Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
/*-
 * SPDX-License-Identifier: ISC
 *
 * Copyright (c) 2008-2009 Sam Leffler, Errno Consulting
 * Copyright (c) 2008 Atheros Communications, Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 * $FreeBSD$
 */
#include "opt_ah.h"

/*
 * NB: Merlin and later have a simpler RF backend.
 */
#include "ah.h"
#include "ah_internal.h"

#include "ah_eeprom_v14.h"

#include "ar9002/ar9280.h"
#include "ar5416/ar5416reg.h"
#include "ar5416/ar5416phy.h"

#define N(a)    (sizeof(a)/sizeof(a[0]))

struct ar9280State {
	RF_HAL_FUNCS	base;		/* public state, must be first */
	uint16_t	pcdacTable[1];	/* XXX */
};
#define	AR9280(ah)	((struct ar9280State *) AH5212(ah)->ah_rfHal)

static HAL_BOOL ar9280GetChannelMaxMinPower(struct ath_hal *,
	const struct ieee80211_channel *, int16_t *maxPow,int16_t *minPow);
int16_t ar9280GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c);

static void
ar9280WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
	int writes)
{
	(void) ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_bb_rfgain,
		freqIndex, writes);
}

/*
 * Take the MHz channel value and set the Channel value
 *
 * ASSUMES: Writes enabled to analog bus
 *
 * Actual Expression,
 *
 * For 2GHz channel, 
 * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17) 
 * (freq_ref = 40MHz)
 *
 * For 5GHz channel,
 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
 * (freq_ref = 40MHz/(24>>amodeRefSel))
 *
 * For 5GHz channels which are 5MHz spaced,
 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
 * (freq_ref = 40MHz)
 */
static HAL_BOOL
ar9280SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
	uint16_t bMode, fracMode, aModeRefSel = 0;
	uint32_t freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
	CHAN_CENTERS centers;
	uint32_t refDivA = 24;
	uint8_t frac_n_5g;

	OS_MARK(ah, AH_MARK_SETCHANNEL, chan->ic_freq);

	ar5416GetChannelCenters(ah, chan, &centers);
	freq = centers.synth_center;

	reg32 = OS_REG_READ(ah, AR_PHY_SYNTH_CONTROL);
	reg32 &= 0xc0000000;

	if (ath_hal_eepromGet(ah, AR_EEP_FRAC_N_5G, &frac_n_5g) != HAL_OK)
		frac_n_5g = 0;

	if (freq < 4800) {     /* 2 GHz, fractional mode */
		uint32_t txctl;

		bMode = 1;
		fracMode = 1;
		aModeRefSel = 0;       
		channelSel = (freq * 0x10000)/15;

		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
		if (freq == 2484) {
			/* Enable channel spreading for channel 14 */
			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
			    txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
		} else {
			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
			    txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
		}     
	} else {
		bMode = 0;
		fracMode = 0;

		switch (frac_n_5g) {
		case 0:
			/*
			 * Enable fractional mode for half/quarter rate
			 * channels.
			 *
			 * This is from the Linux ath9k code, rather than
			 * the Atheros HAL code.
			 */
			if (IEEE80211_IS_CHAN_QUARTER(chan) ||
			    IEEE80211_IS_CHAN_HALF(chan))
				aModeRefSel = 0;
			else if ((freq % 20) == 0) {
				aModeRefSel = 3;
			} else if ((freq % 10) == 0) {
				aModeRefSel = 2;
			}
			if (aModeRefSel) break;
		case 1:
		default:
			aModeRefSel = 0;
			/* Enable 2G (fractional) mode for channels which are 5MHz spaced */

			/*
			 * Workaround for talking on PSB non-5MHz channels;
			 * the pre-Merlin chips only had a 2.5MHz channel
			 * spacing so some channels aren't reachable.

			 *
			 * This interoperates on the quarter rate channels
			 * with the AR5112 and later RF synths.  Please note
			 * that the synthesiser isn't able to completely
			 * accurately represent these frequencies (as the
			 * resolution in this reference is 2.5MHz) and thus
			 * it will be slightly "off centre."  This matches
			 * the same slightly incorrect centre frequency
			 * behaviour that the AR5112 and later channel
			 * selection code has.
			 *
			 * This also interoperates with the AR5416
			 * synthesiser modification for programming
			 * fractional frequencies in 5GHz mode.  However
			 * that modification is also disabled by default.
			 *
			 * This is disabled because it hasn't been tested for
			 * regulatory compliance and neither have the NICs
			 * which would use it.  So if you enable this code,
			 * you must first ensure that you've re-certified the
			 * NICs in question beforehand or you will be
			 * violating your local regulatory rules and breaking
			 * the law.
			 */
#if 0
			if (freq % 5 == 0) {
#endif
				/* Normal */
				fracMode = 1;
				refDivA = 1;
				channelSel = (freq * 0x8000)/15;
#if 0
			} else {
				/* Offset by 500KHz */
				uint32_t f, ch, ch2;

				fracMode = 1;
				refDivA = 1;

