur = 0;
if (dur == 0 && rssi == 0) {
HALDEBUG(ah, HAL_DEBUG_DFS, "%s: dur and rssi are 0\n", __func__);
return AH_FALSE;
}
HALDEBUG(ah, HAL_DEBUG_DFS, "%s: rssi=%d, dur=%d\n", __func__, rssi, dur);
/* Single-channel only */
pri_found = 1;
ext_found = 0;
}
/*
* If doing extended channel data, pulse_bw_info must
* have one of the flags set.
*/
if (doDfsExtCh && pulse_bw_info == 0x0)
return AH_FALSE;
/*
* If the extended channel data is available, calculate
* which to pay attention to.
*/
if (doDfsExtCh) {
/* If pulse is on DC, take the larger duration of the two */
if ((pulse_bw_info & EXT_CH_RADAR_FOUND) &&
(pulse_bw_info & PRI_CH_RADAR_FOUND)) {
is_dc = 1;
if (pulse_length_ext > pulse_length_pri) {
dur = pulse_length_ext;
pri_found = 0;
ext_found = 1;
} else {
dur = pulse_length_pri;
pri_found = 1;
ext_found = 0;
}
} else if (pulse_bw_info & EXT_CH_RADAR_EARLY_FOUND) {
dur = pulse_length_ext;
pri_found = 0;
ext_found = 1;
early_ext = 1;
} else if (pulse_bw_info & PRI_CH_RADAR_FOUND) {
dur = pulse_length_pri;
pri_found = 1;
ext_found = 0;
} else if (pulse_bw_info & EXT_CH_RADAR_FOUND) {
dur = pulse_length_ext;
pri_found = 0;
ext_found = 1;
}
}
/*
* For enhanced DFS (Merlin and later), pulse_bw_info has
* implications for selecting the correct RSSI value.
*/
if (doDfsEnhanced) {
switch (pulse_bw_info & 0x03) {
case 0:
/* No radar? */
rssi = 0;
break;
case PRI_CH_RADAR_FOUND:
/* Radar in primary channel */
/* Cannot use ctrl channel RSSI if ext channel is stronger */
if (ext_rssi >= (rssi + 3)) {
rssi = 0;
}
break;
case EXT_CH_RADAR_FOUND:
/* Radar in extended channel */
/* Cannot use ext channel RSSI if ctrl channel is stronger */
if (rssi >= (ext_rssi + 12)) {
rssi = 0;
} else {
rssi = ext_rssi;
}
break;
case (PRI_CH_RADAR_FOUND | EXT_CH_RADAR_FOUND):
/* When both are present, use stronger one */
if (rssi < ext_rssi)
rssi = ext_rssi;
break;
}
}
/*
* If not doing enhanced DFS, choose the ext channel if
* it is stronger than the main channel
*/
if (doDfsExtCh && !doDfsEnhanced) {
if ((ext_rssi > rssi) && (ext_rssi < 128))
rssi = ext_rssi;
}
/*
* XXX what happens if the above code decides the RSSI
* XXX wasn't valid, an sets it to 0?
*/
/*
* Fill out dfs_event structure.
*/
event->re_full_ts = fulltsf;
event->re_ts = rxs->rs_tstamp;
event->re_rssi = rssi;
event->re_dur = dur;
event->re_flags = 0;
if (pri_found)
event->re_flags |= HAL_DFS_EVENT_PRICH;
if (ext_found)
event->re_flags |= HAL_DFS_EVENT_EXTCH;
if (early_ext)
event->re_flags |= HAL_DFS_EVENT_EXTEARLY;
if (is_dc)
event->re_flags |= HAL_DFS_EVENT_ISDC;
return AH_TRUE;
}
/*
* Return whether fast-clock is currently enabled for this
* channel.
*/
HAL_BOOL
ar5416IsFastClockEnabled(struct ath_hal *ah)
{
struct ath_hal_private *ahp = AH_PRIVATE(ah);
return IS_5GHZ_FAST_CLOCK_EN(ah, ahp->ah_curchan);
}