Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
//===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
/// \file
//===----------------------------------------------------------------------===//
//

#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"

#define DEBUG_TYPE "si-fold-operands"
using namespace llvm;

namespace {

struct FoldCandidate {
  MachineInstr *UseMI;
  union {
    MachineOperand *OpToFold;
    uint64_t ImmToFold;
    int FrameIndexToFold;
  };
  unsigned char UseOpNo;
  MachineOperand::MachineOperandType Kind;
  bool Commuted;

  FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp,
                bool Commuted_ = false) :
    UseMI(MI), OpToFold(nullptr), UseOpNo(OpNo), Kind(FoldOp->getType()),
    Commuted(Commuted_) {
    if (FoldOp->isImm()) {
      ImmToFold = FoldOp->getImm();
    } else if (FoldOp->isFI()) {
      FrameIndexToFold = FoldOp->getIndex();
    } else {
      assert(FoldOp->isReg());
      OpToFold = FoldOp;
    }
  }

  bool isFI() const {
    return Kind == MachineOperand::MO_FrameIndex;
  }

  bool isImm() const {
    return Kind == MachineOperand::MO_Immediate;
  }

  bool isReg() const {
    return Kind == MachineOperand::MO_Register;
  }

  bool isCommuted() const {
    return Commuted;
  }
};

class SIFoldOperands : public MachineFunctionPass {
public:
  static char ID;
  MachineRegisterInfo *MRI;
  const SIInstrInfo *TII;
  const SIRegisterInfo *TRI;
  const SISubtarget *ST;

  void foldOperand(MachineOperand &OpToFold,
                   MachineInstr *UseMI,
                   unsigned UseOpIdx,
                   SmallVectorImpl<FoldCandidate> &FoldList,
                   SmallVectorImpl<MachineInstr *> &CopiesToReplace) const;

  void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const;

  const MachineOperand *isClamp(const MachineInstr &MI) const;
  bool tryFoldClamp(MachineInstr &MI);

  std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const;
  bool tryFoldOMod(MachineInstr &MI);

public:
  SIFoldOperands() : MachineFunctionPass(ID) {
    initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
  }

  bool runOnMachineFunction(MachineFunction &MF) override;

  StringRef getPassName() const override { return "SI Fold Operands"; }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    MachineFunctionPass::getAnalysisUsage(AU);
  }
};

} // End anonymous namespace.

INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE,
                "SI Fold Operands", false, false)

char SIFoldOperands::ID = 0;

char &llvm::SIFoldOperandsID = SIFoldOperands::ID;

// Wrapper around isInlineConstant that understands special cases when
// instruction types are replaced during operand folding.
static bool isInlineConstantIfFolded(const SIInstrInfo *TII,
                                     const MachineInstr &UseMI,
                                     unsigned OpNo,
                                     const MachineOperand &OpToFold) {
  if (TII->isInlineConstant(UseMI, OpNo, OpToFold))
    return true;

  unsigned Opc = UseMI.getOpcode();
  switch (Opc) {
  case AMDGPU::V_MAC_F32_e64:
  case AMDGPU::V_MAC_F16_e64: {
    // Special case for mac. Since this is replaced with mad when folded into
    // src2, we need to check the legality for the final instruction.
    int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
    if (static_cast<int>(OpNo) == Src2Idx) {
      bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64;
      const MCInstrDesc &MadDesc
        = TII->get(IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16);
      return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType);
    }
    return false;
  }
  default:
    return false;
  }
}

FunctionPass *llvm::createSIFoldOperandsPass() {
  return new SIFoldOperands();
}

static bool updateOperand(FoldCandidate &Fold,
                          const TargetRegisterInfo &TRI) {
  MachineInstr *MI = Fold.UseMI;
  MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
  assert(Old.isReg());

  if (Fold.isImm()) {
    Old.ChangeToImmediate(Fold.ImmToFold);
    return true;
  }

  if (Fold.isFI()) {
    Old.ChangeToFrameIndex(Fold.FrameIndexToFold);
    return true;
  }

  MachineOperand *New = Fold.OpToFold;
  if (TargetRegisterInfo::isVirtualRegister(Old.getReg()) &&
      TargetRegisterInfo::isVirtualRegister(New->getReg())) {
    Old.substVirtReg(New->getReg(), New->getSubReg(), TRI);

