/*-
* Low-level subroutines for Cronyx-Tau adapter.
*
* Copyright (C) 1994-2001 Cronyx Engineering.
* Author: Serge Vakulenko, <vak@cronyx.ru>
*
* Copyright (C) 2003 Cronyx Engineering.
* Author: Roman Kurakin, <rik@cronyx.ru>
*
* This software is distributed with NO WARRANTIES, not even the implied
* warranties for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* Authors grant any other persons or organisations permission to use
* or modify this software as long as this message is kept with the software,
* all derivative works or modified versions.
*
* Cronyx Id: ctau.c,v 1.1.2.4 2003/12/11 17:33:43 rik Exp $
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <dev/cx/machdep.h>
#include <dev/ctau/ctddk.h>
#include <dev/ctau/ctaureg.h>
#include <dev/ctau/hdc64570.h>
#include <dev/ctau/ds2153.h>
#include <dev/ctau/am8530.h>
#include <dev/ctau/lxt318.h>
#include <dev/cx/cronyxfw.h>
#define DMA_MASK 0xd4 /* DMA mask register */
#define DMA_MASK_CLEAR 0x04 /* DMA clear mask */
#define DMA_MODE 0xd6 /* DMA mode register */
#define DMA_MODE_MASTER 0xc0 /* DMA master mode */
#define BYTE *(unsigned char*)&
static unsigned char irqmask [] = {
BCR0_IRQ_DIS, BCR0_IRQ_DIS, BCR0_IRQ_DIS, BCR0_IRQ_3,
BCR0_IRQ_DIS, BCR0_IRQ_5, BCR0_IRQ_DIS, BCR0_IRQ_7,
BCR0_IRQ_DIS, BCR0_IRQ_DIS, BCR0_IRQ_10, BCR0_IRQ_11,
BCR0_IRQ_12, BCR0_IRQ_DIS, BCR0_IRQ_DIS, BCR0_IRQ_15,
};
static unsigned char dmamask [] = {
BCR0_DMA_DIS, BCR0_DMA_DIS, BCR0_DMA_DIS, BCR0_DMA_DIS,
BCR0_DMA_DIS, BCR0_DMA_5, BCR0_DMA_6, BCR0_DMA_7,
};
static short porttab [] = { /* standard base port set */
0x200, 0x220, 0x240, 0x260, 0x280, 0x2a0, 0x2c0, 0x2e0,
0x300, 0x320, 0x340, 0x360, 0x380, 0x3a0, 0x3c0, 0x3e0, 0
};
static short irqtab [] = { 3, 5, 7, 10, 11, 12, 15, 0 };
static short dmatab [] = { 5, 6, 7, 0 };
static int valid (short value, short *list)
{
while (*list)
if (value == *list++)
return 1;
return 0;
}
long ct_baud = 256000; /* default baud rate */
unsigned char ct_chan_mode = M_HDLC; /* default mode */
static void ct_init_chan (ct_board_t *b, int num);
static void ct_enable_loop (ct_chan_t *c);
static void ct_disable_loop (ct_chan_t *c);
int ct_download (port_t port, const unsigned char *firmware,
long bits, const cr_dat_tst_t *tst)
{
unsigned char cr1, sr2;
long i, n, maxn = (bits + 7) >> 3;
int v, b;
inb (BSR3(port));
for (i=n=0; n<maxn; ++n) {
v = ((firmware[n] ^ ' ') << 1) | ((firmware[n] >> 7) & 1);
for (b=0; b<7; b+=2, i+=2) {
if (i >= bits)
break;
cr1 = 0;
if (v >> b & 1)
cr1 |= BCR1_TMS;
if (v >> b & 2)
cr1 |= BCR1_TDI;
outb (BCR1(port), cr1);
sr2 = inb (BSR2(port));
outb (BCR0(port), BCR0_TCK);
outb (BCR0(port), 0);
if (i >= tst->end)
++tst;
if (i >= tst->start && (sr2 & BSR2_LERR))
return (0);
}
}
return (1);
}
/*
* Firmware unpack algorithm.
*/
typedef struct {
const unsigned char *ptr;
unsigned char byte;
unsigned char count;
} unpack_t;
static unsigned short unpack_init (unpack_t *t, const unsigned char *ptr)
{
unsigned short len;
len = *ptr++;
len |= *ptr++ << 8;
t->ptr = ptr;
t->byte = 0;
t->count = 0;
return len;
}
static unsigned char unpack_getchar (unpack_t *t)
{
if (t->count > 0) {
--t->count;
return t->byte;
}
t->byte = *t->ptr++;
if (t->byte == 0)
t->count = *t->ptr++;
return t->byte;
}
/*
* Firmware download signals.
*/
#define nstatus(b) (inb(BSR3(b)) & BSR3_NSTATUS)
#define confdone(b) (inb(BSR3(b)) & BSR3_CONF_DN)
#define nconfig_set(b) outb (bcr1_port, (bcr1 &= ~BCR1_NCONFIGI))
#define nconfig_clr(b) outb (bcr1_port, (bcr1 |= BCR1_NCONFIGI))
#define dclk_tick(b) outb (BCR3(b), 0)
#define putbit(b,bit) { if (bit) bcr1 |= BCR1_1KDAT; \
else bcr1 &= ~BCR1_1KDAT; \
outb (bcr1_port, bcr1); \
dclk_tick (b); }
#define CTAU_DEBUG(x) /*trace_str x*/
int ct_download2 (port_t port, const unsigned char *fwaddr)
{
unsigned short bytes;
unsigned char bcr1, val;
port_t bcr1_port;
unpack_t t;
/*
* Set NCONFIG and wait until NSTATUS is set.
*/
bcr1_port = BCR1(port);
bcr1 = 0;
nconfig_set(port);
for (val=0; val<255; ++val)
if (nstatus(port))
break;
/*
* Clear NCONFIG, wait 2 usec and check that NSTATUS is cleared.
*/
nconfig_clr(port);
for (val=0; val<2*3; ++val)
nconfig_clr(port);
if (nstatus(port)) {
CTAU_DEBUG (("Bad nstatus, downloading aborted (bsr3=0x%x).\n", inb(BSR3(port))));
nconfig_set(port);
return 0;
}
/*
* Set NCONFIG and wait 5 usec.
*/
nconfig_set(port);
for (val=0; val<5*3; ++val) /* Delay 5 msec. */
nconfig_set(port);
/*
* ó ÁÄÒÅÓÁ `fwaddr' × ÐÁÍÑÔÉ ÄÏÌÖÎÙ ÌÅÖÁÔØ ÕÐÁËÏ×ÁÎÎÙÅ ÄÁÎÎÙÅ
* ÄÌÑ ÚÁÇÒÕÚËÉ firmware. úÎÁÞÅÎÉÅ ÄÏÌÖÎÏ ÂÙÔØ ÓÏÇÌÁÓÏ×ÁÎÏ Ó ÐÁÒÁÍÅÔÒÏÍ
* ×ÙÚÏ×Á ÕÔÉÌÉÔÙ `megaprog' × ÓËÒÉÐÔÅ ÚÁÇÒÕÚËÉ (É Makefile).
*/
bytes = unpack_init (&t, fwaddr);
for (; bytes>0; --bytes) {
val = unpack_getchar (&t);
if (nstatus(port) == 0) {
CTAU_DEBUG (("Bad nstatus, %d bytes remaining.\n", bytes));
goto failed;
}
if (confdone(port)) {
/* Ten extra clocks. Hope 50 is enough. */
for (val=0; val<50; ++val)
dclk_tick (port);
if (nstatus(port) == 0) {
CTAU_DEBUG (("Bad nstatus after confdone, %d bytes remaining (%d).\n",
bytes, t.ptr - fwaddr));
goto failed;
}
/* Succeeded. */
/*CTAU_DEBUG (("Download succeeded.\n"));*/
return 1;
}
putbit (port, val & 0x01);
putbit (port, val & 0x02);
putbit (port, val & 0x04);
putbit (port, val & 0x08);
putbit (port, val & 0x10);
putbit (port, val & 0x20);
putbit (port, val & 0x40);
putbit (port, val & 0x80);
/* if ((bytes & 1023) == 0) putch ('.'); */
}
CTAU_DEBUG (("Bad confdone.\n"));
failed:
CTAU_DEBUG (("Downloading aborted.\n"));
return 0;
}
/*
* Detect Tau2 adapter.
