Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
//===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements hazard recognizers for scheduling on GCN processors.
//
//===----------------------------------------------------------------------===//

#include "GCNHazardRecognizer.h"
#include "AMDGPUSubtarget.h"
#include "SIDefines.h"
#include "SIInstrInfo.h"
#include "SIRegisterInfo.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>
#include <limits>
#include <set>
#include <vector>

using namespace llvm;

//===----------------------------------------------------------------------===//
// Hazard Recoginizer Implementation
//===----------------------------------------------------------------------===//

GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) :
  CurrCycleInstr(nullptr),
  MF(MF),
  ST(MF.getSubtarget<SISubtarget>()),
  TII(*ST.getInstrInfo()),
  TRI(TII.getRegisterInfo()),
  ClauseUses(TRI.getNumRegUnits()),
  ClauseDefs(TRI.getNumRegUnits()) {
  MaxLookAhead = 5;
}

void GCNHazardRecognizer::EmitInstruction(SUnit *SU) {
  EmitInstruction(SU->getInstr());
}

void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) {
  CurrCycleInstr = MI;
}

static bool isDivFMas(unsigned Opcode) {
  return Opcode == AMDGPU::V_DIV_FMAS_F32 || Opcode == AMDGPU::V_DIV_FMAS_F64;
}

static bool isSGetReg(unsigned Opcode) {
  return Opcode == AMDGPU::S_GETREG_B32;
}

static bool isSSetReg(unsigned Opcode) {
  return Opcode == AMDGPU::S_SETREG_B32 || Opcode == AMDGPU::S_SETREG_IMM32_B32;
}

static bool isRWLane(unsigned Opcode) {
  return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32;
}

static bool isRFE(unsigned Opcode) {
  return Opcode == AMDGPU::S_RFE_B64;
}

static bool isSMovRel(unsigned Opcode) {
  switch (Opcode) {
  case AMDGPU::S_MOVRELS_B32:
  case AMDGPU::S_MOVRELS_B64:
  case AMDGPU::S_MOVRELD_B32:
  case AMDGPU::S_MOVRELD_B64:
    return true;
  default:
    return false;
  }
}

static bool isSendMsgTraceDataOrGDS(const MachineInstr &MI) {
  switch (MI.getOpcode()) {
  case AMDGPU::S_SENDMSG:
  case AMDGPU::S_SENDMSGHALT:
  case AMDGPU::S_TTRACEDATA:
    return true;
  default:
    // TODO: GDS
    return false;
  }
}

static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) {
  const MachineOperand *RegOp = TII->getNamedOperand(RegInstr,
                                                     AMDGPU::OpName::simm16);
  return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_;
}

ScheduleHazardRecognizer::HazardType
GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
  MachineInstr *MI = SU->getInstr();

  if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0)
    return NoopHazard;

  // FIXME: Should flat be considered vmem?
  if ((SIInstrInfo::isVMEM(*MI) ||
       SIInstrInfo::isFLAT(*MI))
      && checkVMEMHazards(MI) > 0)
    return NoopHazard;

  if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0)
    return NoopHazard;

  if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0)
    return NoopHazard;

  if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0)
    return NoopHazard;

  if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0)
    return NoopHazard;

  if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0)
    return NoopHazard;

  if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0)
    return NoopHazard;

  if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0)
    return NoopHazard;

  if (ST.hasReadM0MovRelInterpHazard() &&
      (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode())) &&
      checkReadM0Hazards(MI) > 0)
    return NoopHazard;

  if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(*MI) &&
      checkReadM0Hazards(MI) > 0)
    return NoopHazard;

  if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0)
    return NoopHazard;

  if (checkAnyInstHazards(MI) > 0)
    return NoopHazard;

  return NoHazard;
}

unsigned GCNHazardRecognizer::PreEmitNoops(SUnit *SU) {
  return PreEmitNoops(SU->getInstr());
}

unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) {
  int WaitStates = std::max(0, checkAnyInstHazards(MI));