    Old.setIsUndef(New->isUndef());
    return true;
  }

  // FIXME: Handle physical registers.

  return false;
}

static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,
                              const MachineInstr *MI) {
  for (auto Candidate : FoldList) {
    if (Candidate.UseMI == MI)
      return true;
  }
  return false;
}

static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
                             MachineInstr *MI, unsigned OpNo,
                             MachineOperand *OpToFold,
                             const SIInstrInfo *TII) {
  if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) {

    // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2
    unsigned Opc = MI->getOpcode();
    if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64) &&
        (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) {
      bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64;

      // Check if changing this to a v_mad_{f16, f32} instruction will allow us
      // to fold the operand.
      MI->setDesc(TII->get(IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16));
      bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII);
      if (FoldAsMAD) {
        MI->untieRegOperand(OpNo);
        return true;
      }
      MI->setDesc(TII->get(Opc));
    }

    // Special case for s_setreg_b32
    if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) {
      MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32));
      FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold));
      return true;
    }

    // If we are already folding into another operand of MI, then
    // we can't commute the instruction, otherwise we risk making the
    // other fold illegal.
    if (isUseMIInFoldList(FoldList, MI))
      return false;

    // Operand is not legal, so try to commute the instruction to
    // see if this makes it possible to fold.
    unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex;
    unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
    bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1);

    if (CanCommute) {
      if (CommuteIdx0 == OpNo)
        OpNo = CommuteIdx1;
      else if (CommuteIdx1 == OpNo)
        OpNo = CommuteIdx0;
    }

    // One of operands might be an Imm operand, and OpNo may refer to it after
    // the call of commuteInstruction() below. Such situations are avoided
    // here explicitly as OpNo must be a register operand to be a candidate
    // for memory folding.
    if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() ||
                       !MI->getOperand(CommuteIdx1).isReg()))
      return false;

    if (!CanCommute ||
        !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1))
      return false;

    if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) {
      TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1);
      return false;
    }

    FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold, true));
    return true;
  }

  FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold));
  return true;
}

// If the use operand doesn't care about the value, this may be an operand only
// used for register indexing, in which case it is unsafe to fold.
static bool isUseSafeToFold(const SIInstrInfo *TII,
                            const MachineInstr &MI,
                            const MachineOperand &UseMO) {
  return !UseMO.isUndef() && !TII->isSDWA(MI);
  //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg());
}

void SIFoldOperands::foldOperand(
  MachineOperand &OpToFold,
  MachineInstr *UseMI,
  unsigned UseOpIdx,
  SmallVectorImpl<FoldCandidate> &FoldList,
  SmallVectorImpl<MachineInstr *> &CopiesToReplace) const {
  const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);

  if (!isUseSafeToFold(TII, *UseMI, UseOp))
    return;

  // FIXME: Fold operands with subregs.
  if (UseOp.isReg() && OpToFold.isReg()) {
    if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister)
      return;

    // Don't fold subregister extracts into tied operands, only if it is a full
    // copy since a subregister use tied to a full register def doesn't really
    // make sense. e.g. don't fold:
    //
    // %1 = COPY %0:sub1
    // %2<tied3> = V_MAC_{F16, F32} %3, %4, %1<tied0>
    //
    //  into
    // %2<tied3> = V_MAC_{F16, F32} %3, %4, %0:sub1<tied0>
    if (UseOp.isTied() && OpToFold.getSubReg() != AMDGPU::NoSubRegister)
      return;
  }

  // Special case for REG_SEQUENCE: We can't fold literals into
  // REG_SEQUENCE instructions, so we have to fold them into the
  // uses of REG_SEQUENCE.
  if (UseMI->isRegSequence()) {
    unsigned RegSeqDstReg = UseMI->getOperand(0).getReg();
    unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm();

    for (MachineRegisterInfo::use_iterator
           RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end();
         RSUse != RSE; ++RSUse) {

      MachineInstr *RSUseMI = RSUse->getParent();
      if (RSUse->getSubReg() != RegSeqDstSubReg)
        continue;

      foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList,
                  CopiesToReplace);
    }

    return;
  }


  bool FoldingImm = OpToFold.isImm();