*/
static int ct_probe2_board (port_t port)
{
unsigned char sr3, osr3;
int i;
if (! valid (port, porttab))
return 0;
osr3 = inb (BSR3(port));
if ((osr3 & (BSR3_IB | BSR3_IB_NEG)) != BSR3_IB &&
(osr3 & (BSR3_IB | BSR3_IB_NEG)) != BSR3_IB_NEG)
return (0);
for (i=0; i<100; ++i) {
/* Do it twice */
sr3 = inb (BSR3(port));
sr3 = inb (BSR3(port));
if (((sr3 ^ osr3) & (BSR3_IB | BSR3_IB_NEG | BSR3_ZERO)) !=
(BSR3_IB | BSR3_IB_NEG))
return (0);
osr3 = sr3;
}
/* Reset the controller. */
outb (BCR0(port), 0);
return 1;
}
/*
* Check if the Tau board is present at the given base port.
* Read board status register 1 and check identification bits
* which should invert every next read.
* The "zero" bit should remain stable.
*/
int ct_probe_board (port_t port, int irq, int dma)
{
unsigned char sr3, osr3;
int i;
if (! valid (port, porttab))
return 0;
if ((irq > 0) && (!valid (irq, irqtab)))
return 0;
if ((dma > 0) && (!valid (dma, dmatab)))
return 0;
osr3 = inb (BSR3(port));
if ((osr3 & (BSR3_IB | BSR3_IB_NEG)) != BSR3_IB &&
(osr3 & (BSR3_IB | BSR3_IB_NEG)) != BSR3_IB_NEG)
return (0);
for (i=0; i<100; ++i) {
sr3 = inb (BSR3(port));
if (((sr3 ^ osr3) & (BSR3_IB | BSR3_IB_NEG | BSR3_ZERO)) !=
(BSR3_IB | BSR3_IB_NEG))
return ct_probe2_board (port);
osr3 = sr3;
}
/* Reset the controller. */
outb (BCR0(port), 0);
return (1);
}
/*
* Check that the irq is functional.
* irq>0 - activate the interrupt from the adapter (irq=on)
* irq<0 - deactivate the interrupt (irq=off)
* irq==0 - free the interrupt line (irq=tri-state)
* Return the interrupt mask _before_ activating irq.
*/
int ct_probe_irq (ct_board_t *b, int irq)
{
int mask;
outb (0x20, 0x0a);
mask = inb (0x20);
outb (0xa0, 0x0a);
mask |= inb (0xa0) << 8;
if (irq > 0) {
outb (BCR0(b->port), BCR0_HDRUN | irqmask[irq]);
outb (R(b->port,HD_TEPR_0R), 0);
outw (R(b->port,HD_TCONR_0R), 1);
outw (R(b->port,HD_TCNT_0R), 0);
outb (R(b->port,HD_TCSR_0R), TCSR_ENABLE | TCSR_INTR);
outb (IER2(b->port), IER2_RX_TME_0);
} else if (irq < 0) {
outb (BCR0(b->port), BCR0_HDRUN | irqmask[-irq]);
outb (IER0(b->port), 0);
outb (IER1(b->port), 0);
outb (IER2(b->port), 0);
outb (R(b->port,HD_TCSR_0R), 0);
cte_out (E1CS0 (b->port), DS_IMR2, 0);
cte_out (E1CS1 (b->port), DS_IMR2, 0);
if (-irq > 7) {
outb (0xa0, 0x60 | ((-irq) & 7));
outb (0x20, 0x62);
} else
outb (0x20, 0x60 | (-irq));
} else {
outb (BCR0(b->port), b->bcr0);
cte_out (E1CS0 (b->port), DS_IMR2, SR2_SEC);
cte_out (E1CS1 (b->port), DS_IMR2, SR2_SEC);
}
return mask;
}
void ct_init_board (ct_board_t *b, int num, port_t port, int irq, int dma,
int type, long osc)
{
int i;
/* Initialize board structure. */
b->type = type;
b->port = port;
b->num = num;
b->irq = irq;
b->dma = dma;
b->osc = osc;
/* Get the board type. */
if (b->type == B_TAU) strcpy (b->name, "Tau");
else if (b->type == B_TAU_E1) strcpy (b->name, "Tau/E1");
else if (b->type == B_TAU_E1C) strcpy (b->name, "Tau/E1c");
else if (b->type == B_TAU_E1D) strcpy (b->name, "Tau/E1d");
else if (b->type == B_TAU_G703) strcpy (b->name, "Tau/G.703");
else if (b->type == B_TAU_G703C) strcpy (b->name, "Tau/G.703c");
else if (b->type == B_TAU2) strcpy (b->name, "Tau2");
else if (b->type == B_TAU2_E1) strcpy (b->name, "Tau2/E1");
else if (b->type == B_TAU2_E1D) strcpy (b->name, "Tau2/E1d");
else if (b->type == B_TAU2_G703) strcpy (b->name, "Tau2/G.703");
else strcpy (b->name, "Tau/???");
/* Set DMA and IRQ. */
b->bcr0 = BCR0_HDRUN | dmamask[b->dma] | irqmask[b->irq];
/* Clear DTR[0..1]. */
b->bcr1 = 0;
b->e1cfg = 0;
/* Initialize channel structures. */
for (i=0; i<NCHAN; ++i)
ct_init_chan (b, i);
ct_reinit_board (b);
}
/*
* Initialize the board structure.
*/
void ct_init (ct_board_t *b, int num, port_t port, int irq, int dma,
const unsigned char *firmware, long bits, const cr_dat_tst_t *tst,
const unsigned char *firmware2)
{
static long tlen = 182;
static cr_dat_tst_t tvec [] = {{ 114, 178 }, { 182, 182 }};
static cr_dat_tst_t tvec2 [] = {{ 50, 178 }, { 182, 182 }};
static unsigned char tau [] = { 155,153,113,48,64,236,
48,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,183,};
static unsigned char e1 [] = { 155,153,113,48,64,236,
112,37,49,37,33,116,101,100,112,37,49,37,33,116,101,100,230,};
static unsigned char e1_2 [] = { 155,153,113,48,64,236,
112,37,49,37,33,116,101,100,96,97,53,49,49,96,97,100,230,};
static unsigned char e1_3 [] = { 155,153,113,48,64,236,
96,97,53,49,49,96,97,100,96,97,53,49,49,96,97,100,230,};
static unsigned char e1_4 [] = { 155,153,113,48,64,236,
96,97,53,49,49,96,97,100,112,37,49,37,33,116,101,100,230,};
static unsigned char g703 [] = { 155,153,113,48,64,236,
112,37,49,37,33,116,101,32,117,37,49,37,33,116,101,100,230,};
static unsigned char g703_2 [] = { 155,153,113,48,64,236,
112,37,49,37,33,116,101,32,101,97,53,49,49,96,97,100,230,};
static unsigned char g703_3 [] = { 155,153,113,48,64,236,
96,97,53,49,49,96,97,32,101,97,53,49,49,96,97,100,230,};
static unsigned char g703_4 [] = { 155,153,113,48,64,236,
96,97,53,49,49,96,97,32,117,37,49,37,33,116,101,100,230,};
int type = B_TAU;
long osc = (inb (BSR3(port)) & BSR3_ZERO) ? 8192000 : 10000000;
/* Get the board type. */
if (ct_probe2_board (port) && ct_download2 (port, firmware2)) {
/* Tau2, 1k30-based model */
unsigned char sr0 = inb (BSR0(port));
if (! (sr0 & BSR0_T703))
type = B_TAU2_G703;
else if (sr0 & BSR0_TE1)
type = B_TAU2;
else if (inb(E1SR(port)) & E1SR_REV)
type = B_TAU2_E1D;
else
type = B_TAU2_E1;
} else if (ct_download (port, tau, tlen, tvec)) {
if (! ct_download (port, firmware, bits, tst))
type = B_TAU;
else {
unsigned char sr0 = inb (BSR0(port));
if (! (sr0 & BSR0_T703))
type = B_TAU_G703C;
else if (sr0 & BSR0_TE1)
type = B_TAU;
else if (inb(E1SR(port)) & E1SR_REV)
type = B_TAU_E1D;
else
type = B_TAU_E1C;
}
} else if (ct_download (port, e1, tlen, tvec2) ||
ct_download (port, e1_2, tlen, tvec2) ||
ct_download (port, e1_3, tlen, tvec2) ||
ct_download (port, e1_4, tlen, tvec2))
type = B_TAU_E1;
else if (ct_download (port, g703, tlen, tvec2) ||
ct_download (port, g703_2, tlen, tvec2) ||
ct_download (port, g703_3, tlen, tvec2) ||
ct_download (port, g703_4, tlen, tvec2))
type = B_TAU_G703;
ct_init_board (b, num, port, irq, dma, type, osc);
}
/*
* Initialize the channel structure.