				/* Calculate the "adjusted" frequency */
				f = freq - 2;
				ch = (((f - 4800) * 10) / 25) + 1;

				ch2 = ((ch * 25) / 5) + 9600;
				channelSel = (ch2 * 0x4000) / 15;
				//ath_hal_printf(ah,
				//    "%s: freq=%d, ch=%d, ch2=%d, "
				//    "channelSel=%d\n",
				//    __func__, freq, ch, ch2, channelSel);
			}
#endif

			/* RefDivA setting */
			OS_A_REG_RMW_FIELD(ah, AR_AN_SYNTH9,
			    AR_AN_SYNTH9_REFDIVA, refDivA);
		}

		if (!fracMode) {
			ndiv = (freq * (refDivA >> aModeRefSel))/60;
			channelSel =  ndiv & 0x1ff;         
			channelFrac = (ndiv & 0xfffffe00) * 2;
			channelSel = (channelSel << 17) | channelFrac;
		}
	}

	reg32 = reg32 | (bMode << 29) | (fracMode << 28) |
	    (aModeRefSel << 26) | (channelSel);

	OS_REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);

	AH_PRIVATE(ah)->ah_curchan = chan;

	return AH_TRUE;
}

/*
 * Return a reference to the requested RF Bank.
 */
static uint32_t *
ar9280GetRfBank(struct ath_hal *ah, int bank)
{
	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
	    __func__, bank);
	return AH_NULL;
}

/*
 * Reads EEPROM header info from device structure and programs
 * all rf registers
 */
static HAL_BOOL
ar9280SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan,
                uint16_t modesIndex, uint16_t *rfXpdGain)
{
	return AH_TRUE;		/* nothing to do */
}

/*
 * Read the transmit power levels from the structures taken from EEPROM
 * Interpolate read transmit power values for this channel
 * Organize the transmit power values into a table for writing into the hardware
 */

static HAL_BOOL
ar9280SetPowerTable(struct ath_hal *ah, int16_t *pPowerMin, int16_t *pPowerMax, 
	const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
{
	return AH_TRUE;
}

#if 0
static int16_t
ar9280GetMinPower(struct ath_hal *ah, EXPN_DATA_PER_CHANNEL_5112 *data)
{
    int i, minIndex;
    int16_t minGain,minPwr,minPcdac,retVal;

    /* Assume NUM_POINTS_XPD0 > 0 */
    minGain = data->pDataPerXPD[0].xpd_gain;
    for (minIndex=0,i=1; i<NUM_XPD_PER_CHANNEL; i++) {
        if (data->pDataPerXPD[i].xpd_gain < minGain) {
            minIndex = i;
            minGain = data->pDataPerXPD[i].xpd_gain;
        }
    }
    minPwr = data->pDataPerXPD[minIndex].pwr_t4[0];
    minPcdac = data->pDataPerXPD[minIndex].pcdac[0];
    for (i=1; i<NUM_POINTS_XPD0; i++) {
        if (data->pDataPerXPD[minIndex].pwr_t4[i] < minPwr) {
            minPwr = data->pDataPerXPD[minIndex].pwr_t4[i];
            minPcdac = data->pDataPerXPD[minIndex].pcdac[i];
        }
    }
    retVal = minPwr - (minPcdac*2);
    return(retVal);
}
#endif

static HAL_BOOL
ar9280GetChannelMaxMinPower(struct ath_hal *ah,
	const struct ieee80211_channel *chan,
	int16_t *maxPow, int16_t *minPow)
{
#if 0
    struct ath_hal_5212 *ahp = AH5212(ah);
    int numChannels=0,i,last;
    int totalD, totalF,totalMin;
    EXPN_DATA_PER_CHANNEL_5112 *data=AH_NULL;
    EEPROM_POWER_EXPN_5112 *powerArray=AH_NULL;

    *maxPow = 0;
    if (IS_CHAN_A(chan)) {
        powerArray = ahp->ah_modePowerArray5112;
        data = powerArray[headerInfo11A].pDataPerChannel;
        numChannels = powerArray[headerInfo11A].numChannels;
    } else if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) {
        /* XXX - is this correct? Should we also use the same power for turbo G? */
        powerArray = ahp->ah_modePowerArray5112;
        data = powerArray[headerInfo11G].pDataPerChannel;
        numChannels = powerArray[headerInfo11G].numChannels;
    } else if (IS_CHAN_B(chan)) {
        powerArray = ahp->ah_modePowerArray5112;
        data = powerArray[headerInfo11B].pDataPerChannel;
        numChannels = powerArray[headerInfo11B].numChannels;
    } else {
        return (AH_TRUE);
    }
    /* Make sure the channel is in the range of the TP values
     *  (freq piers)
     */
    if ((numChannels < 1) ||
        (chan->channel < data[0].channelValue) ||
        (chan->channel > data[numChannels-1].channelValue))
        return(AH_FALSE);