  if (SIInstrInfo::isSMRD(*MI))
    return std::max(WaitStates, checkSMRDHazards(MI));

  if (SIInstrInfo::isVALU(*MI))
    WaitStates = std::max(WaitStates, checkVALUHazards(MI));

  if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI))
    WaitStates = std::max(WaitStates, checkVMEMHazards(MI));

  if (SIInstrInfo::isDPP(*MI))
    WaitStates = std::max(WaitStates, checkDPPHazards(MI));

  if (isDivFMas(MI->getOpcode()))
    WaitStates = std::max(WaitStates, checkDivFMasHazards(MI));

  if (isRWLane(MI->getOpcode()))
    WaitStates = std::max(WaitStates, checkRWLaneHazards(MI));

  if (MI->isInlineAsm())
    return std::max(WaitStates, checkInlineAsmHazards(MI));

  if (isSGetReg(MI->getOpcode()))
    return std::max(WaitStates, checkGetRegHazards(MI));

  if (isSSetReg(MI->getOpcode()))
    return std::max(WaitStates, checkSetRegHazards(MI));

  if (isRFE(MI->getOpcode()))
    return std::max(WaitStates, checkRFEHazards(MI));

  if (ST.hasReadM0MovRelInterpHazard() && (TII.isVINTRP(*MI) ||
                                           isSMovRel(MI->getOpcode())))
    return std::max(WaitStates, checkReadM0Hazards(MI));

  if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(*MI))
    return std::max(WaitStates, checkReadM0Hazards(MI));

  return WaitStates;
}

void GCNHazardRecognizer::EmitNoop() {
  EmittedInstrs.push_front(nullptr);
}

void GCNHazardRecognizer::AdvanceCycle() {
  // When the scheduler detects a stall, it will call AdvanceCycle() without
  // emitting any instructions.
  if (!CurrCycleInstr)
    return;

  unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr);

  // Keep track of emitted instructions
  EmittedInstrs.push_front(CurrCycleInstr);

  // Add a nullptr for each additional wait state after the first.  Make sure
  // not to add more than getMaxLookAhead() items to the list, since we
  // truncate the list to that size right after this loop.
  for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead());
       i < e; ++i) {
    EmittedInstrs.push_front(nullptr);
  }

  // getMaxLookahead() is the largest number of wait states we will ever need
  // to insert, so there is no point in keeping track of more than that many
  // wait states.
  EmittedInstrs.resize(getMaxLookAhead());

  CurrCycleInstr = nullptr;
}

void GCNHazardRecognizer::RecedeCycle() {
  llvm_unreachable("hazard recognizer does not support bottom-up scheduling.");
}

//===----------------------------------------------------------------------===//
// Helper Functions
//===----------------------------------------------------------------------===//

int GCNHazardRecognizer::getWaitStatesSince(
    function_ref<bool(MachineInstr *)> IsHazard) {
  int WaitStates = 0;
  for (MachineInstr *MI : EmittedInstrs) {
    if (MI) {
      if (IsHazard(MI))
        return WaitStates;

      unsigned Opcode = MI->getOpcode();
      if (Opcode == AMDGPU::DBG_VALUE || Opcode == AMDGPU::IMPLICIT_DEF ||
          Opcode == AMDGPU::INLINEASM)
        continue;
    }
    ++WaitStates;
  }
  return std::numeric_limits<int>::max();
}

int GCNHazardRecognizer::getWaitStatesSinceDef(
    unsigned Reg, function_ref<bool(MachineInstr *)> IsHazardDef) {
  const SIRegisterInfo *TRI = ST.getRegisterInfo();

  auto IsHazardFn = [IsHazardDef, TRI, Reg] (MachineInstr *MI) {
    return IsHazardDef(MI) && MI->modifiesRegister(Reg, TRI);
  };

  return getWaitStatesSince(IsHazardFn);
}

int GCNHazardRecognizer::getWaitStatesSinceSetReg(
    function_ref<bool(MachineInstr *)> IsHazard) {
  auto IsHazardFn = [IsHazard] (MachineInstr *MI) {
    return isSSetReg(MI->getOpcode()) && IsHazard(MI);
  };