  // In order to fold immediates into copies, we need to change the
  // copy to a MOV.
  if (FoldingImm && UseMI->isCopy()) {
    unsigned DestReg = UseMI->getOperand(0).getReg();
    const TargetRegisterClass *DestRC
      = TargetRegisterInfo::isVirtualRegister(DestReg) ?
      MRI->getRegClass(DestReg) :
      TRI->getPhysRegClass(DestReg);

    unsigned MovOp = TII->getMovOpcode(DestRC);
    if (MovOp == AMDGPU::COPY)
      return;

    UseMI->setDesc(TII->get(MovOp));
    CopiesToReplace.push_back(UseMI);
  } else {
    const MCInstrDesc &UseDesc = UseMI->getDesc();

    // Don't fold into target independent nodes.  Target independent opcodes
    // don't have defined register classes.
    if (UseDesc.isVariadic() ||
        UseDesc.OpInfo[UseOpIdx].RegClass == -1)
      return;
  }

  if (!FoldingImm) {
    tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);

    // FIXME: We could try to change the instruction from 64-bit to 32-bit
    // to enable more folding opportunites.  The shrink operands pass
    // already does this.
    return;
  }


  const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc();
  const TargetRegisterClass *FoldRC =
    TRI->getRegClass(FoldDesc.OpInfo[0].RegClass);


  // Split 64-bit constants into 32-bits for folding.
  if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) {
    unsigned UseReg = UseOp.getReg();
    const TargetRegisterClass *UseRC
      = TargetRegisterInfo::isVirtualRegister(UseReg) ?
      MRI->getRegClass(UseReg) :
      TRI->getPhysRegClass(UseReg);

    if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64)
      return;

    APInt Imm(64, OpToFold.getImm());
    if (UseOp.getSubReg() == AMDGPU::sub0) {
      Imm = Imm.getLoBits(32);
    } else {
      assert(UseOp.getSubReg() == AMDGPU::sub1);
      Imm = Imm.getHiBits(32);
    }

    MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
    tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII);
    return;
  }



  tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
}

static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result,
                                  uint32_t LHS, uint32_t RHS) {
  switch (Opcode) {
  case AMDGPU::V_AND_B32_e64:
  case AMDGPU::V_AND_B32_e32:
  case AMDGPU::S_AND_B32:
    Result = LHS & RHS;
    return true;
  case AMDGPU::V_OR_B32_e64:
  case AMDGPU::V_OR_B32_e32:
  case AMDGPU::S_OR_B32:
    Result = LHS | RHS;
    return true;
  case AMDGPU::V_XOR_B32_e64:
  case AMDGPU::V_XOR_B32_e32:
  case AMDGPU::S_XOR_B32:
    Result = LHS ^ RHS;
    return true;
  case AMDGPU::V_LSHL_B32_e64:
  case AMDGPU::V_LSHL_B32_e32:
  case AMDGPU::S_LSHL_B32:
    // The instruction ignores the high bits for out of bounds shifts.
    Result = LHS << (RHS & 31);
    return true;
  case AMDGPU::V_LSHLREV_B32_e64:
  case AMDGPU::V_LSHLREV_B32_e32:
    Result = RHS << (LHS & 31);
    return true;
  case AMDGPU::V_LSHR_B32_e64:
  case AMDGPU::V_LSHR_B32_e32:
  case AMDGPU::S_LSHR_B32:
    Result = LHS >> (RHS & 31);
    return true;
  case AMDGPU::V_LSHRREV_B32_e64:
  case AMDGPU::V_LSHRREV_B32_e32:
    Result = RHS >> (LHS & 31);
    return true;
  case AMDGPU::V_ASHR_I32_e64:
  case AMDGPU::V_ASHR_I32_e32:
  case AMDGPU::S_ASHR_I32:
    Result = static_cast<int32_t>(LHS) >> (RHS & 31);
    return true;
  case AMDGPU::V_ASHRREV_I32_e64:
  case AMDGPU::V_ASHRREV_I32_e32:
    Result = static_cast<int32_t>(RHS) >> (LHS & 31);
    return true;
  default:
    return false;
  }
}

static unsigned getMovOpc(bool IsScalar) {
  return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
}