*/
static void ct_init_chan (ct_board_t *b, int i)
{
ct_chan_t *c = b->chan + i;
port_t port = b->port;
c->num = i;
c->board = b;
switch (b->type) {
case B_TAU:
case B_TAU2: c->type = T_SERIAL; break;
case B_TAU_E1:
case B_TAU_E1C:
case B_TAU_E1D:
case B_TAU2_E1:
case B_TAU2_E1D: c->type = T_E1; break;
case B_TAU_G703:
case B_TAU_G703C:
case B_TAU2_G703: c->type = T_G703; break;
}
if (c->num)
c->type |= T_SERIAL;
#define reg(X,N) HD_##X##_##N
#define set(X,N) c->X = R(port,reg(X,N))
#define srx(X,N) c->RX.X = R(port,reg(X,N##R))
#define stx(X,N) c->TX.X = R(port,reg(X,N##T))
if (i == 0) {
set(MD0, 0); set(MD1, 0); set(MD2, 0); set(CTL, 0);
set(RXS, 0); set(TXS, 0); set(TMC, 0); set(CMD, 0);
set(ST0, 0); set(ST1, 0); set(ST2, 0); set(ST3, 0);
set(FST, 0); set(IE0, 0); set(IE1, 0); set(IE2, 0);
set(FST, 0); set(IE0, 0); set(IE1, 0); set(IE2, 0);
set(FIE, 0); set(SA0, 0); set(SA1, 0); set(IDL, 0);
set(TRB, 0); set(RRC, 0); set(TRC0,0); set(TRC1,0);
set(CST, 0);
srx(DAR, 0); srx(DARB,0); srx(SAR, 0); srx(SARB,0);
srx(CDA, 0); srx(EDA, 0); srx(BFL, 0); srx(BCR, 0);
srx(DSR, 0); srx(DMR, 0); srx(FCT, 0); srx(DIR, 0);
srx(DCR, 0);
srx(TCNT,0); srx(TCONR,0); srx(TCSR,0); srx(TEPR,0);
stx(DAR, 0); stx(DARB,0); stx(SAR, 0); stx(SARB,0);
stx(CDA, 0); stx(EDA, 0); stx(BCR, 0);
stx(DSR, 0); stx(DMR, 0); stx(FCT, 0); stx(DIR, 0);
stx(DCR, 0);
stx(TCNT,0); stx(TCONR,0); stx(TCSR,0); stx(TEPR,0);
} else {
set(MD0, 1); set(MD1, 1); set(MD2, 1); set(CTL, 1);
set(RXS, 1); set(TXS, 1); set(TMC, 1); set(CMD, 1);
set(ST0, 1); set(ST1, 1); set(ST2, 1); set(ST3, 1);
set(FST, 1); set(IE0, 1); set(IE1, 1); set(IE2, 1);
set(FST, 1); set(IE0, 1); set(IE1, 1); set(IE2, 1);
set(FIE, 1); set(SA0, 1); set(SA1, 1); set(IDL, 1);
set(TRB, 1); set(RRC, 1); set(TRC0,1); set(TRC1,1);
set(CST, 1);
srx(DAR, 1); srx(DARB,1); srx(SAR, 1); srx(SARB,1);
srx(CDA, 1); srx(EDA, 1); srx(BFL, 1); srx(BCR, 1);
srx(DSR, 1); srx(DMR, 1); srx(FCT, 1); srx(DIR, 1);
srx(DCR, 1);
srx(TCNT,1); srx(TCONR,1); srx(TCSR,1); srx(TEPR,1);
stx(DAR, 1); stx(DARB,1); stx(SAR, 1); stx(SARB,1);
stx(CDA, 1); stx(EDA, 1); stx(BCR, 1);
stx(DSR, 1); stx(DMR, 1); stx(FCT, 1); stx(DIR, 1);
stx(DCR, 1);
stx(TCNT,1); stx(TCONR,1); stx(TCSR,1); stx(TEPR,1);
}
#undef set
#undef srx
#undef stx
#undef reg
}
/*
* Reinitialize the channels, using new options.
*/
void ct_reinit_chan (ct_chan_t *c)
{
ct_board_t *b = c->board;
long s;
int i;
if (c->hopt.txs == CLK_LINE) {
/* External clock mode -- set zero baud rate. */
if (c->mode != M_ASYNC)
c->baud = 0;
} else if (c->baud == 0) {
/* No baud rate in internal clock mode -- set default values. */
if (c->mode == M_ASYNC)
c->baud = 9600;
else if (c->mode == M_HDLC)
c->baud = 64000;
}
switch (c->type) {
case T_E1_SERIAL:
if (b->opt.cfg == CFG_B)
break;
/* Fall through... */
case T_E1:
c->mode = M_E1;
c->hopt.txs = CLK_LINE;
/* Compute the baud value. */
if (c->num) {
s = b->opt.s1;
if (b->opt.cfg == CFG_C)
s &=~ b->opt.s0;
} else
s = b->opt.s0;
/* Skip timeslot 16 in CAS mode. */
if (c->gopt.cas)
s &=~ (1L << 16);
c->baud = 0;
for (i=0; i<32; ++i)
if ((s >> i) & 1)
c->baud += 64000;
c->gopt.rate = c->baud / 1000;
/* Set NRZ and clear INVCLK. */
c->opt.md2.encod = MD2_ENCOD_NRZ;
c->board->opt.bcr2 &= c->num ?
~(BCR2_INVTXC1 | BCR2_INVRXC1) :
~(BCR2_INVTXC0 | BCR2_INVRXC0);
break;
case T_G703_SERIAL:
if (b->opt.cfg == CFG_B)
break;
/* Fall through... */
case T_G703:
c->mode = M_G703;
c->hopt.txs = CLK_LINE;
c->baud = c->gopt.rate * 1000L;
/* Set NRZ/NRZI and clear INVCLK. */
if (c->opt.md2.encod != MD2_ENCOD_NRZ &&
c->opt.md2.encod != MD2_ENCOD_NRZI)
c->opt.md2.encod = MD2_ENCOD_NRZ;
c->board->opt.bcr2 &= c->num ?
~(BCR2_INVTXC1 | BCR2_INVRXC1) :
~(BCR2_INVTXC0 | BCR2_INVRXC0);
break;
}
}
/*
* Reinitialize all channels, using new options and baud rate.
*/
void ct_reinit_board (ct_board_t *b)
{
ct_chan_t *c;
b->opt = ct_board_opt_dflt;
for (c=b->chan; c<b->chan+NCHAN; ++c) {
c->opt = ct_chan_opt_dflt;
c->hopt = ct_opt_hdlc_dflt;
c->gopt = ct_opt_g703_dflt;
c->mode = ct_chan_mode;
c->baud = ct_baud;
ct_reinit_chan (c);
}
}
/*
* Set up the E1 controller of the Tau/E1 board.
