//===-- MCJIT.cpp - MC-based Just-in-Time Compiler ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCJIT.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/ExecutionEngine/JITEventListener.h"
#include "llvm/ExecutionEngine/MCJIT.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Module.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/MutexGuard.h"
using namespace llvm;
namespace {
static struct RegisterJIT {
RegisterJIT() { MCJIT::Register(); }
} JITRegistrator;
}
extern "C" void LLVMLinkInMCJIT() {
}
ExecutionEngine*
MCJIT::createJIT(std::unique_ptr<Module> M,
std::string *ErrorStr,
std::shared_ptr<MCJITMemoryManager> MemMgr,
std::shared_ptr<JITSymbolResolver> Resolver,
std::unique_ptr<TargetMachine> TM) {
// Try to register the program as a source of symbols to resolve against.
//
// FIXME: Don't do this here.
sys::DynamicLibrary::LoadLibraryPermanently(nullptr, nullptr);
if (!MemMgr || !Resolver) {
auto RTDyldMM = std::make_shared<SectionMemoryManager>();
if (!MemMgr)
MemMgr = RTDyldMM;
if (!Resolver)
Resolver = RTDyldMM;
}
return new MCJIT(std::move(M), std::move(TM), std::move(MemMgr),
std::move(Resolver));
}
MCJIT::MCJIT(std::unique_ptr<Module> M, std::unique_ptr<TargetMachine> TM,
std::shared_ptr<MCJITMemoryManager> MemMgr,
std::shared_ptr<JITSymbolResolver> Resolver)
: ExecutionEngine(TM->createDataLayout(), std::move(M)), TM(std::move(TM)),
Ctx(nullptr), MemMgr(std::move(MemMgr)),
Resolver(*this, std::move(Resolver)), Dyld(*this->MemMgr, this->Resolver),
ObjCache(nullptr) {
// FIXME: We are managing our modules, so we do not want the base class
// ExecutionEngine to manage them as well. To avoid double destruction
// of the first (and only) module added in ExecutionEngine constructor
// we remove it from EE and will destruct it ourselves.
//
// It may make sense to move our module manager (based on SmallStPtr) back
// into EE if the JIT and Interpreter can live with it.
// If so, additional functions: addModule, removeModule, FindFunctionNamed,
// runStaticConstructorsDestructors could be moved back to EE as well.
//
std::unique_ptr<Module> First = std::move(Modules[0]);
Modules.clear();
if (First->getDataLayout().isDefault())
First->setDataLayout(getDataLayout());
OwnedModules.addModule(std::move(First));
RegisterJITEventListener(JITEventListener::createGDBRegistrationListener());
}
MCJIT::~MCJIT() {
MutexGuard locked(lock);
Dyld.deregisterEHFrames();
for (auto &Obj : LoadedObjects)
if (Obj)
NotifyFreeingObject(*Obj);
Archives.clear();
}
void MCJIT::addModule(std::unique_ptr<Module> M) {
MutexGuard locked(lock);
if (M->getDataLayout().isDefault())
M->setDataLayout(getDataLayout());
OwnedModules.addModule(std::move(M));
}
bool MCJIT::removeModule(Module *M) {
MutexGuard locked(lock);
return OwnedModules.removeModule(M);
}
void MCJIT::addObjectFile(std::unique_ptr<object::ObjectFile> Obj) {
std::unique_ptr<RuntimeDyld::LoadedObjectInfo> L = Dyld.loadObject(*Obj);
if (Dyld.hasError())
report_fatal_error(Dyld.getErrorString());
NotifyObjectEmitted(*Obj, *L);
LoadedObjects.push_back(std::move(Obj));
}
void MCJIT::addObjectFile(object::OwningBinary<object::ObjectFile> Obj) {
std::unique_ptr<object::ObjectFile> ObjFile;
std::unique_ptr<MemoryBuffer> MemBuf;
std::tie(ObjFile, MemBuf) = Obj.takeBinary();
addObjectFile(std::move(ObjFile));
Buffers.push_back(std::move(MemBuf));
}
void MCJIT::addArchive(object::OwningBinary<object::Archive> A) {
Archives.push_back(std::move(A));
}
void MCJIT::setObjectCache(ObjectCache* NewCache) {
MutexGuard locked(lock);
ObjCache = NewCache;
}
std::unique_ptr<MemoryBuffer> MCJIT::emitObject(Module *M) {
MutexGuard locked(lock);
// This must be a module which has already been added but not loaded to this
// MCJIT instance, since these conditions are tested by our caller,
// generateCodeForModule.
legacy::PassManager PM;
// The RuntimeDyld will take ownership of this shortly
SmallVector<char, 4096> ObjBufferSV;
raw_svector_ostream ObjStream(ObjBufferSV);
// Turn the machine code intermediate representation into bytes in memory
// that may be executed.
if (TM->addPassesToEmitMC(PM, Ctx, ObjStream, !getVerifyModules()))
report_fatal_error("Target does not support MC emission!");
// Initialize passes.
