/*-
* Copyright (c) 2012-2016 Solarflare Communications Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation are
* those of the authors and should not be interpreted as representing official
* policies, either expressed or implied, of the FreeBSD Project.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "efx.h"
#include "efx_impl.h"
#if EFSYS_OPT_MON_STATS
#include "mcdi_mon.h"
#endif
#if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD
#if EFSYS_OPT_QSTATS
#define EFX_EV_QSTAT_INCR(_eep, _stat) \
do { \
(_eep)->ee_stat[_stat]++; \
_NOTE(CONSTANTCONDITION) \
} while (B_FALSE)
#else
#define EFX_EV_QSTAT_INCR(_eep, _stat)
#endif
/*
* Non-interrupting event queue requires interrrupting event queue to
* refer to for wake-up events even if wake ups are never used.
* It could be even non-allocated event queue.
*/
#define EFX_EF10_ALWAYS_INTERRUPTING_EVQ_INDEX (0)
static __checkReturn boolean_t
ef10_ev_rx(
__in efx_evq_t *eep,
__in efx_qword_t *eqp,
__in const efx_ev_callbacks_t *eecp,
__in_opt void *arg);
static __checkReturn boolean_t
ef10_ev_tx(
__in efx_evq_t *eep,
__in efx_qword_t *eqp,
__in const efx_ev_callbacks_t *eecp,
__in_opt void *arg);
static __checkReturn boolean_t
ef10_ev_driver(
__in efx_evq_t *eep,
__in efx_qword_t *eqp,
__in const efx_ev_callbacks_t *eecp,
__in_opt void *arg);
static __checkReturn boolean_t
ef10_ev_drv_gen(
__in efx_evq_t *eep,
__in efx_qword_t *eqp,
__in const efx_ev_callbacks_t *eecp,
__in_opt void *arg);
static __checkReturn boolean_t
ef10_ev_mcdi(
__in efx_evq_t *eep,
__in efx_qword_t *eqp,
__in const efx_ev_callbacks_t *eecp,
__in_opt void *arg);
static __checkReturn efx_rc_t
efx_mcdi_set_evq_tmr(
__in efx_nic_t *enp,
__in uint32_t instance,
__in uint32_t mode,
__in uint32_t timer_ns)
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_SET_EVQ_TMR_IN_LEN,
MC_CMD_SET_EVQ_TMR_OUT_LEN)];
efx_rc_t rc;
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_SET_EVQ_TMR;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_SET_EVQ_TMR_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_SET_EVQ_TMR_OUT_LEN;
MCDI_IN_SET_DWORD(req, SET_EVQ_TMR_IN_INSTANCE, instance);
MCDI_IN_SET_DWORD(req, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, timer_ns);
MCDI_IN_SET_DWORD(req, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, timer_ns);
MCDI_IN_SET_DWORD(req, SET_EVQ_TMR_IN_TMR_MODE, mode);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_SET_EVQ_TMR_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_init_evq(
__in efx_nic_t *enp,
__in unsigned int instance,
__in efsys_mem_t *esmp,
__in size_t nevs,
__in uint32_t irq,
__in uint32_t us,
__in uint32_t flags,
__in boolean_t low_latency)
{
efx_mcdi_req_t req;
uint8_t payload[
MAX(MC_CMD_INIT_EVQ_IN_LEN(EFX_EVQ_NBUFS(EFX_EVQ_MAXNEVS)),
MC_CMD_INIT_EVQ_OUT_LEN)];
efx_qword_t *dma_addr;
uint64_t addr;
int npages;
int i;
boolean_t interrupting;
int ev_cut_through;
efx_rc_t rc;
npages = EFX_EVQ_NBUFS(nevs);
if (MC_CMD_INIT_EVQ_IN_LEN(npages) > MC_CMD_INIT_EVQ_IN_LENMAX) {
rc = EINVAL;
goto fail1;
}
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_INIT_EVQ;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_INIT_EVQ_IN_LEN(npages);
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_INIT_EVQ_OUT_LEN;
MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_SIZE, nevs);
MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_INSTANCE, instance);
MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_IRQ_NUM, irq);
interrupting = ((flags & EFX_EVQ_FLAGS_NOTIFY_MASK) ==
EFX_EVQ_FLAGS_NOTIFY_INTERRUPT);
/*
* On Huntington RX and TX event batching can only be requested together
* (even if the datapath firmware doesn't actually support RX
* batching). If event cut through is enabled no RX batching will occur.
*
* So always enable RX and TX event batching, and enable event cut
* through if we want low latency operation.
