//===-- HexagonISelLoweringHVX.cpp --- Lowering HVX operations ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "HexagonISelLowering.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
using namespace llvm;
SDValue
HexagonTargetLowering::getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops,
const SDLoc &dl, SelectionDAG &DAG) const {
SmallVector<SDValue,4> IntOps;
IntOps.push_back(DAG.getConstant(IntId, dl, MVT::i32));
for (const SDValue &Op : Ops)
IntOps.push_back(Op);
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ResTy, IntOps);
}
MVT
HexagonTargetLowering::typeJoin(const TypePair &Tys) const {
assert(Tys.first.getVectorElementType() == Tys.second.getVectorElementType());
MVT ElemTy = Tys.first.getVectorElementType();
return MVT::getVectorVT(ElemTy, Tys.first.getVectorNumElements() +
Tys.second.getVectorNumElements());
}
HexagonTargetLowering::TypePair
HexagonTargetLowering::typeSplit(MVT VecTy) const {
assert(VecTy.isVector());
unsigned NumElem = VecTy.getVectorNumElements();
assert((NumElem % 2) == 0 && "Expecting even-sized vector type");
MVT HalfTy = MVT::getVectorVT(VecTy.getVectorElementType(), NumElem/2);
return { HalfTy, HalfTy };
}
MVT
HexagonTargetLowering::typeExtElem(MVT VecTy, unsigned Factor) const {
MVT ElemTy = VecTy.getVectorElementType();
MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() * Factor);
return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
}
MVT
HexagonTargetLowering::typeTruncElem(MVT VecTy, unsigned Factor) const {
MVT ElemTy = VecTy.getVectorElementType();
MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() / Factor);
return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
}
SDValue
HexagonTargetLowering::opCastElem(SDValue Vec, MVT ElemTy,
SelectionDAG &DAG) const {
if (ty(Vec).getVectorElementType() == ElemTy)
return Vec;
MVT CastTy = tyVector(Vec.getValueType().getSimpleVT(), ElemTy);
return DAG.getBitcast(CastTy, Vec);
}
SDValue
HexagonTargetLowering::opJoin(const VectorPair &Ops, const SDLoc &dl,
SelectionDAG &DAG) const {
return DAG.getNode(ISD::CONCAT_VECTORS, dl, typeJoin(ty(Ops)),
Ops.second, Ops.first);
}
HexagonTargetLowering::VectorPair
HexagonTargetLowering::opSplit(SDValue Vec, const SDLoc &dl,
SelectionDAG &DAG) const {
TypePair Tys = typeSplit(ty(Vec));
return DAG.SplitVector(Vec, dl, Tys.first, Tys.second);
}
SDValue
HexagonTargetLowering::convertToByteIndex(SDValue ElemIdx, MVT ElemTy,
SelectionDAG &DAG) const {
if (ElemIdx.getValueType().getSimpleVT() != MVT::i32)
ElemIdx = DAG.getBitcast(MVT::i32, ElemIdx);
unsigned ElemWidth = ElemTy.getSizeInBits();
if (ElemWidth == 8)
return ElemIdx;
unsigned L = Log2_32(ElemWidth/8);
const SDLoc &dl(ElemIdx);
return DAG.getNode(ISD::SHL, dl, MVT::i32,
{ElemIdx, DAG.getConstant(L, dl, MVT::i32)});
}
SDValue
HexagonTargetLowering::getIndexInWord32(SDValue Idx, MVT ElemTy,
SelectionDAG &DAG) const {
unsigned ElemWidth = ElemTy.getSizeInBits();
assert(ElemWidth >= 8 && ElemWidth <= 32);
if (ElemWidth == 32)
return Idx;
if (ty(Idx) != MVT::i32)
Idx = DAG.getBitcast(MVT::i32, Idx);
const SDLoc &dl(Idx);
SDValue Mask = DAG.getConstant(32/ElemWidth - 1, dl, MVT::i32);
SDValue SubIdx = DAG.getNode(ISD::AND, dl, MVT::i32, {Idx, Mask});
return SubIdx;
}
SDValue
HexagonTargetLowering::getByteShuffle(const SDLoc &dl, SDValue Op0,
SDValue Op1, ArrayRef<int> Mask,
SelectionDAG &DAG) const {
MVT OpTy = ty(Op0);
assert(OpTy == ty(Op1));
MVT ElemTy = OpTy.getVectorElementType();
if (ElemTy == MVT::i8)
return DAG.getVectorShuffle(OpTy, dl, Op0, Op1, Mask);
assert(ElemTy.getSizeInBits() >= 8);
MVT ResTy = tyVector(OpTy, MVT::i8);
unsigned ElemSize = ElemTy.getSizeInBits() / 8;
SmallVector<int,128> ByteMask;
for (int M : Mask) {