PM.run(*M);
// Flush the output buffer to get the generated code into memory
std::unique_ptr<MemoryBuffer> CompiledObjBuffer(
new ObjectMemoryBuffer(std::move(ObjBufferSV)));
// If we have an object cache, tell it about the new object.
// Note that we're using the compiled image, not the loaded image (as below).
if (ObjCache) {
// MemoryBuffer is a thin wrapper around the actual memory, so it's OK
// to create a temporary object here and delete it after the call.
MemoryBufferRef MB = CompiledObjBuffer->getMemBufferRef();
ObjCache->notifyObjectCompiled(M, MB);
}
return CompiledObjBuffer;
}
void MCJIT::generateCodeForModule(Module *M) {
// Get a thread lock to make sure we aren't trying to load multiple times
MutexGuard locked(lock);
// This must be a module which has already been added to this MCJIT instance.
assert(OwnedModules.ownsModule(M) &&
"MCJIT::generateCodeForModule: Unknown module.");
// Re-compilation is not supported
if (OwnedModules.hasModuleBeenLoaded(M))
return;
std::unique_ptr<MemoryBuffer> ObjectToLoad;
// Try to load the pre-compiled object from cache if possible
if (ObjCache)
ObjectToLoad = ObjCache->getObject(M);
assert(M->getDataLayout() == getDataLayout() && "DataLayout Mismatch");
// If the cache did not contain a suitable object, compile the object
if (!ObjectToLoad) {
ObjectToLoad = emitObject(M);
assert(ObjectToLoad && "Compilation did not produce an object.");
}
// Load the object into the dynamic linker.
// MCJIT now owns the ObjectImage pointer (via its LoadedObjects list).
Expected<std::unique_ptr<object::ObjectFile>> LoadedObject =
object::ObjectFile::createObjectFile(ObjectToLoad->getMemBufferRef());
if (!LoadedObject) {
std::string Buf;
raw_string_ostream OS(Buf);
logAllUnhandledErrors(LoadedObject.takeError(), OS, "");
OS.flush();
report_fatal_error(Buf);
}
std::unique_ptr<RuntimeDyld::LoadedObjectInfo> L =
Dyld.loadObject(*LoadedObject.get());
if (Dyld.hasError())
report_fatal_error(Dyld.getErrorString());
NotifyObjectEmitted(*LoadedObject.get(), *L);
Buffers.push_back(std::move(ObjectToLoad));
LoadedObjects.push_back(std::move(*LoadedObject));
OwnedModules.markModuleAsLoaded(M);
}
void MCJIT::finalizeLoadedModules() {
MutexGuard locked(lock);
// Resolve any outstanding relocations.
Dyld.resolveRelocations();
OwnedModules.markAllLoadedModulesAsFinalized();
// Register EH frame data for any module we own which has been loaded
Dyld.registerEHFrames();
// Set page permissions.
MemMgr->finalizeMemory();
}
// FIXME: Rename this.
void MCJIT::finalizeObject() {
MutexGuard locked(lock);
// Generate code for module is going to move objects out of the 'added' list,
// so we need to copy that out before using it:
SmallVector<Module*, 16> ModsToAdd;
for (auto M : OwnedModules.added())
ModsToAdd.push_back(M);
for (auto M : ModsToAdd)
generateCodeForModule(M);
finalizeLoadedModules();
}
void MCJIT::finalizeModule(Module *M) {
MutexGuard locked(lock);
// This must be a module which has already been added to this MCJIT instance.
assert(OwnedModules.ownsModule(M) && "MCJIT::finalizeModule: Unknown module.");
// If the module hasn't been compiled, just do that.