/// Remove any leftover implicit operands from mutating the instruction. e.g.
/// if we replace an s_and_b32 with a copy, we don't need the implicit scc def
/// anymore.
static void stripExtraCopyOperands(MachineInstr &MI) {
  const MCInstrDesc &Desc = MI.getDesc();
  unsigned NumOps = Desc.getNumOperands() +
                    Desc.getNumImplicitUses() +
                    Desc.getNumImplicitDefs();

  for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I)
    MI.RemoveOperand(I);
}

static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) {
  MI.setDesc(NewDesc);
  stripExtraCopyOperands(MI);
}

static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI,
                                               MachineOperand &Op) {
  if (Op.isReg()) {
    // If this has a subregister, it obviously is a register source.
    if (Op.getSubReg() != AMDGPU::NoSubRegister)
      return &Op;

    MachineInstr *Def = MRI.getVRegDef(Op.getReg());
    if (Def && Def->isMoveImmediate()) {
      MachineOperand &ImmSrc = Def->getOperand(1);
      if (ImmSrc.isImm())
        return &ImmSrc;
    }
  }

  return &Op;
}

// Try to simplify operations with a constant that may appear after instruction
// selection.
// TODO: See if a frame index with a fixed offset can fold.
static bool tryConstantFoldOp(MachineRegisterInfo &MRI,
                              const SIInstrInfo *TII,
                              MachineInstr *MI,
                              MachineOperand *ImmOp) {
  unsigned Opc = MI->getOpcode();
  if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 ||
      Opc == AMDGPU::S_NOT_B32) {
    MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm());
    mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32)));
    return true;
  }

  int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
  if (Src1Idx == -1)
    return false;

  int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
  MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx));
  MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx));

  if (!Src0->isImm() && !Src1->isImm())
    return false;

  // and k0, k1 -> v_mov_b32 (k0 & k1)
  // or k0, k1 -> v_mov_b32 (k0 | k1)
  // xor k0, k1 -> v_mov_b32 (k0 ^ k1)
  if (Src0->isImm() && Src1->isImm()) {
    int32_t NewImm;
    if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm()))
      return false;

    const SIRegisterInfo &TRI = TII->getRegisterInfo();
    bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg());

    // Be careful to change the right operand, src0 may belong to a different
    // instruction.
    MI->getOperand(Src0Idx).ChangeToImmediate(NewImm);
    MI->RemoveOperand(Src1Idx);
    mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR)));
    return true;
  }

  if (!MI->isCommutable())
    return false;

  if (Src0->isImm() && !Src1->isImm()) {
    std::swap(Src0, Src1);
    std::swap(Src0Idx, Src1Idx);
  }

  int32_t Src1Val = static_cast<int32_t>(Src1->getImm());
  if (Opc == AMDGPU::V_OR_B32_e64 ||
      Opc == AMDGPU::V_OR_B32_e32 ||
      Opc == AMDGPU::S_OR_B32) {
    if (Src1Val == 0) {
      // y = or x, 0 => y = copy x
      MI->RemoveOperand(Src1Idx);
      mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
    } else if (Src1Val == -1) {
      // y = or x, -1 => y = v_mov_b32 -1
      MI->RemoveOperand(Src1Idx);
      mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32)));
    } else
      return false;

    return true;
  }

  if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 ||
      MI->getOpcode() == AMDGPU::V_AND_B32_e32 ||
      MI->getOpcode() == AMDGPU::S_AND_B32) {
    if (Src1Val == 0) {
      // y = and x, 0 => y = v_mov_b32 0
      MI->RemoveOperand(Src0Idx);
      mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32)));
    } else if (Src1Val == -1) {
      // y = and x, -1 => y = copy x
      MI->RemoveOperand(Src1Idx);
      mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
      stripExtraCopyOperands(*MI);
    } else
      return false;

    return true;
  }

  if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 ||
      MI->getOpcode() == AMDGPU::V_XOR_B32_e32 ||
      MI->getOpcode() == AMDGPU::S_XOR_B32) {
    if (Src1Val == 0) {
      // y = xor x, 0 => y = copy x
      MI->RemoveOperand(Src1Idx);
      mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
      return true;
    }
  }

  return false;
}

// Try to fold an instruction into a simpler one
static bool tryFoldInst(const SIInstrInfo *TII,
                        MachineInstr *MI) {
  unsigned Opc = MI->getOpcode();