  return getWaitStatesSince(IsHazardFn);
}

//===----------------------------------------------------------------------===//
// No-op Hazard Detection
//===----------------------------------------------------------------------===//

static void addRegUnits(const SIRegisterInfo &TRI,
                        BitVector &BV, unsigned Reg) {
  for (MCRegUnitIterator RUI(Reg, &TRI); RUI.isValid(); ++RUI)
    BV.set(*RUI);
}

static void addRegsToSet(const SIRegisterInfo &TRI,
                         iterator_range<MachineInstr::const_mop_iterator> Ops,
                         BitVector &Set) {
  for (const MachineOperand &Op : Ops) {
    if (Op.isReg())
      addRegUnits(TRI, Set, Op.getReg());
  }
}

void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) {
  // XXX: Do we need to worry about implicit operands
  addRegsToSet(TRI, MI.defs(), ClauseDefs);
  addRegsToSet(TRI, MI.uses(), ClauseUses);
}

int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) {
  // SMEM soft clause are only present on VI+, and only matter if xnack is
  // enabled.
  if (!ST.isXNACKEnabled())
    return 0;

  bool IsSMRD = TII.isSMRD(*MEM);

  resetClause();

  // A soft-clause is any group of consecutive SMEM instructions.  The
  // instructions in this group may return out of order and/or may be
  // replayed (i.e. the same instruction issued more than once).
  //
  // In order to handle these situations correctly we need to make sure
  // that when a clause has more than one instruction, no instruction in the
  // clause writes to a register that is read another instruction in the clause
  // (including itself). If we encounter this situaion, we need to break the
  // clause by inserting a non SMEM instruction.

  for (MachineInstr *MI : EmittedInstrs) {
    // When we hit a non-SMEM instruction then we have passed the start of the
    // clause and we can stop.
    if (!MI)
      break;

    if (IsSMRD != SIInstrInfo::isSMRD(*MI))
      break;

    addClauseInst(*MI);
  }

  if (ClauseDefs.none())
    return 0;

  // We need to make sure not to put loads and stores in the same clause if they
  // use the same address. For now, just start a new clause whenever we see a
  // store.
  if (MEM->mayStore())
    return 1;

  addClauseInst(*MEM);

  // If the set of defs and uses intersect then we cannot add this instruction
  // to the clause, so we have a hazard.
  return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0;
}

int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) {
  const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
  int WaitStatesNeeded = 0;

  WaitStatesNeeded = checkSoftClauseHazards(SMRD);

  // This SMRD hazard only affects SI.
  if (ST.getGeneration() != SISubtarget::SOUTHERN_ISLANDS)
    return WaitStatesNeeded;

  // A read of an SGPR by SMRD instruction requires 4 wait states when the
  // SGPR was written by a VALU instruction.
  int SmrdSgprWaitStates = 4;
  auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); };
  auto IsBufferHazardDefFn = [this] (MachineInstr *MI) { return TII.isSALU(*MI); };

  bool IsBufferSMRD = TII.isBufferSMRD(*SMRD);

  for (const MachineOperand &Use : SMRD->uses()) {
    if (!Use.isReg())
      continue;
    int WaitStatesNeededForUse =
        SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn);
    WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);

    // This fixes what appears to be undocumented hardware behavior in SI where
    // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor
    // needs some number of nops in between. We don't know how many we need, but
    // let's use 4. This wasn't discovered before probably because the only
    // case when this happens is when we expand a 64-bit pointer into a full
    // descriptor and use s_buffer_load_dword instead of s_load_dword, which was
    // probably never encountered in the closed-source land.
    if (IsBufferSMRD) {
      int WaitStatesNeededForUse =
        SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(),
                                                   IsBufferHazardDefFn);
      WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
    }
  }

  return WaitStatesNeeded;
}

int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) {
  if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
    return 0;

  int WaitStatesNeeded = checkSoftClauseHazards(VMEM);

