/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2006 M. Warner Losh. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Portions of this software may have been developed with reference to
* the SD Simplified Specification. The following disclaimer may apply:
*
* The following conditions apply to the release of the simplified
* specification ("Simplified Specification") by the SD Card Association and
* the SD Group. The Simplified Specification is a subset of the complete SD
* Specification which is owned by the SD Card Association and the SD
* Group. This Simplified Specification is provided on a non-confidential
* basis subject to the disclaimers below. Any implementation of the
* Simplified Specification may require a license from the SD Card
* Association, SD Group, SD-3C LLC or other third parties.
*
* Disclaimers:
*
* The information contained in the Simplified Specification is presented only
* as a standard specification for SD Cards and SD Host/Ancillary products and
* is provided "AS-IS" without any representations or warranties of any
* kind. No responsibility is assumed by the SD Group, SD-3C LLC or the SD
* Card Association for any damages, any infringements of patents or other
* right of the SD Group, SD-3C LLC, the SD Card Association or any third
* parties, which may result from its use. No license is granted by
* implication, estoppel or otherwise under any patent or other rights of the
* SD Group, SD-3C LLC, the SD Card Association or any third party. Nothing
* herein shall be construed as an obligation by the SD Group, the SD-3C LLC
* or the SD Card Association to disclose or distribute any technical
* information, know-how or other confidential information to any third party.
*
* $FreeBSD$
*/
#ifndef DEV_MMC_BRIDGE_H
#define DEV_MMC_BRIDGE_H
#include <sys/bus.h>
/*
* This file defines interfaces for the mmc bridge. The names chosen
* are similar to or the same as the names used in Linux to allow for
* easy porting of what Linux calls mmc host drivers. I use the
* FreeBSD terminology of bridge and bus for consistency with other
* drivers in the system. This file corresponds roughly to the Linux
* linux/mmc/host.h file.
*
* A mmc bridge is a chipset that can have one or more mmc and/or sd
* cards attached to it. mmc devices are attached on a bus topology,
* while sd and sdio cards usually are attached using a star topology
* (meaning in practice each sd card has its own, independent slot).
* Since SDHCI v3.00, buses for esd and esdio are possible, though.
*
* Attached to the mmc bridge is an mmcbus. The mmcbus is described
* in dev/mmc/mmcbus_if.m.
*/
/*
* mmc_ios is a structure that is used to store the state of the mmc/sd
* bus configuration. This include the bus' clock speed, its voltage,
* the bus mode for command output, the SPI chip select, some power
* states and the bus width.
*/
enum mmc_vdd {
vdd_150 = 0, vdd_155, vdd_160, vdd_165, vdd_170, vdd_180,
vdd_190, vdd_200, vdd_210, vdd_220, vdd_230, vdd_240, vdd_250,
vdd_260, vdd_270, vdd_280, vdd_290, vdd_300, vdd_310, vdd_320,
vdd_330, vdd_340, vdd_350, vdd_360
};
enum mmc_vccq {
vccq_120 = 0, vccq_180, vccq_330
};
enum mmc_power_mode {
power_off = 0, power_up, power_on
};
enum mmc_bus_mode {
opendrain = 1, pushpull
};
enum mmc_chip_select {
cs_dontcare = 0, cs_high, cs_low
};
enum mmc_bus_width {