*/
switch (flags & EFX_EVQ_FLAGS_TYPE_MASK) {
case EFX_EVQ_FLAGS_TYPE_AUTO:
ev_cut_through = low_latency ? 1 : 0;
break;
case EFX_EVQ_FLAGS_TYPE_THROUGHPUT:
ev_cut_through = 0;
break;
case EFX_EVQ_FLAGS_TYPE_LOW_LATENCY:
ev_cut_through = 1;
break;
default:
rc = EINVAL;
goto fail2;
}
MCDI_IN_POPULATE_DWORD_6(req, INIT_EVQ_IN_FLAGS,
INIT_EVQ_IN_FLAG_INTERRUPTING, interrupting,
INIT_EVQ_IN_FLAG_RPTR_DOS, 0,
INIT_EVQ_IN_FLAG_INT_ARMD, 0,
INIT_EVQ_IN_FLAG_CUT_THRU, ev_cut_through,
INIT_EVQ_IN_FLAG_RX_MERGE, 1,
INIT_EVQ_IN_FLAG_TX_MERGE, 1);
/* If the value is zero then disable the timer */
if (us == 0) {
MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_TMR_MODE,
MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_TMR_LOAD, 0);
MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_TMR_RELOAD, 0);
} else {
unsigned int ticks;
if ((rc = efx_ev_usecs_to_ticks(enp, us, &ticks)) != 0)
goto fail3;
MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_TMR_MODE,
MC_CMD_INIT_EVQ_IN_TMR_INT_HLDOFF);
MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_TMR_LOAD, ticks);
MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_TMR_RELOAD, ticks);
}
MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_COUNT_MODE,
MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_COUNT_THRSHLD, 0);
dma_addr = MCDI_IN2(req, efx_qword_t, INIT_EVQ_IN_DMA_ADDR);
addr = EFSYS_MEM_ADDR(esmp);
for (i = 0; i < npages; i++) {
EFX_POPULATE_QWORD_2(*dma_addr,
EFX_DWORD_1, (uint32_t)(addr >> 32),
EFX_DWORD_0, (uint32_t)(addr & 0xffffffff));
dma_addr++;
addr += EFX_BUF_SIZE;
}
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail4;
}
if (req.emr_out_length_used < MC_CMD_INIT_EVQ_OUT_LEN) {
rc = EMSGSIZE;
goto fail5;
}
/* NOTE: ignore the returned IRQ param as firmware does not set it. */
return (0);
fail5:
EFSYS_PROBE(fail5);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_init_evq_v2(
__in efx_nic_t *enp,
__in unsigned int instance,
__in efsys_mem_t *esmp,
__in size_t nevs,
__in uint32_t irq,
__in uint32_t us,
__in uint32_t flags)
{
efx_mcdi_req_t req;
uint8_t payload[
MAX(MC_CMD_INIT_EVQ_V2_IN_LEN(EFX_EVQ_NBUFS(EFX_EVQ_MAXNEVS)),
MC_CMD_INIT_EVQ_V2_OUT_LEN)];
boolean_t interrupting;
unsigned int evq_type;
efx_qword_t *dma_addr;
uint64_t addr;
int npages;
int i;
efx_rc_t rc;
npages = EFX_EVQ_NBUFS(nevs);
if (MC_CMD_INIT_EVQ_V2_IN_LEN(npages) > MC_CMD_INIT_EVQ_V2_IN_LENMAX) {
rc = EINVAL;
goto fail1;
}
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_INIT_EVQ;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_INIT_EVQ_V2_IN_LEN(npages);
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_INIT_EVQ_V2_OUT_LEN;
MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_SIZE, nevs);
MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_INSTANCE, instance);
MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_IRQ_NUM, irq);
interrupting = ((flags & EFX_EVQ_FLAGS_NOTIFY_MASK) ==
EFX_EVQ_FLAGS_NOTIFY_INTERRUPT);
switch (flags & EFX_EVQ_FLAGS_TYPE_MASK) {
case EFX_EVQ_FLAGS_TYPE_AUTO:
evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO;
break;
case EFX_EVQ_FLAGS_TYPE_THROUGHPUT:
evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_THROUGHPUT;
break;
case EFX_EVQ_FLAGS_TYPE_LOW_LATENCY:
evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_LOW_LATENCY;
break;
default:
rc = EINVAL;
goto fail2;
}
MCDI_IN_POPULATE_DWORD_4(req, INIT_EVQ_V2_IN_FLAGS,
INIT_EVQ_V2_IN_FLAG_INTERRUPTING, interrupting,
INIT_EVQ_V2_IN_FLAG_RPTR_DOS, 0,
INIT_EVQ_V2_IN_FLAG_INT_ARMD, 0,
INIT_EVQ_V2_IN_FLAG_TYPE, evq_type);
/* If the value is zero then disable the timer */
if (us == 0) {
MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_MODE,
MC_CMD_INIT_EVQ_V2_IN_TMR_MODE_DIS);
MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_LOAD, 0);
MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_RELOAD, 0);
} else {
unsigned int ticks;
if ((rc = efx_ev_usecs_to_ticks(enp, us, &ticks)) != 0)
goto fail3;
MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_MODE,