if (!OwnedModules.hasModuleBeenLoaded(M))
generateCodeForModule(M);
finalizeLoadedModules();
}
JITSymbol MCJIT::findExistingSymbol(const std::string &Name) {
if (void *Addr = getPointerToGlobalIfAvailable(Name))
return JITSymbol(static_cast<uint64_t>(
reinterpret_cast<uintptr_t>(Addr)),
JITSymbolFlags::Exported);
return Dyld.getSymbol(Name);
}
Module *MCJIT::findModuleForSymbol(const std::string &Name,
bool CheckFunctionsOnly) {
StringRef DemangledName = Name;
if (DemangledName[0] == getDataLayout().getGlobalPrefix())
DemangledName = DemangledName.substr(1);
MutexGuard locked(lock);
// If it hasn't already been generated, see if it's in one of our modules.
for (ModulePtrSet::iterator I = OwnedModules.begin_added(),
E = OwnedModules.end_added();
I != E; ++I) {
Module *M = *I;
Function *F = M->getFunction(DemangledName);
if (F && !F->isDeclaration())
return M;
if (!CheckFunctionsOnly) {
GlobalVariable *G = M->getGlobalVariable(DemangledName);
if (G && !G->isDeclaration())
return M;
// FIXME: Do we need to worry about global aliases?
}
}
// We didn't find the symbol in any of our modules.
return nullptr;
}
uint64_t MCJIT::getSymbolAddress(const std::string &Name,
bool CheckFunctionsOnly) {
std::string MangledName;
{
raw_string_ostream MangledNameStream(MangledName);
Mangler::getNameWithPrefix(MangledNameStream, Name, getDataLayout());
}
if (auto Sym = findSymbol(MangledName, CheckFunctionsOnly)) {
if (auto AddrOrErr = Sym.getAddress())
return *AddrOrErr;
else
report_fatal_error(AddrOrErr.takeError());
} else
report_fatal_error(Sym.takeError());
}
JITSymbol MCJIT::findSymbol(const std::string &Name,
bool CheckFunctionsOnly) {
MutexGuard locked(lock);
// First, check to see if we already have this symbol.
if (auto Sym = findExistingSymbol(Name))
return Sym;
for (object::OwningBinary<object::Archive> &OB : Archives) {
object::Archive *A = OB.getBinary();
// Look for our symbols in each Archive
auto OptionalChildOrErr = A->findSym(Name);
if (!OptionalChildOrErr)
report_fatal_error(OptionalChildOrErr.takeError());
auto &OptionalChild = *OptionalChildOrErr;
if (OptionalChild) {
// FIXME: Support nested archives?
Expected<std::unique_ptr<object::Binary>> ChildBinOrErr =
OptionalChild->getAsBinary();
if (!ChildBinOrErr) {
// TODO: Actually report errors helpfully.
consumeError(ChildBinOrErr.takeError());
continue;
}
std::unique_ptr<object::Binary> &ChildBin = ChildBinOrErr.get();
if (ChildBin->isObject()) {
std::unique_ptr<object::ObjectFile> OF(
static_cast<object::ObjectFile *>(ChildBin.release()));
// This causes the object file to be loaded.
addObjectFile(std::move(OF));
// The address should be here now.
if (auto Sym = findExistingSymbol(Name))
return Sym;
}
}
}
// If it hasn't already been generated, see if it's in one of our modules.
Module *M = findModuleForSymbol(Name, CheckFunctionsOnly);
if (M) {
generateCodeForModule(M);
// Check the RuntimeDyld table again, it should be there now.
return findExistingSymbol(Name);
}
// If a LazyFunctionCreator is installed, use it to get/create the function.
// FIXME: Should we instead have a LazySymbolCreator callback?
if (LazyFunctionCreator) {
auto Addr = static_cast<uint64_t>(
reinterpret_cast<uintptr_t>(LazyFunctionCreator(Name)));
return JITSymbol(Addr, JITSymbolFlags::Exported);
}
return nullptr;
}
uint64_t MCJIT::getGlobalValueAddress(const std::string &Name) {
MutexGuard locked(lock);
uint64_t Result = getSymbolAddress(Name, false);
if (Result != 0)
finalizeLoadedModules();
return Result;
}
uint64_t MCJIT::getFunctionAddress(const std::string &Name) {
MutexGuard locked(lock);
uint64_t Result = getSymbolAddress(Name, true);
if (Result != 0)
finalizeLoadedModules();
return Result;
}
// Deprecated. Use getFunctionAddress instead.