  // A read of an SGPR by a VMEM instruction requires 5 wait states when the
  // SGPR was written by a VALU Instruction.
  const int VmemSgprWaitStates = 5;
  auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); };

  for (const MachineOperand &Use : VMEM->uses()) {
    if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
      continue;

    int WaitStatesNeededForUse =
        VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn);
    WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
  }
  return WaitStatesNeeded;
}

int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) {
  const SIRegisterInfo *TRI = ST.getRegisterInfo();
  const SIInstrInfo *TII = ST.getInstrInfo();

  // Check for DPP VGPR read after VALU VGPR write and EXEC write.
  int DppVgprWaitStates = 2;
  int DppExecWaitStates = 5;
  int WaitStatesNeeded = 0;
  auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };

  for (const MachineOperand &Use : DPP->uses()) {
    if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
      continue;
    int WaitStatesNeededForUse =
        DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg());
    WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
  }

  WaitStatesNeeded = std::max(
      WaitStatesNeeded,
      DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn));

  return WaitStatesNeeded;
}

int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) {
  const SIInstrInfo *TII = ST.getInstrInfo();

  // v_div_fmas requires 4 wait states after a write to vcc from a VALU
  // instruction.
  const int DivFMasWaitStates = 4;
  auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
  int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn);

  return DivFMasWaitStates - WaitStatesNeeded;
}

int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) {
  const SIInstrInfo *TII = ST.getInstrInfo();
  unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr);

  const int GetRegWaitStates = 2;
  auto IsHazardFn = [TII, GetRegHWReg] (MachineInstr *MI) {
    return GetRegHWReg == getHWReg(TII, *MI);
  };
  int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn);

  return GetRegWaitStates - WaitStatesNeeded;
}

int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) {
  const SIInstrInfo *TII = ST.getInstrInfo();
  unsigned HWReg = getHWReg(TII, *SetRegInstr);

  const int SetRegWaitStates =
      ST.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS ? 1 : 2;
  auto IsHazardFn = [TII, HWReg] (MachineInstr *MI) {
    return HWReg == getHWReg(TII, *MI);
  };
  int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn);
  return SetRegWaitStates - WaitStatesNeeded;
}

int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) {
  if (!MI.mayStore())
    return -1;

  const SIInstrInfo *TII = ST.getInstrInfo();
  unsigned Opcode = MI.getOpcode();
  const MCInstrDesc &Desc = MI.getDesc();

  int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
  int VDataRCID = -1;
  if (VDataIdx != -1)
    VDataRCID = Desc.OpInfo[VDataIdx].RegClass;

  if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) {
    // There is no hazard if the instruction does not use vector regs
    // (like wbinvl1)
    if (VDataIdx == -1)
      return -1;
    // For MUBUF/MTBUF instructions this hazard only exists if the
    // instruction is not using a register in the soffset field.
    const MachineOperand *SOffset =
        TII->getNamedOperand(MI, AMDGPU::OpName::soffset);
    // If we have no soffset operand, then assume this field has been
    // hardcoded to zero.
    if (AMDGPU::getRegBitWidth(VDataRCID) > 64 &&
        (!SOffset || !SOffset->isReg()))
      return VDataIdx;
  }

  // MIMG instructions create a hazard if they don't use a 256-bit T# and
  // the store size is greater than 8 bytes and they have more than two bits
  // of their dmask set.
  // All our MIMG definitions use a 256-bit T#, so we can skip checking for them.
  if (TII->isMIMG(MI)) {
    int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc);
    assert(SRsrcIdx != -1 &&
           AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256);
    (void)SRsrcIdx;
  }

  if (TII->isFLAT(MI)) {
    int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
    if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64)
      return DataIdx;
  }

  return -1;
}

int GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def,
						const MachineRegisterInfo &MRI) {
  // Helper to check for the hazard where VMEM instructions that store more than
  // 8 bytes can have there store data over written by the next instruction.
  const SIRegisterInfo *TRI = ST.getRegisterInfo();

  const int VALUWaitStates = 1;
  int WaitStatesNeeded = 0;