* Frame sync signals:
* Configuration Rsync0 Tsync0 Rsync1 Tsync1
* ---------------------------------------------------
* A (II) out out out out
* B,C,D (HI,K,D) in out in out
* ---------------------------------------------------
* BI out out in in -- not implemented
* old B,C,D (HI,K,D) out in out in -- old
*/
static void ct_setup_ctlr (ct_chan_t *c)
{
ct_board_t *b = c->board;
port_t p = c->num ? E1CS1 (b->port) : E1CS0 (b->port);
unsigned char rcr1, rcr2, tcr1, tcr2, ccr1, licr;
unsigned long xcbr, tir;
int i;
rcr2 = RCR2_RSCLKM;
tcr1 = TCR1_TSIS | TCR1_TSO;
tcr2 = 0;
ccr1 = 0;
licr = 0;
if (b->opt.cfg != CFG_D) {
/* Enable monitoring channel, when not in telephony mode. */
rcr2 |= RCR2_SA_4;
tcr2 |= TCR2_SA_4;
}
if (b->opt.cfg == CFG_A) {
rcr1 = RCR1_RSO;
} else {
rcr1 = RCR1_RSI;
rcr2 |= RCR2_RESE;
}
if (c->gopt.cas)
tcr1 |= TCR1_T16S;
else
ccr1 |= CCR1_CCS;
if (c->gopt.hdb3)
ccr1 |= CCR1_THDB3 | CCR1_RHDB3;
if (c->gopt.crc4) {
ccr1 |= CCR1_TCRC4 | CCR1_RCRC4;
tcr2 |= TCR2_AEBE;
}
if (c->gopt.higain)
licr |= LICR_HIGAIN;
if (inb (E1SR (b->port)) & (c->num ? E1SR_TP1 : E1SR_TP0))
licr |= LICR_LB120P;
else
licr |= LICR_LB75P;
cte_out (p, DS_RCR1, rcr1); /* receive control 1 */
cte_out (p, DS_RCR2, rcr2); /* receive control 2 */
cte_out (p, DS_TCR1, tcr1); /* transmit control 1 */
cte_out (p, DS_TCR2, tcr2); /* transmit control 2 */
cte_out (p, DS_CCR1, ccr1); /* common control 1 */
cte_out (p, DS_CCR2, CCR2_CNTCV | CCR2_AUTORA | CCR2_LOFA1); /* common control 2 */
cte_out (p, DS_CCR3, CCR3_TSCLKM); /* common control 3 */
cte_out (p, DS_LICR, licr); /* line interface control */
cte_out (p, DS_IMR1, 0); /* interrupt mask 1 */
cte_out (p, DS_IMR2, SR2_SEC); /* interrupt mask 2 */
cte_out (p, DS_TEST1, 0);
cte_out (p, DS_TEST2, 0);
cte_out (p, DS_TAF, 0x9b); /* transmit align frame */
cte_out (p, DS_TNAF, 0xdf); /* transmit non-align frame */
cte_out (p, DS_TIDR, 0xff); /* transmit idle definition */
cte_out (p, DS_TS, 0x0b); /* transmit signaling 1 */
for (i=1; i<16; ++i)
/* transmit signaling 2..16 */
cte_out (p, (unsigned char) (DS_TS+i), 0xff);
/*
* S0 == list of timeslots for channel 0
* S1 == list of timeslots for channel 1
* S2 == list of timeslots for E1 subchannel (pass through)
*
* Each channel uses the same timeslots for receive and transmit,
* i.e. RCBRi == TCBRi.
*/
if (b->opt.cfg == CFG_B)
b->opt.s1 = 0;
else if (b->opt.cfg == CFG_C)
b->opt.s1 &=~ b->opt.s0;
if (c->gopt.cas) {
/* Skip timeslot 16 in CAS mode. */
b->opt.s0 &=~ (1L << 16);
b->opt.s1 &=~ (1L << 16);
}
b->opt.s2 &=~ b->opt.s0;
b->opt.s2 &=~ b->opt.s1;
/*
* Configuration A:
* xCBRi := Si
* TIRi := ~Si
*
* Configuration B:
* xCBRi := Si
* TIRi := 0
*
* Configuration C: (S0 & S2 == 0)
* xCBR0 := S0
* xCBR1 := 0
* TIR0 := ~S0 & ~S2
* TIR1 := ~S2
*
* Configuration D: (Si & Sj == 0)
* xCBR0 := S0
* xCBR1 := S1
* TIR0 := ~S0 & ~S1 & ~S2
* TIR1 := ~S2
*/
xcbr = c->num ? b->opt.s1 : b->opt.s0;
if (b->opt.cfg == CFG_A)
tir = ~xcbr;
else if (b->opt.cfg == CFG_D)
tir = 0;
else if (c->num == 0)
tir = ~(b->opt.s0 | b->opt.s1 | b->opt.s2);
else
tir = ~b->opt.s2;
/* Mark idle channels. */
cte_out (p, DS_TIR, (unsigned char) (tir & 0xfe));
cte_out (p, DS_TIR+1, (unsigned char) (tir >> 8));
cte_out (p, DS_TIR+2, (unsigned char) (tir >> 16));
cte_out (p, DS_TIR+3, (unsigned char) (tir >> 24));
/* Set up rx/tx timeslots. */
cte_out (p, DS_RCBR, (unsigned char) (xcbr & 0xfe));
cte_out (p, DS_RCBR+1, (unsigned char) (xcbr >> 8));
cte_out (p, DS_RCBR+2, (unsigned char) (xcbr >> 16));
cte_out (p, DS_RCBR+3, (unsigned char) (xcbr >> 24));
cte_out (p, DS_TCBR, (unsigned char) (xcbr & 0xfe));
cte_out (p, DS_TCBR+1, (unsigned char) (xcbr >> 8));
cte_out (p, DS_TCBR+2, (unsigned char) (xcbr >> 16));
cte_out (p, DS_TCBR+3, (unsigned char) (xcbr >> 24));
/* Reset the line interface. */
cte_out (p, DS_CCR3, CCR3_TSCLKM | CCR3_LIRESET);
cte_out (p, DS_CCR3, CCR3_TSCLKM);
/* Reset the elastic store. */
cte_out (p, DS_CCR3, CCR3_TSCLKM | CCR3_ESRESET);
cte_out (p, DS_CCR3, CCR3_TSCLKM);
/* Clear status registers. */
cte_ins (p, DS_SR1, 0xff);
cte_ins (p, DS_SR2, 0xff);
cte_ins (p, DS_RIR, 0xff);
}
/*
* Set up the serial controller of the Tau/E1 board.
*/
static void ct_setup_scc (port_t port)
{
#define SET(r,v) { cte_out2 (port, r, v); cte_out2 (port, AM_A | r, v); }
/* hardware reset */
cte_out2 (port, AM_MICR, MICR_RESET_HW);
SET (AM_PMR, 0x0c); /* 2 stop bits */
SET (AM_IMR, 0); /* no W/REQ signal */
cte_out2 (port, AM_IVR, 0); /* interrupt vector */
SET (AM_RCR, 0xc0); /* rx 8 bits/char */
SET (AM_TCR, 0x60); /* tx 8 bits/char */
SET (AM_SAF, 0); /* sync address field */
SET (AM_SFR, 0x7e); /* sync flag register */
cte_out2 (port, AM_MICR, 0); /* master interrupt control */
SET (AM_MCR, 0); /* NRZ mode */
SET (AM_CMR, 0x08); /* rxclk=RTxC, txclk=TRxC */
SET (AM_TCL, 0); /* time constant low */
SET (AM_TCH, 0); /* time constant high */
SET (AM_BCR, 0); /* disable baud rate generator */
SET (AM_RCR, 0xc1); /* enable rx */
SET (AM_TCR, 0x68); /* enable tx */
SET (AM_SICR, 0); /* no status interrupt */
SET (AM_CR, CR_RST_EXTINT); /* reset external status */
SET (AM_CR, CR_RST_EXTINT); /* reset ext/status twice */
#undef SET
}
/*
* Set up the Tau/E1 board.
*/
void ct_setup_e1 (ct_board_t *b)
{
/*
* Control register 0:
* 1) board configuration
* 2) clock modes
*/
b->e1cfg &= E1CFG_LED;
switch (b->opt.cfg){
case CFG_C: b->e1cfg |= E1CFG_K; break;
case CFG_B: b->e1cfg |= E1CFG_HI; break;
case CFG_D: b->e1cfg |= E1CFG_D; break;
default: b->e1cfg |= E1CFG_II; break;
}
if (b->opt.clk0 == GCLK_RCV) b->e1cfg |= E1CFG_CLK0_RCV;
if (b->opt.clk0 == GCLK_RCLKO) b->e1cfg |= E1CFG_CLK0_RCLK1;
else b->e1cfg |= E1CFG_CLK0_INT;
if (b->opt.clk1 == GCLK_RCV) b->e1cfg |= E1CFG_CLK1_RCV;
if (b->opt.clk1 == GCLK_RCLKO) b->e1cfg |= E1CFG_CLK1_RCLK0;
else b->e1cfg |= E1CFG_CLK1_INT;
outb (E1CFG (b->port), b->e1cfg);
/*
* Set up serial controller.
*/
ct_setup_scc (b->port);
/*
* Set up E1 controllers.