void *MCJIT::getPointerToFunction(Function *F) {
MutexGuard locked(lock);
Mangler Mang;
SmallString<128> Name;
TM->getNameWithPrefix(Name, F, Mang);
if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
bool AbortOnFailure = !F->hasExternalWeakLinkage();
void *Addr = getPointerToNamedFunction(Name, AbortOnFailure);
updateGlobalMapping(F, Addr);
return Addr;
}
Module *M = F->getParent();
bool HasBeenAddedButNotLoaded = OwnedModules.hasModuleBeenAddedButNotLoaded(M);
// Make sure the relevant module has been compiled and loaded.
if (HasBeenAddedButNotLoaded)
generateCodeForModule(M);
else if (!OwnedModules.hasModuleBeenLoaded(M)) {
// If this function doesn't belong to one of our modules, we're done.
// FIXME: Asking for the pointer to a function that hasn't been registered,
// and isn't a declaration (which is handled above) should probably
// be an assertion.
return nullptr;
}
// FIXME: Should the Dyld be retaining module information? Probably not.
//
// This is the accessor for the target address, so make sure to check the
// load address of the symbol, not the local address.
return (void*)Dyld.getSymbol(Name).getAddress();
}
void MCJIT::runStaticConstructorsDestructorsInModulePtrSet(
bool isDtors, ModulePtrSet::iterator I, ModulePtrSet::iterator E) {
for (; I != E; ++I) {
ExecutionEngine::runStaticConstructorsDestructors(**I, isDtors);
}
}
void MCJIT::runStaticConstructorsDestructors(bool isDtors) {
// Execute global ctors/dtors for each module in the program.
runStaticConstructorsDestructorsInModulePtrSet(
isDtors, OwnedModules.begin_added(), OwnedModules.end_added());
runStaticConstructorsDestructorsInModulePtrSet(
isDtors, OwnedModules.begin_loaded(), OwnedModules.end_loaded());
runStaticConstructorsDestructorsInModulePtrSet(
isDtors, OwnedModules.begin_finalized(), OwnedModules.end_finalized());
}
Function *MCJIT::FindFunctionNamedInModulePtrSet(StringRef FnName,
ModulePtrSet::iterator I,
ModulePtrSet::iterator E) {
for (; I != E; ++I) {
Function *F = (*I)->getFunction(FnName);
if (F && !F->isDeclaration())
return F;
}
return nullptr;
}
GlobalVariable *MCJIT::FindGlobalVariableNamedInModulePtrSet(StringRef Name,
bool AllowInternal,
ModulePtrSet::iterator I,
ModulePtrSet::iterator E) {
for (; I != E; ++I) {
GlobalVariable *GV = (*I)->getGlobalVariable(Name, AllowInternal);
if (GV && !GV->isDeclaration())
return GV;
}
return nullptr;
}
Function *MCJIT::FindFunctionNamed(StringRef FnName) {
Function *F = FindFunctionNamedInModulePtrSet(
FnName, OwnedModules.begin_added(), OwnedModules.end_added());
if (!F)
F = FindFunctionNamedInModulePtrSet(FnName, OwnedModules.begin_loaded(),
OwnedModules.end_loaded());
if (!F)
F = FindFunctionNamedInModulePtrSet(FnName, OwnedModules.begin_finalized(),
OwnedModules.end_finalized());
return F;
}
GlobalVariable *MCJIT::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) {
GlobalVariable *GV = FindGlobalVariableNamedInModulePtrSet(
Name, AllowInternal, OwnedModules.begin_added(), OwnedModules.end_added());
if (!GV)
GV = FindGlobalVariableNamedInModulePtrSet(Name, AllowInternal, OwnedModules.begin_loaded(),
OwnedModules.end_loaded());
if (!GV)
GV = FindGlobalVariableNamedInModulePtrSet(Name, AllowInternal, OwnedModules.begin_finalized(),
OwnedModules.end_finalized());
return GV;
}
GenericValue MCJIT::runFunction(Function *F, ArrayRef<GenericValue> ArgValues) {
assert(F && "Function *F was null at entry to run()");
void *FPtr = getPointerToFunction(F);
finalizeModule(F->getParent());
assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
FunctionType *FTy = F->getFunctionType();
Type *RetTy = FTy->getReturnType();
assert((FTy->getNumParams() == ArgValues.size() ||
(FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
"Wrong number of arguments passed into function!");
assert(FTy->getNumParams() == ArgValues.size() &&
"This doesn't support passing arguments through varargs (yet)!");
// Handle some common cases first. These cases correspond to common `main'
// prototypes.
if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
switch (ArgValues.size()) {
case 3:
if (FTy->getParamType(0)->isIntegerTy(32) &&
FTy->getParamType(1)->isPointerTy() &&
FTy->getParamType(2)->isPointerTy()) {
int (*PF)(int, char **, const char **) =
(int(*)(int, char **, const char **))(intptr_t)FPtr;
// Call the function.