  if (!TRI->isVGPR(MRI, Def.getReg()))
    return WaitStatesNeeded;
  unsigned Reg = Def.getReg();
  auto IsHazardFn = [this, Reg, TRI] (MachineInstr *MI) {
    int DataIdx = createsVALUHazard(*MI);
    return DataIdx >= 0 &&
    TRI->regsOverlap(MI->getOperand(DataIdx).getReg(), Reg);
  };
  int WaitStatesNeededForDef =
    VALUWaitStates - getWaitStatesSince(IsHazardFn);
  WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);

  return WaitStatesNeeded;
}

int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) {
  // This checks for the hazard where VMEM instructions that store more than
  // 8 bytes can have there store data over written by the next instruction.
  if (!ST.has12DWordStoreHazard())
    return 0;

  const MachineRegisterInfo &MRI = MF.getRegInfo();
  int WaitStatesNeeded = 0;

  for (const MachineOperand &Def : VALU->defs()) {
    WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI));
  }

  return WaitStatesNeeded;
}

int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) {
  // This checks for hazards associated with inline asm statements.
  // Since inline asms can contain just about anything, we use this
  // to call/leverage other check*Hazard routines. Note that
  // this function doesn't attempt to address all possible inline asm
  // hazards (good luck), but is a collection of what has been
  // problematic thus far.

  // see checkVALUHazards()
  if (!ST.has12DWordStoreHazard())
    return 0;

  const MachineRegisterInfo &MRI = MF.getRegInfo();
  int WaitStatesNeeded = 0;

  for (unsigned I = InlineAsm::MIOp_FirstOperand, E = IA->getNumOperands();
       I != E; ++I) {
    const MachineOperand &Op = IA->getOperand(I);
    if (Op.isReg() && Op.isDef()) {
      WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI));
    }
  }

  return WaitStatesNeeded;
}

int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) {
  const SIInstrInfo *TII = ST.getInstrInfo();
  const SIRegisterInfo *TRI = ST.getRegisterInfo();
  const MachineRegisterInfo &MRI = MF.getRegInfo();

  const MachineOperand *LaneSelectOp =
      TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1);

  if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg()))
    return 0;

  unsigned LaneSelectReg = LaneSelectOp->getReg();
  auto IsHazardFn = [TII] (MachineInstr *MI) {
    return TII->isVALU(*MI);
  };

  const int RWLaneWaitStates = 4;
  int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn);
  return RWLaneWaitStates - WaitStatesSince;
}

int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) {
  if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
    return 0;

  const SIInstrInfo *TII = ST.getInstrInfo();

  const int RFEWaitStates = 1;

  auto IsHazardFn = [TII] (MachineInstr *MI) {
    return getHWReg(TII, *MI) == AMDGPU::Hwreg::ID_TRAPSTS;
  };
  int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn);
  return RFEWaitStates - WaitStatesNeeded;
}

int GCNHazardRecognizer::checkAnyInstHazards(MachineInstr *MI) {
  if (MI->isDebugValue())
    return 0;

  const SIRegisterInfo *TRI = ST.getRegisterInfo();
  if (!ST.hasSMovFedHazard())
    return 0;

  // Check for any instruction reading an SGPR after a write from
  // s_mov_fed_b32.
  int MovFedWaitStates = 1;
  int WaitStatesNeeded = 0;

  for (const MachineOperand &Use : MI->uses()) {
    if (!Use.isReg() || TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
      continue;
    auto IsHazardFn = [] (MachineInstr *MI) {
      return MI->getOpcode() == AMDGPU::S_MOV_FED_B32;
    };
    int WaitStatesNeededForUse =
        MovFedWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardFn);
    WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
  }

  return WaitStatesNeeded;
}

int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) {
  const SIInstrInfo *TII = ST.getInstrInfo();
  const int SMovRelWaitStates = 1;
  auto IsHazardFn = [TII] (MachineInstr *MI) {
    return TII->isSALU(*MI);
  };
  return SMovRelWaitStates - getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn);
}