    /* Linearly interpolate the power value now */
    for (last=0,i=0;
         (i<numChannels) && (chan->channel > data[i].channelValue);
         last=i++);
    totalD = data[i].channelValue - data[last].channelValue;
    if (totalD > 0) {
        totalF = data[i].maxPower_t4 - data[last].maxPower_t4;
        *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + data[last].maxPower_t4*totalD)/totalD);

        totalMin = ar9280GetMinPower(ah,&data[i]) - ar9280GetMinPower(ah, &data[last]);
        *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) + ar9280GetMinPower(ah, &data[last])*totalD)/totalD);
        return (AH_TRUE);
    } else {
        if (chan->channel == data[i].channelValue) {
            *maxPow = data[i].maxPower_t4;
            *minPow = ar9280GetMinPower(ah, &data[i]);
            return(AH_TRUE);
        } else
            return(AH_FALSE);
    }
#else
	*maxPow = *minPow = 0;
	return AH_FALSE;
#endif
}

/*
 * The ordering of nfarray is thus:
 *
 * nfarray[0]: Chain 0 ctl
 * nfarray[1]: Chain 1 ctl
 * nfarray[2]: Chain 2 ctl
 * nfarray[3]: Chain 0 ext
 * nfarray[4]: Chain 1 ext
 * nfarray[5]: Chain 2 ext
 */
static void
ar9280GetNoiseFloor(struct ath_hal *ah, int16_t nfarray[])
{
	int16_t nf;

	nf = MS(OS_REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
	if (nf & 0x100)
		nf = 0 - ((nf ^ 0x1ff) + 1);
	HALDEBUG(ah, HAL_DEBUG_NFCAL,
	    "NF calibrated [ctl] [chain 0] is %d\n", nf);
	nfarray[0] = nf;

	nf = MS(OS_REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
	if (nf & 0x100)
		nf = 0 - ((nf ^ 0x1ff) + 1);
	HALDEBUG(ah, HAL_DEBUG_NFCAL,
	    "NF calibrated [ctl] [chain 1] is %d\n", nf);
	nfarray[1] = nf;

	nf = MS(OS_REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
	if (nf & 0x100)
		nf = 0 - ((nf ^ 0x1ff) + 1);
	HALDEBUG(ah, HAL_DEBUG_NFCAL,
	    "NF calibrated [ext] [chain 0] is %d\n", nf);
	nfarray[3] = nf;

	nf = MS(OS_REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
	if (nf & 0x100)
		nf = 0 - ((nf ^ 0x1ff) + 1);
	HALDEBUG(ah, HAL_DEBUG_NFCAL,
	    "NF calibrated [ext] [chain 1] is %d\n", nf);
	nfarray[4] = nf;

        /* Chain 2 - invalid */
        nfarray[2] = 0;
        nfarray[5] = 0;

}

/*
 * Adjust NF based on statistical values for 5GHz frequencies.
 * Stubbed:Not used by Fowl
 */
int16_t
ar9280GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
{
	return 0;
}

/*
 * Free memory for analog bank scratch buffers
 */
static void
ar9280RfDetach(struct ath_hal *ah)
{
	struct ath_hal_5212 *ahp = AH5212(ah);

	HALASSERT(ahp->ah_rfHal != AH_NULL);
	ath_hal_free(ahp->ah_rfHal);
	ahp->ah_rfHal = AH_NULL;
}

HAL_BOOL
ar9280RfAttach(struct ath_hal *ah, HAL_STATUS *status)
{
	struct ath_hal_5212 *ahp = AH5212(ah);
	struct ar9280State *priv;

	HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: attach AR9280 radio\n", __func__);

	HALASSERT(ahp->ah_rfHal == AH_NULL);
	priv = ath_hal_malloc(sizeof(struct ar9280State));
	if (priv == AH_NULL) {
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: cannot allocate private state\n", __func__);
		*status = HAL_ENOMEM;		/* XXX */
		return AH_FALSE;
	}
	priv->base.rfDetach		= ar9280RfDetach;
	priv->base.writeRegs		= ar9280WriteRegs;
	priv->base.getRfBank		= ar9280GetRfBank;
	priv->base.setChannel		= ar9280SetChannel;
	priv->base.setRfRegs		= ar9280SetRfRegs;
	priv->base.setPowerTable	= ar9280SetPowerTable;
	priv->base.getChannelMaxMinPower = ar9280GetChannelMaxMinPower;
	priv->base.getNfAdjust		= ar9280GetNfAdjust;

	ahp->ah_pcdacTable = priv->pcdacTable;
	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
	ahp->ah_rfHal = &priv->base;
	/*
	 * Set noise floor adjust method; we arrange a
	 * direct call instead of thunking.
	 */
	AH_PRIVATE(ah)->ah_getNfAdjust = priv->base.getNfAdjust;
	AH_PRIVATE(ah)->ah_getNoiseFloor = ar9280GetNoiseFloor;

	return AH_TRUE;
}

static HAL_BOOL
ar9280RfProbe(struct ath_hal *ah)
{
	return (AR_SREV_MERLIN(ah));
}

AH_RF(RF9280, ar9280RfProbe, ar9280RfAttach);