MC_CMD_INIT_EVQ_V2_IN_TMR_INT_HLDOFF);
MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_LOAD, ticks);
MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_RELOAD, ticks);
}
MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_COUNT_MODE,
MC_CMD_INIT_EVQ_V2_IN_COUNT_MODE_DIS);
MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_COUNT_THRSHLD, 0);
dma_addr = MCDI_IN2(req, efx_qword_t, INIT_EVQ_V2_IN_DMA_ADDR);
addr = EFSYS_MEM_ADDR(esmp);
for (i = 0; i < npages; i++) {
EFX_POPULATE_QWORD_2(*dma_addr,
EFX_DWORD_1, (uint32_t)(addr >> 32),
EFX_DWORD_0, (uint32_t)(addr & 0xffffffff));
dma_addr++;
addr += EFX_BUF_SIZE;
}
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail4;
}
if (req.emr_out_length_used < MC_CMD_INIT_EVQ_V2_OUT_LEN) {
rc = EMSGSIZE;
goto fail5;
}
/* NOTE: ignore the returned IRQ param as firmware does not set it. */
EFSYS_PROBE1(mcdi_evq_flags, uint32_t,
MCDI_OUT_DWORD(req, INIT_EVQ_V2_OUT_FLAGS));
return (0);
fail5:
EFSYS_PROBE(fail5);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_fini_evq(
__in efx_nic_t *enp,
__in uint32_t instance)
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_FINI_EVQ_IN_LEN,
MC_CMD_FINI_EVQ_OUT_LEN)];
efx_rc_t rc;
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_FINI_EVQ;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_FINI_EVQ_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_FINI_EVQ_OUT_LEN;
MCDI_IN_SET_DWORD(req, FINI_EVQ_IN_INSTANCE, instance);
efx_mcdi_execute_quiet(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_ev_init(
__in efx_nic_t *enp)
{
_NOTE(ARGUNUSED(enp))
return (0);
}
void
ef10_ev_fini(
__in efx_nic_t *enp)
{
_NOTE(ARGUNUSED(enp))
}
__checkReturn efx_rc_t
ef10_ev_qcreate(
__in efx_nic_t *enp,
__in unsigned int index,
__in efsys_mem_t *esmp,
__in size_t n,
__in uint32_t id,
__in uint32_t us,
__in uint32_t flags,
__in efx_evq_t *eep)
{
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
uint32_t irq;
efx_rc_t rc;
_NOTE(ARGUNUSED(id)) /* buftbl id managed by MC */
EFX_STATIC_ASSERT(ISP2(EFX_EVQ_MAXNEVS));
EFX_STATIC_ASSERT(ISP2(EFX_EVQ_MINNEVS));
if (!ISP2(n) || (n < EFX_EVQ_MINNEVS) || (n > EFX_EVQ_MAXNEVS)) {
rc = EINVAL;
goto fail1;
}
if (index >= encp->enc_evq_limit) {
rc = EINVAL;
goto fail2;
}
if (us > encp->enc_evq_timer_max_us) {
rc = EINVAL;
goto fail3;
}
/* Set up the handler table */
eep->ee_rx = ef10_ev_rx;
eep->ee_tx = ef10_ev_tx;
eep->ee_driver = ef10_ev_driver;
eep->ee_drv_gen = ef10_ev_drv_gen;
eep->ee_mcdi = ef10_ev_mcdi;
/* Set up the event queue */
/* INIT_EVQ expects function-relative vector number */
if ((flags & EFX_EVQ_FLAGS_NOTIFY_MASK) ==
EFX_EVQ_FLAGS_NOTIFY_INTERRUPT) {
irq = index;
} else if (index == EFX_EF10_ALWAYS_INTERRUPTING_EVQ_INDEX) {
irq = index;
flags = (flags & ~EFX_EVQ_FLAGS_NOTIFY_MASK) |
EFX_EVQ_FLAGS_NOTIFY_INTERRUPT;
} else {
irq = EFX_EF10_ALWAYS_INTERRUPTING_EVQ_INDEX;
}
/*
* Interrupts may be raised for events immediately after the queue is
* created. See bug58606.
*/
if (encp->enc_init_evq_v2_supported) {
/*
* On Medford the low latency license is required to enable RX
* and event cut through and to disable RX batching. If event
* queue type in flags is auto, we let the firmware decide the
* settings to use. If the adapter has a low latency license,
* it will choose the best settings for low latency, otherwise
* it will choose the best settings for throughput.
*/
rc = efx_mcdi_init_evq_v2(enp, index, esmp, n, irq, us, flags);
if (rc != 0)
goto fail4;
} else {
/*
* On Huntington we need to specify the settings to use.
* If event queue type in flags is auto, we favour throughput
* if the adapter is running virtualization supporting firmware
* (i.e. the full featured firmware variant)
* and latency otherwise. The Ethernet Virtual Bridging
* capability is used to make this decision. (Note though that
* the low latency firmware variant is also best for
* throughput and corresponding type should be specified
* to choose it.)