*/
ct_setup_ctlr (b->chan + 0); /* channel 0 */
ct_setup_ctlr (b->chan + 1); /* channel 1 */
/* Start the board (GRUN). */
b->e1cfg |= E1CFG_GRUN;
outb (E1CFG (b->port), b->e1cfg);
}
/*
* Set up the G.703 controller of the Tau/G.703 board.
*/
static void ct_setup_lxt (ct_chan_t *c)
{
ctg_outx (c, LX_CCR1, LX_RESET); /* reset the chip */
/* Delay */
ctg_inx (c, LX_CCR1);
c->lx = LX_LOS; /* disable loss of sync interrupt */
if (c->num && c->board->opt.cfg == CFG_B)
c->lx |= LX_TAOS; /* idle channel--transmit all ones */
if (c->gopt.hdb3)
c->lx |= LX_HDB3; /* enable HDB3 encoding */
ctg_outx (c, LX_CCR1, c->lx); /* setup the new mode */
ctg_outx (c, LX_CCR2, LX_CCR2_LH); /* setup Long Haul mode */
ctg_outx (c, LX_CCR3, LX_CCR3_E1_LH); /* setup Long Haul mode */
}
/*
* Set up the Tau/G.703 board.
*/
void ct_setup_g703 (ct_board_t *b)
{
b->gmd0 = GMD_2048;
if (b->chan[0].gopt.pce) {
if (b->chan[0].gopt.pce2) b->gmd0 |= GMD_PCE_PCM2;
else b->gmd0 |= GMD_PCE_PCM2D;
}
if (b->opt.clk0)
b->gmd0 |= GMD_RSYNC;
b->gmd1 = 0;
if (b->chan[1].gopt.pce) {
if (b->chan[1].gopt.pce2) b->gmd1 |= GMD_PCE_PCM2;
else b->gmd1 |= GMD_PCE_PCM2D;
}
if (b->opt.clk1)
b->gmd1 |= GMD_RSYNC;
switch (b->chan[0].gopt.rate) {
case 2048: b->gmd0 |= GMD_2048; break;
case 1024: b->gmd0 |= GMD_1024; break;
case 512: b->gmd0 |= GMD_512; break;
case 256: b->gmd0 |= GMD_256; break;
case 128: b->gmd0 |= GMD_128; break;
case 64: b->gmd0 |= GMD_64; break;
}
switch (b->chan[1].gopt.rate) {
case 2048: b->gmd1 |= GMD_2048; break;
case 1024: b->gmd1 |= GMD_1024; break;
case 512: b->gmd1 |= GMD_512; break;
case 256: b->gmd1 |= GMD_256; break;
case 128: b->gmd1 |= GMD_128; break;
case 64: b->gmd1 |= GMD_64; break;
}
outb (GMD0(b->port), b->gmd0);
outb (GMD1(b->port), b->gmd1 | GMD1_NCS0 | GMD1_NCS1);
b->gmd2 &= GMD2_LED;
if (b->opt.cfg == CFG_B) b->gmd2 |= GMD2_SERIAL;
outb (GMD2(b->port), b->gmd2);
/* Set up G.703 controllers. */
if ((b->chan + 0)->lx & LX_LLOOP) {
ct_setup_lxt (b->chan + 0); /* channel 0 */
ct_enable_loop (b->chan + 0);
} else {
ct_setup_lxt (b->chan + 0); /* channel 0 */
}
if ((b->chan + 1)->lx & LX_LLOOP) {
ct_setup_lxt (b->chan + 1); /* channel 1 */
ct_enable_loop (b->chan + 1);
} else {
ct_setup_lxt (b->chan + 1); /* channel 1 */
}
/* Clear errors. */
outb (GERR(b->port), 0xff);
outb (GLDR(b->port), 0xff);
}
/*
* Set up the board.
*/
int ct_setup_board (ct_board_t *b, const unsigned char *firmware,
long bits, const cr_dat_tst_t *tst)
{
ct_chan_t *c;
/* Disable DMA channel. */
outb (DMA_MASK, (b->dma & 3) | DMA_MASK_CLEAR);
/* Reset the controller. */
outb (BCR0(b->port), 0);
/* Load the firmware. */
if (firmware && (b->type == B_TAU || b->type == B_TAU_E1 ||
b->type == B_TAU_G703) &&
! ct_download (b->port, firmware, bits, tst))
return (0);
if (firmware && (b->type == B_TAU2 || b->type == B_TAU2_E1 ||
b->type == B_TAU2_E1D || b->type == B_TAU2_G703) &&
! ct_download2 (b->port, firmware))
return (0);
/* Enable DMA and IRQ. */
outb (BCR0(b->port), BCR0_HDRUN);
outb (BCR0(b->port), b->bcr0);
/* Clear DTR[0..1]. */
outb (BCR1(b->port), b->bcr1);
/* Set bus timing. */
b->bcr2 = b->opt.bcr2;
outb (BCR2(b->port), b->bcr2);
/*
* Initialize the controller.
*/
/* Zero wait state mode. */
outb (WCRL(b->port), 0);
outb (WCRM(b->port), 0);
outb (WCRH(b->port), 0);
/* Clear interrupt modified vector register. */
outb (IMVR(b->port), 0);
outb (ITCR(b->port), ITCR_CYCLE_SINGLE | ITCR_VECT_MOD);
/* Disable all interrupts. */
outb (IER0(b->port), 0);
outb (IER1(b->port), 0);
outb (IER2(b->port), 0);
/* Set DMA parameters, enable master DMA mode. */
outb (PCR(b->port), BYTE b->opt.pcr);
outb (DMER(b->port), DME_ENABLE);
/* Set up DMA channel to master mode. */
outb (DMA_MODE, (b->dma & 3) | DMA_MODE_MASTER);
/* Enable DMA channel. */
outb (DMA_MASK, b->dma & 3);
/* Disable byte-sync mode for Tau/G.703. */
if (b->type == B_TAU_G703)
outb (GMD2(b->port), 0);
/* Initialize all channels. */
for (c=b->chan; c<b->chan+NCHAN; ++c)
ct_setup_chan (c);
switch (b->type) {
case B_TAU_G703:
case B_TAU_G703C:
case B_TAU2_G703:
ct_setup_g703 (b);
break;
case B_TAU_E1:
case B_TAU_E1C:
case B_TAU_E1D:
case B_TAU2_E1:
case B_TAU2_E1D:
ct_setup_e1 (b);
break;
}
return (1);
}
/*
* Update the channel mode options.
*/
void ct_update_chan (ct_chan_t *c)
{
int txbr, rxbr, tmc, txcout;
unsigned char rxs, txs, dmr = 0;
ct_md0_async_t amd0;
ct_md0_hdlc_t hmd0;
ct_md1_async_t amd1;
switch (c->mode) { /* initialize the channel mode */
case M_ASYNC: default:
rxs = CLK_INT;
txs = CLK_INT;
amd0.mode = MD0_MODE_ASYNC;
amd0.stopb = MD0_STOPB_1;
amd0.cts_rts_dcd = 0;
amd1.clk = MD1_CLK_16;
amd1.txclen = amd1.rxclen = MD1_CLEN_8;
amd1.parmode = MD1_PAR_NO;
outb (c->MD0, BYTE amd0);
outb (c->MD1, BYTE amd1);
outb (c->CTL, c->rts ? 0 : CTL_RTS_INV);
break;
case M_E1:
case M_G703:
case M_HDLC:
rxs = c->hopt.rxs;
txs = c->hopt.txs;
if (c->mode == M_E1 && c->board->opt.cfg == CFG_D) {
hmd0 = c->hopt.md0;
hmd0.crc = 0;
outb (c->MD0, BYTE hmd0);
outb (c->MD1, BYTE c->hopt.md1);
outb (c->CTL, c->hopt.ctl & ~CTL_IDLE_PTRN);
outb (c->SA0, c->hopt.sa0);
outb (c->SA1, c->hopt.sa1);
outb (c->IDL, 0x7e); /* HDLC flag 01111110 */
} else {
outb (c->MD0, BYTE c->hopt.md0);
outb (c->MD1, BYTE c->hopt.md1);
outb (c->SA0, c->hopt.sa0);
outb (c->SA1, c->hopt.sa1);
outb (c->IDL, 0x7e); /* HDLC flag 01111110 */
if (c->rts)
outb (c->CTL, c->hopt.ctl & ~CTL_RTS_INV);
else
outb (c->CTL, c->hopt.ctl | CTL_RTS_INV);
}
/* Chained-block DMA mode with frame counter. */
dmr |= DMR_CHAIN_CNTE | DMR_CHAIN_NF | DMR_TMOD;
break;
}
outb (c->RX.DMR, dmr);
outb (c->TX.DMR, dmr);
/* set mode-independent options */
c->opt.md2.dpll_clk = MD2_DPLL_CLK_8;
outb (c->MD2, BYTE c->opt.md2);
/* set up receiver and transmitter clocks */
if (c->baud > 1024000) {
/* turn off DPLL if the baud rate is too high */
if (rxs == CLK_RXS_LINE_NS) rxs = CLK_LINE;
else if (rxs == CLK_RXS_DPLL_INT) rxs = CLK_INT;
}
if (rxs == CLK_RXS_LINE_NS || rxs == CLK_RXS_DPLL_INT) {
/* Using 1:8 sampling rate. */
ct_compute_clock (c->board->osc, c->baud * 8, &rxbr, &tmc);
txbr = rxbr + 3;
} else if (c->mode == M_ASYNC) {
/* Using 1:16 sampling rate. */
ct_compute_clock (c->board->osc, c->baud * 8, &rxbr, &tmc);
--rxbr;
txbr = rxbr;
} else {
ct_compute_clock (c->board->osc, c->baud, &rxbr, &tmc);
txbr = rxbr;
}
txs |= txbr;
rxs |= rxbr;
outb (c->TMC, tmc);
outb (c->RXS, rxs);
/* Disable TXCOUT before changing TXS
* to avoid two transmitters on the same line.