  if (Opc == AMDGPU::V_CNDMASK_B32_e32    ||
      Opc == AMDGPU::V_CNDMASK_B32_e64    ||
      Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) {
    const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0);
    const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1);
    if (Src1->isIdenticalTo(*Src0)) {
      DEBUG(dbgs() << "Folded " << *MI << " into ");
      int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
      if (Src2Idx != -1)
        MI->RemoveOperand(Src2Idx);
      MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1));
      mutateCopyOp(*MI, TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY
                                               : getMovOpc(false)));
      DEBUG(dbgs() << *MI << '\n');
      return true;
    }
  }

  return false;
}

void SIFoldOperands::foldInstOperand(MachineInstr &MI,
                                     MachineOperand &OpToFold) const {
  // We need mutate the operands of new mov instructions to add implicit
  // uses of EXEC, but adding them invalidates the use_iterator, so defer
  // this.
  SmallVector<MachineInstr *, 4> CopiesToReplace;
  SmallVector<FoldCandidate, 4> FoldList;
  MachineOperand &Dst = MI.getOperand(0);

  bool FoldingImm = OpToFold.isImm() || OpToFold.isFI();
  if (FoldingImm) {
    unsigned NumLiteralUses = 0;
    MachineOperand *NonInlineUse = nullptr;
    int NonInlineUseOpNo = -1;

    MachineRegisterInfo::use_iterator NextUse;
    for (MachineRegisterInfo::use_iterator
           Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
         Use != E; Use = NextUse) {
      NextUse = std::next(Use);
      MachineInstr *UseMI = Use->getParent();
      unsigned OpNo = Use.getOperandNo();

      // Folding the immediate may reveal operations that can be constant
      // folded or replaced with a copy. This can happen for example after
      // frame indices are lowered to constants or from splitting 64-bit
      // constants.
      //
      // We may also encounter cases where one or both operands are
      // immediates materialized into a register, which would ordinarily not
      // be folded due to multiple uses or operand constraints.

      if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) {
        DEBUG(dbgs() << "Constant folded " << *UseMI <<'\n');

        // Some constant folding cases change the same immediate's use to a new
        // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user
        // again. The same constant folded instruction could also have a second
        // use operand.
        NextUse = MRI->use_begin(Dst.getReg());
        FoldList.clear();
        continue;
      }

      // Try to fold any inline immediate uses, and then only fold other
      // constants if they have one use.
      //
      // The legality of the inline immediate must be checked based on the use
      // operand, not the defining instruction, because 32-bit instructions
      // with 32-bit inline immediate sources may be used to materialize
      // constants used in 16-bit operands.
      //
      // e.g. it is unsafe to fold:
      //  s_mov_b32 s0, 1.0    // materializes 0x3f800000
      //  v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00

      // Folding immediates with more than one use will increase program size.
      // FIXME: This will also reduce register usage, which may be better
      // in some cases. A better heuristic is needed.
      if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) {
        foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace);
      } else {
        if (++NumLiteralUses == 1) {
          NonInlineUse = &*Use;
          NonInlineUseOpNo = OpNo;
        }
      }
    }

    if (NumLiteralUses == 1) {
      MachineInstr *UseMI = NonInlineUse->getParent();
      foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace);
    }
  } else {
    // Folding register.
    for (MachineRegisterInfo::use_iterator
           Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
         Use != E; ++Use) {
      MachineInstr *UseMI = Use->getParent();

      foldOperand(OpToFold, UseMI, Use.getOperandNo(),
                  FoldList, CopiesToReplace);
    }
  }

  MachineFunction *MF = MI.getParent()->getParent();
  // Make sure we add EXEC uses to any new v_mov instructions created.
  for (MachineInstr *Copy : CopiesToReplace)
    Copy->addImplicitDefUseOperands(*MF);

  for (FoldCandidate &Fold : FoldList) {
    if (updateOperand(Fold, *TRI)) {
      // Clear kill flags.
      if (Fold.isReg()) {
        assert(Fold.OpToFold && Fold.OpToFold->isReg());
        // FIXME: Probably shouldn't bother trying to fold if not an
        // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
        // copies.
        MRI->clearKillFlags(Fold.OpToFold->getReg());
      }
      DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " <<
            static_cast<int>(Fold.UseOpNo) << " of " << *Fold.UseMI << '\n');
      tryFoldInst(TII, Fold.UseMI);
    } else if (Fold.isCommuted()) {
      // Restoring instruction's original operand order if fold has failed.
      TII->commuteInstruction(*Fold.UseMI, false);
    }
  }
}