GenericValue rv;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
(char **)GVTOP(ArgValues[1]),
(const char **)GVTOP(ArgValues[2])));
return rv;
}
break;
case 2:
if (FTy->getParamType(0)->isIntegerTy(32) &&
FTy->getParamType(1)->isPointerTy()) {
int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
// Call the function.
GenericValue rv;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
(char **)GVTOP(ArgValues[1])));
return rv;
}
break;
case 1:
if (FTy->getNumParams() == 1 &&
FTy->getParamType(0)->isIntegerTy(32)) {
GenericValue rv;
int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
return rv;
}
break;
}
}
// Handle cases where no arguments are passed first.
if (ArgValues.empty()) {
GenericValue rv;
switch (RetTy->getTypeID()) {
default: llvm_unreachable("Unknown return type for function call!");
case Type::IntegerTyID: {
unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
if (BitWidth == 1)
rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
else if (BitWidth <= 8)
rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
else if (BitWidth <= 16)
rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
else if (BitWidth <= 32)
rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
else if (BitWidth <= 64)
rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
else
llvm_unreachable("Integer types > 64 bits not supported");
return rv;
}
case Type::VoidTyID:
rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
return rv;
case Type::FloatTyID:
rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
return rv;
case Type::DoubleTyID:
rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
return rv;
case Type::X86_FP80TyID:
case Type::FP128TyID:
case Type::PPC_FP128TyID:
llvm_unreachable("long double not supported yet");
case Type::PointerTyID:
return PTOGV(((void*(*)())(intptr_t)FPtr)());
}
}
report_fatal_error("MCJIT::runFunction does not support full-featured "
"argument passing. Please use "
"ExecutionEngine::getFunctionAddress and cast the result "
"to the desired function pointer type.");
}
void *MCJIT::getPointerToNamedFunction(StringRef Name, bool AbortOnFailure) {
if (!isSymbolSearchingDisabled()) {
if (auto Sym = Resolver.findSymbol(Name)) {
if (auto AddrOrErr = Sym.getAddress())
return reinterpret_cast<void*>(
static_cast<uintptr_t>(*AddrOrErr));
} else if (auto Err = Sym.takeError())
report_fatal_error(std::move(Err));
}
/// If a LazyFunctionCreator is installed, use it to get/create the function.
if (LazyFunctionCreator)
if (void *RP = LazyFunctionCreator(Name))
return RP;
if (AbortOnFailure) {
report_fatal_error("Program used external function '"+Name+
"' which could not be resolved!");
}
return nullptr;
}
void MCJIT::RegisterJITEventListener(JITEventListener *L) {
if (!L)
return;
MutexGuard locked(lock);
EventListeners.push_back(L);
}
void MCJIT::UnregisterJITEventListener(JITEventListener *L) {
if (!L)
return;
MutexGuard locked(lock);
auto I = find(reverse(EventListeners), L);
if (I != EventListeners.rend()) {
std::swap(*I, EventListeners.back());
EventListeners.pop_back();
}
}
void MCJIT::NotifyObjectEmitted(const object::ObjectFile& Obj,
const RuntimeDyld::LoadedObjectInfo &L) {
MutexGuard locked(lock);
MemMgr->notifyObjectLoaded(this, Obj);
for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
EventListeners[I]->NotifyObjectEmitted(Obj, L);
}
}
void MCJIT::NotifyFreeingObject(const object::ObjectFile& Obj) {
MutexGuard locked(lock);
for (JITEventListener *L : EventListeners)
L->NotifyFreeingObject(Obj);
}
JITSymbol
LinkingSymbolResolver::findSymbol(const std::string &Name) {
auto Result = ParentEngine.findSymbol(Name, false);
if (Result)
return Result;
if (ParentEngine.isSymbolSearchingDisabled())
return nullptr;
return ClientResolver->findSymbol(Name);
}