*/
boolean_t low_latency = encp->enc_datapath_cap_evb ? 0 : 1;
rc = efx_mcdi_init_evq(enp, index, esmp, n, irq, us, flags,
low_latency);
if (rc != 0)
goto fail5;
}
return (0);
fail5:
EFSYS_PROBE(fail5);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
void
ef10_ev_qdestroy(
__in efx_evq_t *eep)
{
efx_nic_t *enp = eep->ee_enp;
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
enp->en_family == EFX_FAMILY_MEDFORD);
(void) efx_mcdi_fini_evq(eep->ee_enp, eep->ee_index);
}
__checkReturn efx_rc_t
ef10_ev_qprime(
__in efx_evq_t *eep,
__in unsigned int count)
{
efx_nic_t *enp = eep->ee_enp;
uint32_t rptr;
efx_dword_t dword;
rptr = count & eep->ee_mask;
if (enp->en_nic_cfg.enc_bug35388_workaround) {
EFX_STATIC_ASSERT(EFX_EVQ_MINNEVS >
(1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
EFX_STATIC_ASSERT(EFX_EVQ_MAXNEVS <
(1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
EFX_POPULATE_DWORD_2(dword,
ERF_DD_EVQ_IND_RPTR_FLAGS,
EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
ERF_DD_EVQ_IND_RPTR,
(rptr >> ERF_DD_EVQ_IND_RPTR_WIDTH));
EFX_BAR_TBL_WRITED(enp, ER_DD_EVQ_INDIRECT, eep->ee_index,
&dword, B_FALSE);
EFX_POPULATE_DWORD_2(dword,
ERF_DD_EVQ_IND_RPTR_FLAGS,
EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
ERF_DD_EVQ_IND_RPTR,
rptr & ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
EFX_BAR_TBL_WRITED(enp, ER_DD_EVQ_INDIRECT, eep->ee_index,
&dword, B_FALSE);
} else {
EFX_POPULATE_DWORD_1(dword, ERF_DZ_EVQ_RPTR, rptr);
EFX_BAR_TBL_WRITED(enp, ER_DZ_EVQ_RPTR_REG, eep->ee_index,
&dword, B_FALSE);
}
return (0);
}
static __checkReturn efx_rc_t
efx_mcdi_driver_event(
__in efx_nic_t *enp,
__in uint32_t evq,
__in efx_qword_t data)
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_DRIVER_EVENT_IN_LEN,
MC_CMD_DRIVER_EVENT_OUT_LEN)];
efx_rc_t rc;
req.emr_cmd = MC_CMD_DRIVER_EVENT;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_DRIVER_EVENT_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_DRIVER_EVENT_OUT_LEN;
MCDI_IN_SET_DWORD(req, DRIVER_EVENT_IN_EVQ, evq);
MCDI_IN_SET_DWORD(req, DRIVER_EVENT_IN_DATA_LO,
EFX_QWORD_FIELD(data, EFX_DWORD_0));
MCDI_IN_SET_DWORD(req, DRIVER_EVENT_IN_DATA_HI,
EFX_QWORD_FIELD(data, EFX_DWORD_1));
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
void
ef10_ev_qpost(
__in efx_evq_t *eep,
__in uint16_t data)
{
efx_nic_t *enp = eep->ee_enp;
efx_qword_t event;
EFX_POPULATE_QWORD_3(event,
ESF_DZ_DRV_CODE, ESE_DZ_EV_CODE_DRV_GEN_EV,
ESF_DZ_DRV_SUB_CODE, 0,
ESF_DZ_DRV_SUB_DATA_DW0, (uint32_t)data);
(void) efx_mcdi_driver_event(enp, eep->ee_index, event);
}
__checkReturn efx_rc_t
ef10_ev_qmoderate(
__in efx_evq_t *eep,
__in unsigned int us)
{
efx_nic_t *enp = eep->ee_enp;
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
efx_dword_t dword;
uint32_t mode;
efx_rc_t rc;
/* Check that hardware and MCDI use the same timer MODE values */
EFX_STATIC_ASSERT(FFE_CZ_TIMER_MODE_DIS ==
MC_CMD_SET_EVQ_TMR_IN_TIMER_MODE_DIS);
EFX_STATIC_ASSERT(FFE_CZ_TIMER_MODE_IMMED_START ==
MC_CMD_SET_EVQ_TMR_IN_TIMER_MODE_IMMED_START);
EFX_STATIC_ASSERT(FFE_CZ_TIMER_MODE_TRIG_START ==
MC_CMD_SET_EVQ_TMR_IN_TIMER_MODE_TRIG_START);
EFX_STATIC_ASSERT(FFE_CZ_TIMER_MODE_INT_HLDOFF ==
MC_CMD_SET_EVQ_TMR_IN_TIMER_MODE_INT_HLDOFF);
if (us > encp->enc_evq_timer_max_us) {
rc = EINVAL;
goto fail1;
}
/* If the value is zero then disable the timer */
if (us == 0) {
mode = FFE_CZ_TIMER_MODE_DIS;
} else {
mode = FFE_CZ_TIMER_MODE_INT_HLDOFF;
}
if (encp->enc_bug61265_workaround) {
uint32_t ns = us * 1000;
rc = efx_mcdi_set_evq_tmr(enp, eep->ee_index, mode, ns);
if (rc != 0)
goto fail2;
} else {
unsigned int ticks;
if ((rc = efx_ev_usecs_to_ticks(enp, us, &ticks)) != 0)
goto fail3;
if (encp->enc_bug35388_workaround) {
EFX_POPULATE_DWORD_3(dword,
ERF_DD_EVQ_IND_TIMER_FLAGS,