// Clamp patterns are canonically selected to v_max_* instructions, so only
// handle them.
const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const {
  unsigned Op = MI.getOpcode();
  switch (Op) {
  case AMDGPU::V_MAX_F32_e64:
  case AMDGPU::V_MAX_F16_e64:
  case AMDGPU::V_MAX_F64:
  case AMDGPU::V_PK_MAX_F16: {
    if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm())
      return nullptr;

    // Make sure sources are identical.
    const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
    const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
    if (!Src0->isReg() || !Src1->isReg() ||
        Src0->getReg() != Src1->getReg() ||
        Src0->getSubReg() != Src1->getSubReg() ||
        Src0->getSubReg() != AMDGPU::NoSubRegister)
      return nullptr;

    // Can't fold up if we have modifiers.
    if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
      return nullptr;

    unsigned Src0Mods
      = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm();
    unsigned Src1Mods
      = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm();

    // Having a 0 op_sel_hi would require swizzling the output in the source
    // instruction, which we can't do.
    unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 : 0;
    if (Src0Mods != UnsetMods && Src1Mods != UnsetMods)
      return nullptr;
    return Src0;
  }
  default:
    return nullptr;
  }
}

// We obviously have multiple uses in a clamp since the register is used twice
// in the same instruction.
static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) {
  int Count = 0;
  for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
       I != E; ++I) {
    if (++Count > 1)
      return false;
  }

  return true;
}

// FIXME: Clamp for v_mad_mixhi_f16 handled during isel.
bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) {
  const MachineOperand *ClampSrc = isClamp(MI);
  if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg()))
    return false;

  MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg());

  // The type of clamp must be compatible.
  if (TII->getClampMask(*Def) != TII->getClampMask(MI))
    return false;

  MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp);
  if (!DefClamp)
    return false;

  DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def << '\n');

  // Clamp is applied after omod, so it is OK if omod is set.
  DefClamp->setImm(1);
  MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
  MI.eraseFromParent();
  return true;
}

static int getOModValue(unsigned Opc, int64_t Val) {
  switch (Opc) {
  case AMDGPU::V_MUL_F32_e64: {
    switch (static_cast<uint32_t>(Val)) {
    case 0x3f000000: // 0.5
      return SIOutMods::DIV2;
    case 0x40000000: // 2.0
      return SIOutMods::MUL2;
    case 0x40800000: // 4.0
      return SIOutMods::MUL4;
    default:
      return SIOutMods::NONE;
    }
  }
  case AMDGPU::V_MUL_F16_e64: {
    switch (static_cast<uint16_t>(Val)) {
    case 0x3800: // 0.5
      return SIOutMods::DIV2;
    case 0x4000: // 2.0
      return SIOutMods::MUL2;
    case 0x4400: // 4.0
      return SIOutMods::MUL4;
    default:
      return SIOutMods::NONE;
    }
  }
  default:
    llvm_unreachable("invalid mul opcode");
  }
}

// FIXME: Does this really not support denormals with f16?
// FIXME: Does this need to check IEEE mode bit? SNaNs are generally not
// handled, so will anything other than that break?
std::pair<const MachineOperand *, int>
SIFoldOperands::isOMod(const MachineInstr &MI) const {
  unsigned Op = MI.getOpcode();
  switch (Op) {
  case AMDGPU::V_MUL_F32_e64:
  case AMDGPU::V_MUL_F16_e64: {
    // If output denormals are enabled, omod is ignored.
    if ((Op == AMDGPU::V_MUL_F32_e64 && ST->hasFP32Denormals()) ||
        (Op == AMDGPU::V_MUL_F16_e64 && ST->hasFP16Denormals()))
      return std::make_pair(nullptr, SIOutMods::NONE);