if (M < 0) {
for (unsigned I = 0; I != ElemSize; ++I)
ByteMask.push_back(-1);
} else {
int NewM = M*ElemSize;
for (unsigned I = 0; I != ElemSize; ++I)
ByteMask.push_back(NewM+I);
}
}
assert(ResTy.getVectorNumElements() == ByteMask.size());
return DAG.getVectorShuffle(ResTy, dl, opCastElem(Op0, MVT::i8, DAG),
opCastElem(Op1, MVT::i8, DAG), ByteMask);
}
MVT
HexagonTargetLowering::getVecBoolVT() const {
return MVT::getVectorVT(MVT::i1, 8*Subtarget.getVectorLength());
}
SDValue
HexagonTargetLowering::buildHvxVectorSingle(ArrayRef<SDValue> Values,
const SDLoc &dl, MVT VecTy,
SelectionDAG &DAG) const {
unsigned VecLen = Values.size();
MachineFunction &MF = DAG.getMachineFunction();
MVT ElemTy = VecTy.getVectorElementType();
unsigned ElemWidth = ElemTy.getSizeInBits();
unsigned HwLen = Subtarget.getVectorLength();
SmallVector<ConstantInt*, 128> Consts(VecLen);
bool AllConst = getBuildVectorConstInts(Values, VecTy, DAG, Consts);
if (AllConst) {
if (llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
return getZero(dl, VecTy, DAG);
ArrayRef<Constant*> Tmp((Constant**)Consts.begin(),
(Constant**)Consts.end());
Constant *CV = ConstantVector::get(Tmp);
unsigned Align = HwLen;
SDValue CP = LowerConstantPool(DAG.getConstantPool(CV, VecTy, Align), DAG);
return DAG.getLoad(VecTy, dl, DAG.getEntryNode(), CP,
MachinePointerInfo::getConstantPool(MF), Align);
}
unsigned ElemSize = ElemWidth / 8;
assert(ElemSize*VecLen == HwLen);
SmallVector<SDValue,32> Words;
if (VecTy.getVectorElementType() != MVT::i32) {
assert((ElemSize == 1 || ElemSize == 2) && "Invalid element size");
unsigned OpsPerWord = (ElemSize == 1) ? 4 : 2;
MVT PartVT = MVT::getVectorVT(VecTy.getVectorElementType(), OpsPerWord);
for (unsigned i = 0; i != VecLen; i += OpsPerWord) {
SDValue W = buildVector32(Values.slice(i, OpsPerWord), dl, PartVT, DAG);
Words.push_back(DAG.getBitcast(MVT::i32, W));
}
} else {
Words.assign(Values.begin(), Values.end());
}
// Construct two halves in parallel, then or them together.
assert(4*Words.size() == Subtarget.getVectorLength());
SDValue HalfV0 = getNode(Hexagon::V6_vd0, dl, VecTy, {}, DAG);
SDValue HalfV1 = getNode(Hexagon::V6_vd0, dl, VecTy, {}, DAG);
SDValue S = DAG.getConstant(4, dl, MVT::i32);
unsigned NumWords = Words.size();
for (unsigned i = 0; i != NumWords/2; ++i) {
SDValue N = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
{HalfV0, Words[i]});
SDValue M = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
{HalfV1, Words[i+NumWords/2]});
HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, S});
HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, S});
}
HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy,
{HalfV0, DAG.getConstant(HwLen/2, dl, MVT::i32)});
SDValue DstV = DAG.getNode(ISD::OR, dl, VecTy, {HalfV0, HalfV1});
return DstV;
}
SDValue
HexagonTargetLowering::buildHvxVectorPred(ArrayRef<SDValue> Values,
const SDLoc &dl, MVT VecTy,
SelectionDAG &DAG) const {
// Construct a vector V of bytes, such that a comparison V >u 0 would
// produce the required vector predicate.
unsigned VecLen = Values.size();
unsigned HwLen = Subtarget.getVectorLength();
assert(VecLen <= HwLen || VecLen == 8*HwLen);
SmallVector<SDValue,128> Bytes;
if (VecLen <= HwLen) {
// In the hardware, each bit of a vector predicate corresponds to a byte
// of a vector register. Calculate how many bytes does a bit of VecTy
// correspond to.
assert(HwLen % VecLen == 0);
unsigned BitBytes = HwLen / VecLen;
for (SDValue V : Values) {
SDValue Ext = !V.isUndef() ? DAG.getZExtOrTrunc(V, dl, MVT::i8)
: DAG.getConstant(0, dl, MVT::i8);
for (unsigned B = 0; B != BitBytes; ++B)
Bytes.push_back(Ext);
}
} else {
// There are as many i1 values, as there are bits in a vector register.
// Divide the values into groups of 8 and check that each group consists
// of the same value (ignoring undefs).
for (unsigned I = 0; I != VecLen; I += 8) {
unsigned B = 0;
// Find the first non-undef value in this group.
for (; B != 8; ++B) {
if (!Values[I+B].isUndef())
break;
}
SDValue F = Values[I+B];
SDValue Ext = (B < 8) ? DAG.getZExtOrTrunc(F, dl, MVT::i8)
: DAG.getConstant(0, dl, MVT::i8);
Bytes.push_back(Ext);
// Verify that the rest of values in the group are the same as the
// first.
for (; B != 8; ++B)
assert(Values[I+B].isUndef() || Values[I+B] == F);
}
}
MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
SDValue ByteVec = buildHvxVectorSingle(Bytes, dl, ByteTy, DAG);
SDValue Cmp = DAG.getSetCC(dl, VecTy, ByteVec, getZero(dl, ByteTy, DAG),
ISD::SETUGT);
return Cmp;
}
SDValue
HexagonTargetLowering::LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG)
const {
const SDLoc &dl(Op);
MVT VecTy = ty(Op);
unsigned Size = Op.getNumOperands();
SmallVector<SDValue,128> Ops;
for (unsigned i = 0; i != Size; ++i)
Ops.push_back(Op.getOperand(i));
if (VecTy.getVectorElementType() == MVT::i1)
return buildHvxVectorPred(Ops, dl, VecTy, DAG);
if (VecTy.getSizeInBits() == 16*Subtarget.getVectorLength()) {
ArrayRef<SDValue> A(Ops);
MVT SingleTy = typeSplit(VecTy).first;
SDValue V0 = buildHvxVectorSingle(A.take_front(Size/2), dl, SingleTy, DAG);
SDValue V1 = buildHvxVectorSingle(A.drop_front(Size/2), dl, SingleTy, DAG);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, V0, V1);
}
return buildHvxVectorSingle(Ops, dl, VecTy, DAG);
}
SDValue
HexagonTargetLowering::LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG)
const {
// Change the type of the extracted element to i32.
SDValue VecV = Op.getOperand(0);
MVT ElemTy = ty(VecV).getVectorElementType();
unsigned ElemWidth = ElemTy.getSizeInBits();
assert(ElemWidth >= 8 && ElemWidth <= 32);
(void)ElemWidth;
const SDLoc &dl(Op);
SDValue IdxV = Op.getOperand(1);
if (ty(IdxV) != MVT::i32)
IdxV = DAG.getBitcast(MVT::i32, IdxV);
SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
SDValue ExWord = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
{VecV, ByteIdx});
if (ElemTy == MVT::i32)
return ExWord;
// Have an extracted word, need to extract the smaller element out of it.
// 1. Extract the bits of (the original) IdxV that correspond to the index
// of the desired element in the 32-bit word.
SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
// 2. Extract the element from the word.
SDValue ExVec = DAG.getBitcast(tyVector(ty(ExWord), ElemTy), ExWord);
return extractVector(ExVec, SubIdx, dl, ElemTy, MVT::i32, DAG);
}
SDValue
HexagonTargetLowering::LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG)
const {
const SDLoc &dl(Op);
SDValue VecV = Op.getOperand(0);
SDValue ValV = Op.getOperand(1);
SDValue IdxV = Op.getOperand(2);
MVT ElemTy = ty(VecV).getVectorElementType();
unsigned ElemWidth = ElemTy.getSizeInBits();
assert(ElemWidth >= 8 && ElemWidth <= 32);
(void)ElemWidth;
auto InsertWord = [&DAG,&dl,this] (SDValue VecV, SDValue ValV,
SDValue ByteIdxV) {
MVT VecTy = ty(VecV);
unsigned HwLen = Subtarget.getVectorLength();
SDValue MaskV = DAG.getNode(ISD::AND, dl, MVT::i32,
{ByteIdxV, DAG.getConstant(-4, dl, MVT::i32)});
SDValue RotV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {VecV, MaskV});
SDValue InsV = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, {RotV, ValV});
SDValue SubV = DAG.getNode(ISD::SUB, dl, MVT::i32,
{DAG.getConstant(HwLen/4, dl, MVT::i32), MaskV});
SDValue TorV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {InsV, SubV});
return TorV;
};
SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
if (ElemTy == MVT::i32)
return InsertWord(VecV, ValV, ByteIdx);
// If this is not inserting a 32-bit word, convert it into such a thing.
// 1. Extract the existing word from the target vector.
SDValue WordIdx = DAG.getNode(ISD::SRL, dl, MVT::i32,
{ByteIdx, DAG.getConstant(2, dl, MVT::i32)});
SDValue Ex0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
{opCastElem(VecV, MVT::i32, DAG), WordIdx});
SDValue Ext = LowerHvxExtractElement(Ex0, DAG);
// 2. Treating the extracted word as a 32-bit vector, insert the given
// value into it.
SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
MVT SubVecTy = tyVector(ty(Ext), ElemTy);
SDValue Ins = insertVector(DAG.getBitcast(SubVecTy, Ext),
ValV, SubIdx, dl, ElemTy, DAG);
// 3. Insert the 32-bit word back into the original vector.
return InsertWord(VecV, Ins, ByteIdx);
}
SDValue
HexagonTargetLowering::LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG)
const {
SDValue SrcV = Op.getOperand(0);
MVT SrcTy = ty(SrcV);
unsigned SrcElems = SrcTy.getVectorNumElements();
SDValue IdxV = Op.getOperand(1);
unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
MVT DstTy = ty(Op);
assert(Idx == 0 || DstTy.getVectorNumElements() % Idx == 0);
const SDLoc &dl(Op);
if (Idx == 0)
return DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, DstTy, SrcV);
if (Idx == SrcElems/2)
return DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, DstTy, SrcV);
return SDValue();
}
SDValue
HexagonTargetLowering::LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG)
const {
// Idx may be variable.
SDValue IdxV = Op.getOperand(2);
auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
if (!IdxN)
return SDValue();
unsigned Idx = IdxN->getZExtValue();
SDValue DstV = Op.getOperand(0);
SDValue SrcV = Op.getOperand(1);
MVT DstTy = ty(DstV);
MVT SrcTy = ty(SrcV);
unsigned DstElems = DstTy.getVectorNumElements();
unsigned SrcElems = SrcTy.getVectorNumElements();
if (2*SrcElems != DstElems)
return SDValue();
const SDLoc &dl(Op);
if (Idx == 0)
return DAG.getTargetInsertSubreg(Hexagon::vsub_lo, dl, DstTy, DstV, SrcV);
if (Idx == SrcElems)
return DAG.getTargetInsertSubreg(Hexagon::vsub_hi, dl, DstTy, DstV, SrcV);
return SDValue();
}
SDValue
HexagonTargetLowering::LowerHvxMul(SDValue Op, SelectionDAG &DAG) const {
MVT ResTy = ty(Op);
if (!ResTy.isVector())
return SDValue();
const SDLoc &dl(Op);
SmallVector<int,256> ShuffMask;
MVT ElemTy = ResTy.getVectorElementType();
unsigned VecLen = ResTy.getVectorNumElements();
SDValue Vs = Op.getOperand(0);
SDValue Vt = Op.getOperand(1);
switch (ElemTy.SimpleTy) {
case MVT::i8:
case MVT::i16: {
// For i8 vectors Vs = (a0, a1, ...), Vt = (b0, b1, ...),
// V6_vmpybv Vs, Vt produces a pair of i16 vectors Hi:Lo,
// where Lo = (a0*b0, a2*b2, ...), Hi = (a1*b1, a3*b3, ...).
// For i16, use V6_vmpyhv, which behaves in an analogous way to
// V6_vmpybv: results Lo and Hi are products of even/odd elements
// respectively.
MVT ExtTy = typeExtElem(ResTy, 2);
unsigned MpyOpc = ElemTy == MVT::i8 ? Hexagon::V6_vmpybv
: Hexagon::V6_vmpyhv;
SDValue M = getNode(MpyOpc, dl, ExtTy, {Vs, Vt}, DAG);
// Discard high halves of the resulting values, collect the low halves.
for (unsigned I = 0; I < VecLen; I += 2) {
ShuffMask.push_back(I); // Pick even element.
ShuffMask.push_back(I+VecLen); // Pick odd element.
}
VectorPair P = opSplit(opCastElem(M, ElemTy, DAG), dl, DAG);
return getByteShuffle(dl, P.first, P.second, ShuffMask, DAG);
}
case MVT::i32: {
// Use the following sequence for signed word multiply:
// T0 = V6_vmpyiowh Vs, Vt
// T1 = V6_vaslw T0, 16
// T2 = V6_vmpyiewuh_acc T1, Vs, Vt
SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
SDValue T0 = getNode(Hexagon::V6_vmpyiowh, dl, ResTy, {Vs, Vt}, DAG);
SDValue T1 = getNode(Hexagon::V6_vaslw, dl, ResTy, {T0, S16}, DAG);
SDValue T2 = getNode(Hexagon::V6_vmpyiewuh_acc, dl, ResTy,
{T1, Vs, Vt}, DAG);
return T2;
}
default:
break;
}
return SDValue();
}
SDValue
HexagonTargetLowering::LowerHvxSetCC(SDValue Op, SelectionDAG &DAG) const {
MVT VecTy = ty(Op.getOperand(0));
assert(VecTy == ty(Op.getOperand(1)));
SDValue Cmp = Op.getOperand(2);
ISD::CondCode CC = cast<CondCodeSDNode>(Cmp)->get();
bool Negate = false, Swap = false;
// HVX has instructions for SETEQ, SETGT, SETUGT. The other comparisons
// can be arranged as operand-swapped/negated versions of these. Since
// the generated code will have the original CC expressed as
// (negate (swap-op NewCmp)),
// the condition code for the NewCmp should be calculated from the original
// CC by applying these operations in the reverse order.
//
// This could also be done through setCondCodeAction, but for negation it
// uses a xor with a vector of -1s, which it obtains from BUILD_VECTOR.
// That is far too expensive for what can be done with a single instruction.
switch (CC) {
case ISD::SETNE: // !eq
case ISD::SETLE: // !gt
case ISD::SETGE: // !lt
case ISD::SETULE: // !ugt
case ISD::SETUGE: // !ult
CC = ISD::getSetCCInverse(CC, true);
Negate = true;
break;
default:
break;
}
switch (CC) {
case ISD::SETLT: // swap gt
case ISD::SETULT: // swap ugt
CC = ISD::getSetCCSwappedOperands(CC);
Swap = true;
break;
default:
break;
}
assert(CC == ISD::SETEQ || CC == ISD::SETGT || CC == ISD::SETUGT);
MVT ElemTy = VecTy.getVectorElementType();
unsigned ElemWidth = ElemTy.getSizeInBits();
assert(isPowerOf2_32(ElemWidth));
auto getIdx = [] (unsigned Code) {
static const unsigned Idx[] = { ISD::SETEQ, ISD::SETGT, ISD::SETUGT };
for (unsigned I = 0, E = array_lengthof(Idx); I != E; ++I)
if (Code == Idx[I])
return I;
llvm_unreachable("Unhandled CondCode");
};
static unsigned OpcTable[3][3] = {
// SETEQ SETGT, SETUGT
/* Byte */ { Hexagon::V6_veqb, Hexagon::V6_vgtb, Hexagon::V6_vgtub },
/* Half */ { Hexagon::V6_veqh, Hexagon::V6_vgth, Hexagon::V6_vgtuh },
/* Word */ { Hexagon::V6_veqw, Hexagon::V6_vgtw, Hexagon::V6_vgtuw }
};
unsigned CmpOpc = OpcTable[Log2_32(ElemWidth)-3][getIdx(CC)];
MVT ResTy = ty(Op);
const SDLoc &dl(Op);
SDValue OpL = Swap ? Op.getOperand(1) : Op.getOperand(0);
SDValue OpR = Swap ? Op.getOperand(0) : Op.getOperand(1);
SDValue CmpV = getNode(CmpOpc, dl, ResTy, {OpL, OpR}, DAG);
return Negate ? getNode(Hexagon::V6_pred_not, dl, ResTy, {CmpV}, DAG)
: CmpV;
}
SDValue
HexagonTargetLowering::LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const {
// Sign- and zero-extends are legal.
assert(Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG);
return DAG.getZeroExtendVectorInReg(Op.getOperand(0), SDLoc(Op), ty(Op));
}