EFE_DD_EVQ_IND_TIMER_FLAGS,
ERF_DD_EVQ_IND_TIMER_MODE, mode,
ERF_DD_EVQ_IND_TIMER_VAL, ticks);
EFX_BAR_TBL_WRITED(enp, ER_DD_EVQ_INDIRECT,
eep->ee_index, &dword, 0);
} else {
EFX_POPULATE_DWORD_2(dword,
ERF_DZ_TC_TIMER_MODE, mode,
ERF_DZ_TC_TIMER_VAL, ticks);
EFX_BAR_TBL_WRITED(enp, ER_DZ_EVQ_TMR_REG,
eep->ee_index, &dword, 0);
}
}
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#if EFSYS_OPT_QSTATS
void
ef10_ev_qstats_update(
__in efx_evq_t *eep,
__inout_ecount(EV_NQSTATS) efsys_stat_t *stat)
{
unsigned int id;
for (id = 0; id < EV_NQSTATS; id++) {
efsys_stat_t *essp = &stat[id];
EFSYS_STAT_INCR(essp, eep->ee_stat[id]);
eep->ee_stat[id] = 0;
}
}
#endif /* EFSYS_OPT_QSTATS */
static __checkReturn boolean_t
ef10_ev_rx(
__in efx_evq_t *eep,
__in efx_qword_t *eqp,
__in const efx_ev_callbacks_t *eecp,
__in_opt void *arg)
{
efx_nic_t *enp = eep->ee_enp;
uint32_t size;
uint32_t label;
uint32_t mac_class;
uint32_t eth_tag_class;
uint32_t l3_class;
uint32_t l4_class;
uint32_t next_read_lbits;
uint16_t flags;
boolean_t cont;
boolean_t should_abort;
efx_evq_rxq_state_t *eersp;
unsigned int desc_count;
unsigned int last_used_id;
EFX_EV_QSTAT_INCR(eep, EV_RX);
/* Discard events after RXQ/TXQ errors */
if (enp->en_reset_flags & (EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR))
return (B_FALSE);
/* Basic packet information */
size = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_BYTES);
next_read_lbits = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_DSC_PTR_LBITS);
label = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_QLABEL);
eth_tag_class = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_ETH_TAG_CLASS);
mac_class = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_MAC_CLASS);
l3_class = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_L3_CLASS);
l4_class = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_L4_CLASS);
cont = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_CONT);
if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_DROP_EVENT) != 0) {
/* Drop this event */
return (B_FALSE);
}
flags = 0;
if (cont != 0) {
/*
* This may be part of a scattered frame, or it may be a
* truncated frame if scatter is disabled on this RXQ.
* Overlength frames can be received if e.g. a VF is configured
* for 1500 MTU but connected to a port set to 9000 MTU
* (see bug56567).
* FIXME: There is not yet any driver that supports scatter on
* Huntington. Scatter support is required for OSX.
*/
flags |= EFX_PKT_CONT;
}
if (mac_class == ESE_DZ_MAC_CLASS_UCAST)
flags |= EFX_PKT_UNICAST;
/* Increment the count of descriptors read */
eersp = &eep->ee_rxq_state[label];
desc_count = (next_read_lbits - eersp->eers_rx_read_ptr) &
EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
eersp->eers_rx_read_ptr += desc_count;
/*
* FIXME: add error checking to make sure this a batched event.
* This could also be an aborted scatter, see Bug36629.
*/
if (desc_count > 1) {
EFX_EV_QSTAT_INCR(eep, EV_RX_BATCH);
flags |= EFX_PKT_PREFIX_LEN;
}
/* Calculate the index of the last descriptor consumed */
last_used_id = (eersp->eers_rx_read_ptr - 1) & eersp->eers_rx_mask;
/* Check for errors that invalidate checksum and L3/L4 fields */
if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_ECC_ERR) != 0) {
/* RX frame truncated (error flag is misnamed) */
EFX_EV_QSTAT_INCR(eep, EV_RX_FRM_TRUNC);
flags |= EFX_DISCARD;
goto deliver;
}
if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_ECRC_ERR) != 0) {
/* Bad Ethernet frame CRC */
EFX_EV_QSTAT_INCR(eep, EV_RX_ETH_CRC_ERR);
flags |= EFX_DISCARD;
goto deliver;
}
if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_PARSE_INCOMPLETE)) {
/*
* Hardware parse failed, due to malformed headers
* or headers that are too long for the parser.