    const MachineOperand *RegOp = nullptr;
    const MachineOperand *ImmOp = nullptr;
    const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
    const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
    if (Src0->isImm()) {
      ImmOp = Src0;
      RegOp = Src1;
    } else if (Src1->isImm()) {
      ImmOp = Src1;
      RegOp = Src0;
    } else
      return std::make_pair(nullptr, SIOutMods::NONE);

    int OMod = getOModValue(Op, ImmOp->getImm());
    if (OMod == SIOutMods::NONE ||
        TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
        TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
        TII->hasModifiersSet(MI, AMDGPU::OpName::omod) ||
        TII->hasModifiersSet(MI, AMDGPU::OpName::clamp))
      return std::make_pair(nullptr, SIOutMods::NONE);

    return std::make_pair(RegOp, OMod);
  }
  case AMDGPU::V_ADD_F32_e64:
  case AMDGPU::V_ADD_F16_e64: {
    // If output denormals are enabled, omod is ignored.
    if ((Op == AMDGPU::V_ADD_F32_e64 && ST->hasFP32Denormals()) ||
        (Op == AMDGPU::V_ADD_F16_e64 && ST->hasFP16Denormals()))
      return std::make_pair(nullptr, SIOutMods::NONE);

    // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x
    const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
    const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);

    if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() &&
        Src0->getSubReg() == Src1->getSubReg() &&
        !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) &&
        !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) &&
        !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) &&
        !TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
      return std::make_pair(Src0, SIOutMods::MUL2);

    return std::make_pair(nullptr, SIOutMods::NONE);
  }
  default:
    return std::make_pair(nullptr, SIOutMods::NONE);
  }
}

// FIXME: Does this need to check IEEE bit on function?
bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) {
  const MachineOperand *RegOp;
  int OMod;
  std::tie(RegOp, OMod) = isOMod(MI);
  if (OMod == SIOutMods::NONE || !RegOp->isReg() ||
      RegOp->getSubReg() != AMDGPU::NoSubRegister ||
      !hasOneNonDBGUseInst(*MRI, RegOp->getReg()))
    return false;

  MachineInstr *Def = MRI->getVRegDef(RegOp->getReg());
  MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod);
  if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE)
    return false;

  // Clamp is applied after omod. If the source already has clamp set, don't
  // fold it.
  if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp))
    return false;

  DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n');

  DefOMod->setImm(OMod);
  MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
  MI.eraseFromParent();
  return true;
}

bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;

  MRI = &MF.getRegInfo();
  ST = &MF.getSubtarget<SISubtarget>();
  TII = ST->getInstrInfo();
  TRI = &TII->getRegisterInfo();

  const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();

  // omod is ignored by hardware if IEEE bit is enabled. omod also does not
  // correctly handle signed zeros.
  //
  // TODO: Check nsz on instructions when fast math flags are preserved to MI
  // level.
  bool IsIEEEMode = ST->enableIEEEBit(MF) || !MFI->hasNoSignedZerosFPMath();

  for (MachineBasicBlock *MBB : depth_first(&MF)) {
    MachineBasicBlock::iterator I, Next;
    for (I = MBB->begin(); I != MBB->end(); I = Next) {
      Next = std::next(I);
      MachineInstr &MI = *I;

      tryFoldInst(TII, &MI);

      if (!TII->isFoldableCopy(MI)) {
        if (IsIEEEMode || !tryFoldOMod(MI))
          tryFoldClamp(MI);
        continue;
      }

      MachineOperand &OpToFold = MI.getOperand(1);
      bool FoldingImm = OpToFold.isImm() || OpToFold.isFI();

      // FIXME: We could also be folding things like TargetIndexes.
      if (!FoldingImm && !OpToFold.isReg())
        continue;

      if (OpToFold.isReg() &&
          !TargetRegisterInfo::isVirtualRegister(OpToFold.getReg()))
        continue;

      // Prevent folding operands backwards in the function. For example,
      // the COPY opcode must not be replaced by 1 in this example:
      //
      //    %3 = COPY %vgpr0; VGPR_32:%3
      //    ...
      //    %vgpr0 = V_MOV_B32_e32 1, implicit %exec
      MachineOperand &Dst = MI.getOperand(0);
      if (Dst.isReg() &&
          !TargetRegisterInfo::isVirtualRegister(Dst.getReg()))
        continue;

      foldInstOperand(MI, OpToFold);
    }
  }
  return false;
}