* Enable it after TXS is set, if needed. */
txcout = c->num ? BCR1_TXCOUT1 : BCR1_TXCOUT0;
c->board->bcr1 &= ~txcout;
outb (BCR1(c->board->port), c->board->bcr1);
outb (c->TXS, txs);
if ((txs & CLK_MASK) != CLK_LINE) {
c->board->bcr1 |= txcout;
outb (BCR1(c->board->port), c->board->bcr1);
}
if (c->board->type == B_TAU_E1D ||
c->board->type == B_TAU2_E1D)
ct_set_phony (c, c->gopt.phony);
}
/*
* Initialize the channel.
*/
void ct_setup_chan (ct_chan_t *c)
{
/* reset the channel */
outb (c->RX.DSR, DSR_DMA_DISABLE);
outb (c->TX.DSR, DSR_DMA_DISABLE);
outb (c->CMD, CMD_TX_RESET);
outb (c->CMD, CMD_TX_ABORT);
outb (c->CMD, CMD_CHAN_RESET);
/* disable interrupts */
outb (c->IE0, 0);
outb (c->IE1, 0);
outb (c->IE2, 0);
outb (c->FIE, 0);
/* clear DTR, RTS */
ct_set_dtr (c, 0);
ct_set_rts (c, 0);
c->lx = LX_LOS;
ct_update_chan (c);
}
unsigned long ct_get_ts (ct_chan_t *c)
{
return c->num ? c->board->opt.s1 : c->board->opt.s0;
}
/*
* Data transfer speed
*/
unsigned long ct_get_baud (ct_chan_t *c)
{
unsigned long speed;
unsigned long ts;
if (c->mode == M_G703) {
speed = 1000 * c->gopt.rate;
} else if (c->mode == M_E1) {
ts = ct_get_ts (c);
for (speed=0; ts; ts >>= 1) /* Each timeslot is 64 Kbps */
if (ts & 1)
speed += 64000;
} else
speed = (c->hopt.txs == CLK_INT) ? c->baud : 0;
return speed;
}
/*
* Turn local loopback on
*/
static void ct_enable_loop (ct_chan_t *c)
{
if (c->mode == M_E1) {
unsigned short p = c->num ? E1CS1 (c->board->port) :
E1CS0 (c->board->port);
/* Local loopback. */
cte_out (p, DS_CCR2, cte_in (p, DS_CCR2) | CCR2_LLOOP);
/* Enable jitter attenuator at the transmit side. */
cte_out (p, DS_LICR, cte_in (p, DS_LICR) | LICR_JA_TX);
return;
} else if (c->mode == M_G703) {
c->lx = LX_LOS | LX_HDB3;
ctg_outx (c, LX_CCR1, c->lx |= LX_LLOOP);
return;
} else if (c->mode == M_HDLC && ct_get_baud(c)) {
unsigned char rxs = inb (c->RXS) & ~CLK_MASK;
unsigned char txs = inb (c->TXS) & ~CLK_MASK;
int txcout = c->num ? BCR1_TXCOUT1 : BCR1_TXCOUT0;
c->opt.md2.loop = MD2_LLOOP;
/* Disable TXCOUT before changing TXS */
/* to avoid two transmitters on the same line. */
/* Enable it after TXS is set. */
outb (BCR1(c->board->port), c->board->bcr1 & ~txcout);
outb (c->RXS, rxs | CLK_INT);
outb (c->TXS, txs | CLK_INT);
c->board->bcr1 |= txcout;
outb (BCR1(c->board->port), c->board->bcr1);
outb (c->MD2, *(unsigned char*)&c->opt.md2);
return;
}
}
/*
* Turn local loopback off
*/
static void ct_disable_loop (ct_chan_t *c)
{
if (c->mode == M_E1) {
unsigned short p = c->num ? E1CS1 (c->board->port) :
E1CS0 (c->board->port);
/* Local loopback. */
cte_out (p, DS_CCR2, cte_in (p, DS_CCR2) & ~CCR2_LLOOP);
/* Disable jitter attenuator at the transmit side. */
cte_out (p, DS_LICR, cte_in (p, DS_LICR) & ~LICR_JA_TX);
return;
} else if (c->mode == M_G703) {
c->lx = LX_LOS | LX_HDB3;
ctg_outx (c, LX_CCR1, c->lx);
return;
} else if (c->mode == M_HDLC && ct_get_baud(c)) {
unsigned char rxs = inb (c->RXS) & ~CLK_MASK;
unsigned char txs = inb (c->TXS) & ~CLK_MASK;
int txcout = c->num ? BCR1_TXCOUT1 : BCR1_TXCOUT0;
c->opt.md2.loop = MD2_FDX;
outb (BCR1(c->board->port), c->board->bcr1 & ~txcout);
outb (c->RXS, rxs | CLK_LINE);
if (ct_get_baud (c))
outb (c->TXS, txs | CLK_INT);
else
outb (c->TXS, txs | CLK_LINE);
c->board->bcr1 |= txcout;
outb (BCR1(c->board->port), c->board->bcr1);
outb (c->MD2, *(unsigned char*)&c->opt.md2);
return;
}
}
/*
* Turn local loopback on/off
*/
void ct_set_loop (ct_chan_t *c, int on)
{
if (on)
ct_enable_loop (c);
else
ct_disable_loop (c);
}
int ct_get_loop (ct_chan_t *c)
{
if (c->mode == M_E1) {
unsigned short p = c->num ? E1CS1 (c->board->port) :
E1CS0 (c->board->port);
return cte_in (p, DS_CCR2) & CCR2_LLOOP;
}
if (c->mode == M_G703)
return c->lx & LX_LLOOP;
/* M_HDLC */
return (c->opt.md2.loop & MD2_LLOOP) != 0;
}
void ct_set_phony (ct_chan_t *c, int on)
{
/* Valid only for TauPCI-E1. */
if (c->board->type != B_TAU_E1D &&
c->board->type != B_TAU2_E1D)
return;
c->gopt.phony = (on != 0);
if (c->gopt.phony) {
c->board->e1syn |= c->num ? E1SYN_ENS1 : E1SYN_ENS0;
/* No receive/transmit crc. */
c->hopt.md0.crc = 0;
} else {
c->board->e1syn &= ~(c->num ? E1SYN_ENS1 : E1SYN_ENS0);
/* Enable crc. */
c->hopt.md0.crc = 1;
}
outb (c->MD0, BYTE c->hopt.md0);
outb (E1SYN(c->board->port), c->board->e1syn);
}
void ct_start_receiver (ct_chan_t *c, int dma, unsigned long buf,
unsigned len, unsigned long desc, unsigned long lim)
{
int ier0 = inb (IER0(c->board->port));
int ier1 = inb (IER1(c->board->port));
int ier2 = inb (IER2(c->board->port));
int ie0 = inb (c->IE0);
int ie2 = inb (c->IE2);
if (dma) {
ier1 |= c->num ? (IER1_RX_DMERE_1 | IER1_RX_DME_1) :
(IER1_RX_DMERE_0 | IER1_RX_DME_0);
if (c->mode == M_ASYNC) {
ier0 |= c->num ? IER0_RX_INTE_1 : IER0_RX_INTE_0;
ie0 |= IE0_RX_INTE;
ie2 |= IE2_OVRNE | IE2_ASYNC_FRMEE | IE2_ASYNC_PEE;
}
} else {
ier0 |= c->num ? (IER0_RX_INTE_1 | IER0_RX_RDYE_1) :