* Headers and checksums must be validated by the host.
*/
/* TODO: EFX_EV_QSTAT_INCR(eep, EV_RX_PARSE_INCOMPLETE); */
goto deliver;
}
if ((eth_tag_class == ESE_DZ_ETH_TAG_CLASS_VLAN1) ||
(eth_tag_class == ESE_DZ_ETH_TAG_CLASS_VLAN2)) {
flags |= EFX_PKT_VLAN_TAGGED;
}
switch (l3_class) {
case ESE_DZ_L3_CLASS_IP4:
case ESE_DZ_L3_CLASS_IP4_FRAG:
flags |= EFX_PKT_IPV4;
if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_IPCKSUM_ERR)) {
EFX_EV_QSTAT_INCR(eep, EV_RX_IPV4_HDR_CHKSUM_ERR);
} else {
flags |= EFX_CKSUM_IPV4;
}
if (l4_class == ESE_DZ_L4_CLASS_TCP) {
EFX_EV_QSTAT_INCR(eep, EV_RX_TCP_IPV4);
flags |= EFX_PKT_TCP;
} else if (l4_class == ESE_DZ_L4_CLASS_UDP) {
EFX_EV_QSTAT_INCR(eep, EV_RX_UDP_IPV4);
flags |= EFX_PKT_UDP;
} else {
EFX_EV_QSTAT_INCR(eep, EV_RX_OTHER_IPV4);
}
break;
case ESE_DZ_L3_CLASS_IP6:
case ESE_DZ_L3_CLASS_IP6_FRAG:
flags |= EFX_PKT_IPV6;
if (l4_class == ESE_DZ_L4_CLASS_TCP) {
EFX_EV_QSTAT_INCR(eep, EV_RX_TCP_IPV6);
flags |= EFX_PKT_TCP;
} else if (l4_class == ESE_DZ_L4_CLASS_UDP) {
EFX_EV_QSTAT_INCR(eep, EV_RX_UDP_IPV6);
flags |= EFX_PKT_UDP;
} else {
EFX_EV_QSTAT_INCR(eep, EV_RX_OTHER_IPV6);
}
break;
default:
EFX_EV_QSTAT_INCR(eep, EV_RX_NON_IP);
break;
}
if (flags & (EFX_PKT_TCP | EFX_PKT_UDP)) {
if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
EFX_EV_QSTAT_INCR(eep, EV_RX_TCP_UDP_CHKSUM_ERR);
} else {
flags |= EFX_CKSUM_TCPUDP;
}
}
deliver:
/* If we're not discarding the packet then it is ok */
if (~flags & EFX_DISCARD)
EFX_EV_QSTAT_INCR(eep, EV_RX_OK);
EFSYS_ASSERT(eecp->eec_rx != NULL);
should_abort = eecp->eec_rx(arg, label, last_used_id, size, flags);
return (should_abort);
}
static __checkReturn boolean_t
ef10_ev_tx(
__in efx_evq_t *eep,
__in efx_qword_t *eqp,
__in const efx_ev_callbacks_t *eecp,
__in_opt void *arg)
{
efx_nic_t *enp = eep->ee_enp;
uint32_t id;
uint32_t label;
boolean_t should_abort;
EFX_EV_QSTAT_INCR(eep, EV_TX);
/* Discard events after RXQ/TXQ errors */
if (enp->en_reset_flags & (EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR))
return (B_FALSE);
if (EFX_QWORD_FIELD(*eqp, ESF_DZ_TX_DROP_EVENT) != 0) {
/* Drop this event */
return (B_FALSE);
}
/* Per-packet TX completion (was per-descriptor for Falcon/Siena) */
id = EFX_QWORD_FIELD(*eqp, ESF_DZ_TX_DESCR_INDX);
label = EFX_QWORD_FIELD(*eqp, ESF_DZ_TX_QLABEL);
EFSYS_PROBE2(tx_complete, uint32_t, label, uint32_t, id);
EFSYS_ASSERT(eecp->eec_tx != NULL);
should_abort = eecp->eec_tx(arg, label, id);
return (should_abort);
}
static __checkReturn boolean_t
ef10_ev_driver(
__in efx_evq_t *eep,
__in efx_qword_t *eqp,
__in const efx_ev_callbacks_t *eecp,
__in_opt void *arg)
{
unsigned int code;
boolean_t should_abort;
EFX_EV_QSTAT_INCR(eep, EV_DRIVER);
should_abort = B_FALSE;
code = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_SUB_CODE);
switch (code) {
case ESE_DZ_DRV_TIMER_EV: {
uint32_t id;
id = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_TMR_ID);
EFSYS_ASSERT(eecp->eec_timer != NULL);
should_abort = eecp->eec_timer(arg, id);
break;
}
case ESE_DZ_DRV_WAKE_UP_EV: {
uint32_t id;
id = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_EVQ_ID);
EFSYS_ASSERT(eecp->eec_wake_up != NULL);
should_abort = eecp->eec_wake_up(arg, id);
break;
}
case ESE_DZ_DRV_START_UP_EV:
EFSYS_ASSERT(eecp->eec_initialized != NULL);
should_abort = eecp->eec_initialized(arg);
break;
default:
EFSYS_PROBE3(bad_event, unsigned int, eep->ee_index,
uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1),
uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0));
break;
}
return (should_abort);
}
static __checkReturn boolean_t
ef10_ev_drv_gen(
__in efx_evq_t *eep,
__in efx_qword_t *eqp,
__in const efx_ev_callbacks_t *eecp,
__in_opt void *arg)
{
uint32_t data;
boolean_t should_abort;
EFX_EV_QSTAT_INCR(eep, EV_DRV_GEN);
should_abort = B_FALSE;
data = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_SUB_DATA_DW0);
if (data >= ((uint32_t)1 << 16)) {
EFSYS_PROBE3(bad_event, unsigned int, eep->ee_index,
uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1),
uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0));
return (B_TRUE);
}
EFSYS_ASSERT(eecp->eec_software != NULL);
should_abort = eecp->eec_software(arg, (uint16_t)data);
return (should_abort);
}
static __checkReturn boolean_t
ef10_ev_mcdi(
__in efx_evq_t *eep,
__in efx_qword_t *eqp,
__in const efx_ev_callbacks_t *eecp,
__in_opt void *arg)
{
efx_nic_t *enp = eep->ee_enp;
unsigned int code;
boolean_t should_abort = B_FALSE;
EFX_EV_QSTAT_INCR(eep, EV_MCDI_RESPONSE);
code = EFX_QWORD_FIELD(*eqp, MCDI_EVENT_CODE);
switch (code) {
case MCDI_EVENT_CODE_BADSSERT:
efx_mcdi_ev_death(enp, EINTR);
break;
case MCDI_EVENT_CODE_CMDDONE:
efx_mcdi_ev_cpl(enp,
MCDI_EV_FIELD(eqp, CMDDONE_SEQ),
MCDI_EV_FIELD(eqp, CMDDONE_DATALEN),
MCDI_EV_FIELD(eqp, CMDDONE_ERRNO));
break;
#if EFSYS_OPT_MCDI_PROXY_AUTH
case MCDI_EVENT_CODE_PROXY_RESPONSE:
/*
* This event notifies a function that an authorization request
* has been processed. If the request was authorized then the
* function can now re-send the original MCDI request.
* See SF-113652-SW "SR-IOV Proxied Network Access Control".
*/
efx_mcdi_ev_proxy_response(enp,
MCDI_EV_FIELD(eqp, PROXY_RESPONSE_HANDLE),
MCDI_EV_FIELD(eqp, PROXY_RESPONSE_RC));
break;
#endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
case MCDI_EVENT_CODE_LINKCHANGE: {
efx_link_mode_t link_mode;
ef10_phy_link_ev(enp, eqp, &link_mode);
should_abort = eecp->eec_link_change(arg, link_mode);
break;
}
case MCDI_EVENT_CODE_SENSOREVT: {
#if EFSYS_OPT_MON_STATS
efx_mon_stat_t id;
efx_mon_stat_value_t value;
efx_rc_t rc;
/* Decode monitor stat for MCDI sensor (if supported) */
if ((rc = mcdi_mon_ev(enp, eqp, &id, &value)) == 0) {
/* Report monitor stat change */
should_abort = eecp->eec_monitor(arg, id, value);
} else if (rc == ENOTSUP) {
should_abort = eecp->eec_exception(arg,
EFX_EXCEPTION_UNKNOWN_SENSOREVT,
MCDI_EV_FIELD(eqp, DATA));
} else {
EFSYS_ASSERT(rc == ENODEV); /* Wrong port */
}
#endif
break;
}
case MCDI_EVENT_CODE_SCHEDERR:
/* Informational only */
break;
case MCDI_EVENT_CODE_REBOOT:
/* Falcon/Siena only (should not been seen with Huntington). */
efx_mcdi_ev_death(enp, EIO);
break;
case MCDI_EVENT_CODE_MC_REBOOT:
/* MC_REBOOT event is used for Huntington (EF10) and later. */
efx_mcdi_ev_death(enp, EIO);
break;
case MCDI_EVENT_CODE_MAC_STATS_DMA:
#if EFSYS_OPT_MAC_STATS
if (eecp->eec_mac_stats != NULL) {
eecp->eec_mac_stats(arg,
MCDI_EV_FIELD(eqp, MAC_STATS_DMA_GENERATION));
}
#endif
break;
case MCDI_EVENT_CODE_FWALERT: {
uint32_t reason = MCDI_EV_FIELD(eqp, FWALERT_REASON);
if (reason == MCDI_EVENT_FWALERT_REASON_SRAM_ACCESS)
should_abort = eecp->eec_exception(arg,
EFX_EXCEPTION_FWALERT_SRAM,
MCDI_EV_FIELD(eqp, FWALERT_DATA));
else
should_abort = eecp->eec_exception(arg,
EFX_EXCEPTION_UNKNOWN_FWALERT,
MCDI_EV_FIELD(eqp, DATA));
break;
}
case MCDI_EVENT_CODE_TX_ERR: {
/*
* After a TXQ error is detected, firmware sends a TX_ERR event.