bus_width_1 = 0, bus_width_4 = 2, bus_width_8 = 3
};
enum mmc_drv_type {
drv_type_b = 0, drv_type_a, drv_type_c, drv_type_d
};
enum mmc_bus_timing {
bus_timing_normal = 0, bus_timing_hs, bus_timing_uhs_sdr12,
bus_timing_uhs_sdr25, bus_timing_uhs_sdr50, bus_timing_uhs_ddr50,
bus_timing_uhs_sdr104, bus_timing_mmc_ddr52, bus_timing_mmc_hs200,
bus_timing_mmc_hs400, bus_timing_mmc_hs400es, bus_timing_max =
bus_timing_mmc_hs400es
};
struct mmc_ios {
uint32_t clock; /* Speed of the clock in Hz to move data */
enum mmc_vdd vdd; /* Voltage to apply to the power pins */
enum mmc_vccq vccq; /* Voltage to use for signaling */
enum mmc_bus_mode bus_mode;
enum mmc_chip_select chip_select;
enum mmc_bus_width bus_width;
enum mmc_power_mode power_mode;
enum mmc_bus_timing timing;
enum mmc_drv_type drv_type;
};
enum mmc_card_mode {
mode_mmc, mode_sd
};
enum mmc_retune_req {
retune_req_none = 0, retune_req_normal, retune_req_reset
};
struct mmc_host {
int f_min;
int f_max;
uint32_t host_ocr;
uint32_t ocr;
uint32_t caps;
#define MMC_CAP_4_BIT_DATA (1 << 0) /* Can do 4-bit data transfers */
#define MMC_CAP_8_BIT_DATA (1 << 1) /* Can do 8-bit data transfers */
#define MMC_CAP_HSPEED (1 << 2) /* Can do High Speed transfers */
#define MMC_CAP_BOOT_NOACC (1 << 4) /* Cannot access boot partitions */
#define MMC_CAP_WAIT_WHILE_BUSY (1 << 5) /* Host waits for busy responses */
#define MMC_CAP_UHS_SDR12 (1 << 6) /* Can do UHS SDR12 */
#define MMC_CAP_UHS_SDR25 (1 << 7) /* Can do UHS SDR25 */
#define MMC_CAP_UHS_SDR50 (1 << 8) /* Can do UHS SDR50 */
#define MMC_CAP_UHS_SDR104 (1 << 9) /* Can do UHS SDR104 */
#define MMC_CAP_UHS_DDR50 (1 << 10) /* Can do UHS DDR50 */
#define MMC_CAP_MMC_DDR52_120 (1 << 11) /* Can do eMMC DDR52 at 1.2 V */
#define MMC_CAP_MMC_DDR52_180 (1 << 12) /* Can do eMMC DDR52 at 1.8 V */
#define MMC_CAP_MMC_DDR52 (MMC_CAP_MMC_DDR52_120 | MMC_CAP_MMC_DDR52_180)
#define MMC_CAP_MMC_HS200_120 (1 << 13) /* Can do eMMC HS200 at 1.2 V */
#define MMC_CAP_MMC_HS200_180 (1 << 14) /* Can do eMMC HS200 at 1.8 V */
#define MMC_CAP_MMC_HS200 (MMC_CAP_MMC_HS200_120| MMC_CAP_MMC_HS200_180)
#define MMC_CAP_MMC_HS400_120 (1 << 15) /* Can do eMMC HS400 at 1.2 V */
#define MMC_CAP_MMC_HS400_180 (1 << 16) /* Can do eMMC HS400 at 1.8 V */
#define MMC_CAP_MMC_HS400 (MMC_CAP_MMC_HS400_120 | MMC_CAP_MMC_HS400_180)
#define MMC_CAP_MMC_HSX00_120 (MMC_CAP_MMC_HS200_120 | MMC_CAP_MMC_HS400_120)
#define MMC_CAP_MMC_ENH_STROBE (1 << 17) /* Can do eMMC Enhanced Strobe */
#define MMC_CAP_SIGNALING_120 (1 << 18) /* Can do signaling at 1.2 V */
#define MMC_CAP_SIGNALING_180 (1 << 19) /* Can do signaling at 1.8 V */
#define MMC_CAP_SIGNALING_330 (1 << 20) /* Can do signaling at 3.3 V */
#define MMC_CAP_DRIVER_TYPE_A (1 << 21) /* Can do Driver Type A */
#define MMC_CAP_DRIVER_TYPE_C (1 << 22) /* Can do Driver Type C */
#define MMC_CAP_DRIVER_TYPE_D (1 << 23) /* Can do Driver Type D */
enum mmc_card_mode mode;
struct mmc_ios ios; /* Current state of the host */
};
#ifdef _KERNEL
extern driver_t mmc_driver;
extern devclass_t mmc_devclass;
#define MMC_VERSION 5
#define MMC_DECLARE_BRIDGE(name) \
DRIVER_MODULE(mmc, name, mmc_driver, mmc_devclass, NULL, NULL); \
MODULE_DEPEND(name, mmc, MMC_VERSION, MMC_VERSION, MMC_VERSION);
#define MMC_DEPEND(name) \
MODULE_DEPEND(name, mmc, MMC_VERSION, MMC_VERSION, MMC_VERSION);
#endif /* _KERNEL */
#endif /* DEV_MMC_BRIDGE_H */