(IER0_RX_INTE_0 | IER0_RX_RDYE_0);
ie0 |= IE0_RX_INTE | IE0_RX_RDYE;
}
/* Start timer. */
if (! dma) {
outb (c->RX.TEPR, TEPR_64); /* prescale to 16 kHz */
outw (c->RX.TCONR, 160); /* period is 10 msec */
outw (c->RX.TCNT, 0);
outb (c->RX.TCSR, TCSR_ENABLE | TCSR_INTR);
ier2 |= c->num ? IER2_RX_TME_1 : IER2_RX_TME_0;
}
/* Enable interrupts. */
outb (IER0(c->board->port), ier0);
outb (IER1(c->board->port), ier1);
outb (IER2(c->board->port), ier2);
outb (c->IE0, ie0);
outb (c->IE2, ie2);
/* RXRDY:=1 when the receive buffer has more than RRC chars */
outb (c->RRC, dma ? c->opt.dma_rrc : c->opt.pio_rrc);
/* Start receiver. */
if (dma) {
outb (c->RX.DCR, DCR_ABORT);
if (c->mode == M_ASYNC) {
/* Single-buffer DMA mode. */
outb (c->RX.DARB, (unsigned char) (buf >> 16));
outw (c->RX.DAR, (unsigned short) buf);
outw (c->RX.BCR, len);
outb (c->RX.DIR, DIR_EOTE);
} else {
/* Chained-buffer DMA mode. */
outb (c->RX.SARB, (unsigned char) (desc >> 16));
outw (c->RX.EDA, (unsigned short) lim);
outw (c->RX.CDA, (unsigned short) desc);
outw (c->RX.BFL, len);
outb (c->RX.DIR, DIR_CHAIN_EOME | DIR_CHAIN_BOFE |
DIR_CHAIN_COFE);
}
outb (c->RX.DSR, DSR_DMA_ENABLE);
}
outb (c->CMD, CMD_RX_ENABLE);
}
void ct_start_transmitter (ct_chan_t *c, int dma, unsigned long buf,
unsigned len, unsigned long desc, unsigned long lim)
{
int ier0 = inb (IER0(c->board->port));
int ier1 = inb (IER1(c->board->port));
int ie0 = inb (c->IE0);
int ie1 = inb (c->IE1);
/* Enable underrun interrupt in HDLC and raw modes. */
if (c->mode != M_ASYNC) {
ier0 |= c->num ? IER0_TX_INTE_1 : IER0_TX_INTE_0;
ie0 |= IE0_TX_INTE;
ie1 |= IE1_HDLC_UDRNE;
}
if (dma)
ier1 |= c->num ? (IER1_TX_DMERE_1 | IER1_TX_DME_1) :
(IER1_TX_DMERE_0 | IER1_TX_DME_0);
else {
ier0 |= c->num ? IER0_TX_RDYE_1 : IER0_TX_RDYE_0;
ie0 |= IE0_TX_RDYE;
}
/* Enable interrupts. */
outb (IER0(c->board->port), ier0);
outb (IER1(c->board->port), ier1);
outb (c->IE0, ie0);
outb (c->IE1, ie1);
/* TXRDY:=1 when the transmit buffer has TRC0 or less chars,
* TXRDY:=0 when the transmit buffer has more than TRC1 chars */
outb (c->TRC0, dma ? c->opt.dma_trc0 : c->opt.pio_trc0);
outb (c->TRC1, dma ? c->opt.dma_trc1 : c->opt.pio_trc1);
/* Start transmitter. */
if (dma) {
outb (c->TX.DCR, DCR_ABORT);
if (c->mode == M_ASYNC) {
/* Single-buffer DMA mode. */
outb (c->TX.SARB, (unsigned char) (buf >> 16));
outw (c->TX.SAR, (unsigned short) buf);
outw (c->TX.BCR, len);
outb (c->TX.DIR, DIR_EOTE);
} else {
/* Chained-buffer DMA mode. */
outb (c->TX.SARB, (unsigned char) (desc >> 16));
outw (c->TX.EDA, (unsigned short) lim);
outw (c->TX.CDA, (unsigned short) desc);
outb (c->TX.DIR, /* DIR_CHAIN_EOME | */ DIR_CHAIN_BOFE |
DIR_CHAIN_COFE);
}
/* Set DSR_DMA_ENABLE to begin! */
}
outb (c->CMD, CMD_TX_ENABLE);
/* Clear errors. */
if (c->board->type == B_TAU_G703) {
outb (GERR(c->board->port), 0xff);
outb (GLDR(c->board->port), 0xff);
}
}
/*
* Control DTR signal for the channel.
* Turn it on/off.
*/
void ct_set_dtr (ct_chan_t *c, int on)
{
if (on) {
c->dtr = 1;
c->board->bcr1 |= c->num ? BCR1_DTR1 : BCR1_DTR0;
} else {
c->dtr = 0;
c->board->bcr1 &= ~(c->num ? BCR1_DTR1 : BCR1_DTR0);
}
outb (BCR1(c->board->port), c->board->bcr1);
}
/*
* Control RTS signal for the channel.
* Turn it on/off.
*/
void ct_set_rts (ct_chan_t *c, int on)
{
c->rts = (on != 0);
if (c->rts)
outb (c->CTL, inb (c->CTL) & ~CTL_RTS_INV);
else
outb (c->CTL, inb (c->CTL) | CTL_RTS_INV);
}
/*
* Control BREAK state in asynchronous mode.
* Turn it on/off.
*/
void ct_set_brk (ct_chan_t *c, int on)
{
if (c->mode != M_ASYNC)
return;
if (on)
outb (c->CTL, inb (c->CTL) | CTL_BRK);
else
outb (c->CTL, inb (c->CTL) & ~CTL_BRK);
}
/*
* Get the state of DSR signal of the channel.
*/
int ct_get_dsr (ct_chan_t *c)
{
return (inb (BSR1(c->board->port)) &
(c->num ? BSR1_DSR1 : BSR1_DSR0)) != 0;
}
/*
* Get the G.703 line signal level.
*/
int ct_get_lq (ct_chan_t *c)
{
unsigned char q1, q2, q3;
static int lq_to_santibells [] = { 0, 95, 195, 285 };
int i;
if (! (c->type & T_G703))
return 0;
q1 = inb (GLQ (c->board->port));
/* Repeat reading the register to produce a 10-usec delay. */
for (i=0; i<20; ++i)
q2 = inb (GLQ (c->board->port));
for (i=0; i<20; ++i)
q3 = inb (GLQ (c->board->port));
if (c->num) {
q1 >>= GLQ_SHIFT;
q2 >>= GLQ_SHIFT;
q3 >>= GLQ_SHIFT;
}
q1 &= GLQ_MASK;
q2 &= GLQ_MASK;
q3 &= GLQ_MASK;
if (q1 <= q2 && q2 <= q3) return lq_to_santibells [q2];
if (q2 <= q3 && q3 <= q1) return lq_to_santibells [q3];
if (q3 <= q1 && q1 <= q2) return lq_to_santibells [q1];
if (q1 <= q3 && q3 <= q2) return lq_to_santibells [q3];
if (q3 <= q2 && q2 <= q1) return lq_to_santibells [q2];
/* if (q2 <= q1 && q1 <= q3) */ return lq_to_santibells [q1];
}
/*
* Get the state of CARRIER signal of the channel.
*/
int ct_get_cd (ct_chan_t *c)
{
return (inb (c->ST3) & ST3_DCD_INV) == 0;
}
/*
* Get the state of CTS signal of the channel.
*/
int ct_get_cts (ct_chan_t *c)
{
return (inb (c->ST3) & ST3_CTS_INV) == 0;
}
/*
* Turn LED on/off.
*/
void ct_led (ct_board_t *b, int on)
{
switch (b->type) {
case B_TAU_G703:
case B_TAU_G703C:
case B_TAU2_G703:
if (on) b->gmd2 |= GMD2_LED;
else b->gmd2 &= ~GMD2_LED;
outb (GMD2(b->port), b->gmd2);
break;
default:
if (on) b->e1cfg |= E1CFG_LED;
else b->e1cfg &= ~E1CFG_LED;
outb (E1CFG(b->port), b->e1cfg);
break;
}
}
void ct_disable_dma (ct_board_t *b)
{
/* Disable DMA channel. */
outb (DMA_MASK, (b->dma & 3) | DMA_MASK_CLEAR);
}
void ct_compute_clock (long hz, long baud, int *txbr, int *tmc)
{
if (baud < 100)
baud = 100;
*txbr = 0;
if (4*baud > 3*hz)
*tmc = 1;
else {
while (((hz / baud) >> ++*txbr) > 256)
continue;
*tmc = (((2 * hz / baud) >> *txbr) + 1) / 2;
}
}
/*
* Access to DS2153 chips on the Tau/E1 board.
* Examples:
* val = cte_in (E1CSi (base), DS_RCR1)
* cte_out (E1CSi (base), DS_CCR1, val)
* val = cte_ins (E1CSi (base), DS_SSR)
*/
unsigned char cte_in (port_t base, unsigned char reg)
{
outb (base, reg);
return inb (E1DAT (base & 0x3e0));
}
void cte_out (port_t base, unsigned char reg, unsigned char val)
{
outb (base, reg);
outb (E1DAT (base & 0x3e0), val);
}
/*
* Get the DS2153 status register, using write-read-write scheme.
*/
unsigned char cte_ins (port_t base, unsigned char reg,
unsigned char mask)
{
unsigned char val;
port_t rw = E1DAT (base & 0x3e0);
outb (base, reg); outb (rw, mask); /* lock bits */
outb (base, reg); val = inb (rw) & mask; /* get values */
outb (base, reg); outb (rw, val); /* unlock bits */
return val;
}
/*
* Access to 8530 chip on the Tau/E1 board.
* Examples:
* val = cte_in2 (base, AM_RSR | AM_A)
* cte_out2 (base, AM_IMR, val)
*/
unsigned char cte_in2 (port_t base, unsigned char reg)
{
outb (E1CS2(base), E1CS2_SCC | reg >> 4);
outb (E1DAT(base), reg & 15);
return inb (E1DAT(base));
}
void cte_out2 (port_t base, unsigned char reg, unsigned char val)
{
outb (E1CS2(base), E1CS2_SCC | reg >> 4);
outb (E1DAT(base), reg & 15);
outb (E1DAT(base), val);
}
/*
* Read the data from the 8530 receive fifo.
*/
unsigned char cte_in2d (ct_chan_t *c)
{
outb (E1CS2(c->board->port), E1CS2_SCC | E1CS2_DC |
(c->num ? 0 : E1CS2_AB));
return inb (E1DAT(c->board->port));
}
/*
* Send the 8530 command.
*/
void cte_out2c (ct_chan_t *c, unsigned char val)
{
outb (E1CS2(c->board->port), E1CS2_SCC | (c->num ? 0 : E1CS2_AB));
outb (E1DAT(c->board->port), val);
}
/*
* Write the data to the 8530 transmit fifo.
*/
void cte_out2d (ct_chan_t *c, unsigned char val)
{
outb (E1CS2(c->board->port), E1CS2_SCC | E1CS2_DC |
(c->num ? 0 : E1CS2_AB));
outb (E1DAT(c->board->port), val);
}
/*
* Access to LXT318 chip on the Tau/G.703 board.
* Examples:
* val = ctg_inx (c)
* ctg_outx (c, val)
*/
static void ctg_output (port_t port, unsigned char val, unsigned char v0)
{
int i;
for (i=0; i<8; ++i) {
unsigned char v = v0;
if ((val >> i) & 1)
v |= GMD0_SDI;
outb (port, v);
outb (port, v);
outb (port, v);
outb (port, v);
outb (port, v | GMD0_SCLK);
outb (port, v | GMD0_SCLK);
outb (port, v | GMD0_SCLK);
outb (port, v | GMD0_SCLK);
}
outb (port, v0);
}
void ctg_outx (ct_chan_t *c, unsigned char reg, unsigned char val)
{
port_t port = GMD0(c->board->port);
outb (GMD1(c->board->port), c->board->gmd1 | GMD1_NCS0 | GMD1_NCS1);
outb (GMD1(c->board->port), c->board->gmd1 |
(c->num ? GMD1_NCS0 : GMD1_NCS1));
ctg_output (port, (reg << 1) | LX_WRITE, c->board->gmd0);
ctg_output (port, val, c->board->gmd0);
outb (GMD1(c->board->port), c->board->gmd1 | GMD1_NCS0 | GMD1_NCS1);
}
unsigned char ctg_inx (ct_chan_t *c, unsigned char reg)
{
port_t port = GMD0(c->board->port);
port_t data = GLDR(c->board->port);
unsigned char val = 0, mask = c->num ? GLDR_C1 : GLDR_C0;
int i;
outb (GMD1(c->board->port), c->board->gmd1 | GMD1_NCS0 | GMD1_NCS1);
outb (GMD1(c->board->port), c->board->gmd1 |
(c->num ? GMD1_NCS0 : GMD1_NCS1));
ctg_output (port, (reg << 1) | LX_READ, c->board->gmd0);
for (i=0; i<8; ++i) {
outb (port, c->board->gmd0 | GMD0_SCLK);
if (inb (data) & mask)
val |= 1 << i;
outb (port, c->board->gmd0);
}
outb (GMD1(c->board->port), c->board->gmd1 | GMD1_NCS0 | GMD1_NCS1);
return val;
}
/*
* Adapter options
*/
ct_board_opt_t ct_board_opt_dflt = {
0, /* board control register 2 */
{ /* DMA priority control register */
PCR_PRIO_ROTATE,
0, /* all channels share the bus hold */
0, /* hold the bus until all transfers done */
},
CFG_A, /* E1/G.703 config: two independent channels */
GCLK_INT, /* E1/G.703 chan 0 internal tx clock source */
GCLK_INT, /* E1/G.703 chan 1 internal tx clock source */
~0UL << 1, /* E1 channel 0 timeslots 1..31 */
~0UL << 1, /* E1 channel 1 timeslots 1..31 */
0, /* no E1 subchannel timeslots */
};
/*
* Mode-independent channel options
*/
ct_chan_opt_t ct_chan_opt_dflt = {
{ /* mode register 2 */
MD2_FDX, /* full duplex communication */
0, /* empty ADPLL clock rate */
MD2_ENCOD_NRZ, /* NRZ encoding */
},
/* DMA mode FIFO marks */
15, 24, 30, /* rx ready, tx empty, tx full */
/* port i/o mode FIFO marks */
15, 16, 30, /* rx ready, tx empty, tx full */
};
/*
* Default HDLC options
*/
ct_opt_hdlc_t ct_opt_hdlc_dflt = {
{ /* mode register 0 */
1, /* CRC preset to all ones (V.41) */
1, /* CRC-CCITT */
1, /* enable CRC */
0, /* disable automatic CTS/DCD */
MD0_MODE_HDLC, /* HDLC mode */
},
{ /* mode register 1 */
MD1_ADDR_NOCHK, /* do not check address field */
},
CTL_IDLE_PTRN | CTL_UDRN_ABORT | CTL_RTS_INV, /* control register */
0, 0, /* empty sync/address registers 0,1 */
CLK_LINE, /* receive clock source: RXC line input */
CLK_LINE, /* transmit clock source: TXC line input */
};
/*
* Default E1/G.703 options
*/
ct_opt_g703_t ct_opt_g703_dflt = {
1, /* HDB3 enable */
0, /* precoder disable */
GTEST_DIS, /* test disabled, normal operation */
0, /* CRC4 disable */
0, /* CCS signaling */
0, /* low gain */
0, /* no raw mode */
0, /* no PCM2 precoder compatibility */
2048, /* data rate 2048 kbit/sec */
};