* This may be followed by TX completions (which we discard),
* and then finally by a TX_FLUSH event. Firmware destroys the
* TXQ automatically after sending the TX_FLUSH event.
*/
enp->en_reset_flags |= EFX_RESET_TXQ_ERR;
EFSYS_PROBE2(tx_descq_err,
uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1),
uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0));
/* Inform the driver that a reset is required. */
eecp->eec_exception(arg, EFX_EXCEPTION_TX_ERROR,
MCDI_EV_FIELD(eqp, TX_ERR_DATA));
break;
}
case MCDI_EVENT_CODE_TX_FLUSH: {
uint32_t txq_index = MCDI_EV_FIELD(eqp, TX_FLUSH_TXQ);
/*
* EF10 firmware sends two TX_FLUSH events: one to the txq's
* event queue, and one to evq 0 (with TX_FLUSH_TO_DRIVER set).
* We want to wait for all completions, so ignore the events
* with TX_FLUSH_TO_DRIVER.
*/
if (MCDI_EV_FIELD(eqp, TX_FLUSH_TO_DRIVER) != 0) {
should_abort = B_FALSE;
break;
}
EFX_EV_QSTAT_INCR(eep, EV_DRIVER_TX_DESCQ_FLS_DONE);
EFSYS_PROBE1(tx_descq_fls_done, uint32_t, txq_index);
EFSYS_ASSERT(eecp->eec_txq_flush_done != NULL);
should_abort = eecp->eec_txq_flush_done(arg, txq_index);
break;
}
case MCDI_EVENT_CODE_RX_ERR: {
/*
* After an RXQ error is detected, firmware sends an RX_ERR
* event. This may be followed by RX events (which we discard),
* and then finally by an RX_FLUSH event. Firmware destroys the
* RXQ automatically after sending the RX_FLUSH event.
*/
enp->en_reset_flags |= EFX_RESET_RXQ_ERR;
EFSYS_PROBE2(rx_descq_err,
uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1),
uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0));
/* Inform the driver that a reset is required. */
eecp->eec_exception(arg, EFX_EXCEPTION_RX_ERROR,
MCDI_EV_FIELD(eqp, RX_ERR_DATA));
break;
}
case MCDI_EVENT_CODE_RX_FLUSH: {
uint32_t rxq_index = MCDI_EV_FIELD(eqp, RX_FLUSH_RXQ);
/*
* EF10 firmware sends two RX_FLUSH events: one to the rxq's
* event queue, and one to evq 0 (with RX_FLUSH_TO_DRIVER set).
* We want to wait for all completions, so ignore the events
* with RX_FLUSH_TO_DRIVER.
*/
if (MCDI_EV_FIELD(eqp, RX_FLUSH_TO_DRIVER) != 0) {
should_abort = B_FALSE;
break;
}
EFX_EV_QSTAT_INCR(eep, EV_DRIVER_RX_DESCQ_FLS_DONE);
EFSYS_PROBE1(rx_descq_fls_done, uint32_t, rxq_index);
EFSYS_ASSERT(eecp->eec_rxq_flush_done != NULL);
should_abort = eecp->eec_rxq_flush_done(arg, rxq_index);
break;
}
default:
EFSYS_PROBE3(bad_event, unsigned int, eep->ee_index,
uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1),
uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0));
break;
}
return (should_abort);
}
void
ef10_ev_rxlabel_init(
__in efx_evq_t *eep,
__in efx_rxq_t *erp,
__in unsigned int label)
{
efx_evq_rxq_state_t *eersp;
EFSYS_ASSERT3U(label, <, EFX_ARRAY_SIZE(eep->ee_rxq_state));
eersp = &eep->ee_rxq_state[label];
EFSYS_ASSERT3U(eersp->eers_rx_mask, ==, 0);
eersp->eers_rx_read_ptr = 0;
eersp->eers_rx_mask = erp->er_mask;
}
void
ef10_ev_rxlabel_fini(
__in efx_evq_t *eep,
__in unsigned int label)
{
efx_evq_rxq_state_t *eersp;
EFSYS_ASSERT3U(label, <, EFX_ARRAY_SIZE(eep->ee_rxq_state));
eersp = &eep->ee_rxq_state[label];
EFSYS_ASSERT3U(eersp->eers_rx_mask, !=, 0);
eersp->eers_rx_read_ptr = 0;
eersp->eers_rx_mask = 0;
}
#endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */