Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
//===- GuardWidening.cpp - ---- Guard widening ----------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the guard widening pass.  The semantics of the
// @llvm.experimental.guard intrinsic lets LLVM transform it so that it fails
// more often that it did before the transform.  This optimization is called
// "widening" and can be used hoist and common runtime checks in situations like
// these:
//
//    %cmp0 = 7 u< Length
//    call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
//    call @unknown_side_effects()
//    %cmp1 = 9 u< Length
//    call @llvm.experimental.guard(i1 %cmp1) [ "deopt"(...) ]
//    ...
//
// =>
//
//    %cmp0 = 9 u< Length
//    call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
//    call @unknown_side_effects()
//    ...
//
// If %cmp0 is false, @llvm.experimental.guard will "deoptimize" back to a
// generic implementation of the same function, which will have the correct
// semantics from that point onward.  It is always _legal_ to deoptimize (so
// replacing %cmp0 with false is "correct"), though it may not always be
// profitable to do so.
//
// NB! This pass is a work in progress.  It hasn't been tuned to be "production
// ready" yet.  It is known to have quadriatic running time and will not scale
// to large numbers of guards
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/GuardWidening.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/Scalar.h"

using namespace llvm;

#define DEBUG_TYPE "guard-widening"

namespace {

class GuardWideningImpl {
  DominatorTree &DT;
  PostDominatorTree &PDT;
  LoopInfo &LI;

  /// The set of guards whose conditions have been widened into dominating
  /// guards.
  SmallVector<IntrinsicInst *, 16> EliminatedGuards;

  /// The set of guards which have been widened to include conditions to other
  /// guards.
  DenseSet<IntrinsicInst *> WidenedGuards;

  /// Try to eliminate guard \p Guard by widening it into an earlier dominating
  /// guard.  \p DFSI is the DFS iterator on the dominator tree that is
  /// currently visiting the block containing \p Guard, and \p GuardsPerBlock
  /// maps BasicBlocks to the set of guards seen in that block.
  bool eliminateGuardViaWidening(
      IntrinsicInst *Guard, const df_iterator<DomTreeNode *> &DFSI,
      const DenseMap<BasicBlock *, SmallVector<IntrinsicInst *, 8>> &
          GuardsPerBlock);

  /// Used to keep track of which widening potential is more effective.
  enum WideningScore {
    /// Don't widen.
    WS_IllegalOrNegative,

    /// Widening is performance neutral as far as the cycles spent in check
    /// conditions goes (but can still help, e.g., code layout, having less
    /// deopt state).
    WS_Neutral,

    /// Widening is profitable.
    WS_Positive,

    /// Widening is very profitable.  Not significantly different from \c
    /// WS_Positive, except by the order.
    WS_VeryPositive
  };

  static StringRef scoreTypeToString(WideningScore WS);

  /// Compute the score for widening the condition in \p DominatedGuard
  /// (contained in \p DominatedGuardLoop) into \p DominatingGuard (contained in
  /// \p DominatingGuardLoop).
  WideningScore computeWideningScore(IntrinsicInst *DominatedGuard,
                                     Loop *DominatedGuardLoop,
                                     IntrinsicInst *DominatingGuard,
                                     Loop *DominatingGuardLoop);

  /// Helper to check if \p V can be hoisted to \p InsertPos.
  bool isAvailableAt(Value *V, Instruction *InsertPos) {
    SmallPtrSet<Instruction *, 8> Visited;
    return isAvailableAt(V, InsertPos, Visited);
  }

  bool isAvailableAt(Value *V, Instruction *InsertPos,
                     SmallPtrSetImpl<Instruction *> &Visited);

  /// Helper to hoist \p V to \p InsertPos.  Guaranteed to succeed if \c
  /// isAvailableAt returned true.
  void makeAvailableAt(Value *V, Instruction *InsertPos);

  /// Common helper used by \c widenGuard and \c isWideningCondProfitable.  Try
  /// to generate an expression computing the logical AND of \p Cond0 and \p
  /// Cond1.  Return true if the expression computing the AND is only as
  /// expensive as computing one of the two. If \p InsertPt is true then
  /// actually generate the resulting expression, make it available at \p
  /// InsertPt and return it in \p Result (else no change to the IR is made).
  bool widenCondCommon(Value *Cond0, Value *Cond1, Instruction *InsertPt,
                       Value *&Result);

  /// Represents a range check of the form \c Base + \c Offset u< \c Length,
  /// with the constraint that \c Length is not negative.  \c CheckInst is the
  /// pre-existing instruction in the IR that computes the result of this range
  /// check.
  class RangeCheck {
    Value *Base;
    ConstantInt *Offset;
    Value *Length;
    ICmpInst *CheckInst;

  public:
    explicit RangeCheck(Value *Base, ConstantInt *Offset, Value *Length,
                        ICmpInst *CheckInst)
        : Base(Base), Offset(Offset), Length(Length), CheckInst(CheckInst) {}

    void setBase(Value *NewBase) { Base = NewBase; }
    void setOffset(ConstantInt *NewOffset) { Offset = NewOffset; }

    Value *getBase() const { return Base; }
    ConstantInt *getOffset() const { return Offset; }
    const APInt &getOffsetValue() const { return getOffset()->getValue(); }
    Value *getLength() const { return Length; };
    ICmpInst *getCheckInst() const { return CheckInst; }

    void print(raw_ostream &OS, bool PrintTypes = false) {
      OS << "Base: ";
      Base->printAsOperand(OS, PrintTypes);
      OS << " Offset: ";
      Offset->printAsOperand(OS, PrintTypes);
      OS << " Length: ";
      Length->printAsOperand(OS, PrintTypes);
    }

    LLVM_DUMP_METHOD void dump() {
      print(dbgs());
      dbgs() << "\n";
    }
  };

  /// Parse \p CheckCond into a conjunction (logical-and) of range checks; and
  /// append them to \p Checks.  Returns true on success, may clobber \c Checks
  /// on failure.
  bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks) {
    SmallPtrSet<Value *, 8> Visited;
    return parseRangeChecks(CheckCond, Checks, Visited);
  }

  bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks,
                        SmallPtrSetImpl<Value *> &Visited);

  /// Combine the checks in \p Checks into a smaller set of checks and append
  /// them into \p CombinedChecks.  Return true on success (i.e. all of checks
  /// in \p Checks were combined into \p CombinedChecks).  Clobbers \p Checks
  /// and \p CombinedChecks on success and on failure.
  bool combineRangeChecks(SmallVectorImpl<RangeCheck> &Checks,
                          SmallVectorImpl<RangeCheck> &CombinedChecks);

  /// Can we compute the logical AND of \p Cond0 and \p Cond1 for the price of
  /// computing only one of the two expressions?
  bool isWideningCondProfitable(Value *Cond0, Value *Cond1) {
    Value *ResultUnused;
    return widenCondCommon(Cond0, Cond1, /*InsertPt=*/nullptr, ResultUnused);
  }

  /// Widen \p ToWiden to fail if \p NewCondition is false (in addition to
  /// whatever it is already checking).
  void widenGuard(IntrinsicInst *ToWiden, Value *NewCondition) {
    Value *Result;
    widenCondCommon(ToWiden->getArgOperand(0), NewCondition, ToWiden, Result);
    ToWiden->setArgOperand(0, Result);
  }

public:
  explicit GuardWideningImpl(DominatorTree &DT, PostDominatorTree &PDT,
                             LoopInfo &LI)
      : DT(DT), PDT(PDT), LI(LI) {}

  /// The entry point for this pass.
  bool run();
};

struct GuardWideningLegacyPass : public FunctionPass {
  static char ID;
  GuardWideningPass Impl;

  GuardWideningLegacyPass() : FunctionPass(ID) {
    initializeGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;
    return GuardWideningImpl(
               getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
               getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(),
               getAnalysis<LoopInfoWrapperPass>().getLoopInfo()).run();
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<PostDominatorTreeWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
  }
};

}

bool GuardWideningImpl::run() {
  using namespace llvm::PatternMatch;

  DenseMap<BasicBlock *, SmallVector<IntrinsicInst *, 8>> GuardsInBlock;
  bool Changed = false;

  for (auto DFI = df_begin(DT.getRootNode()), DFE = df_end(DT.getRootNode());
       DFI != DFE; ++DFI) {
    auto *BB = (*DFI)->getBlock();
    auto &CurrentList = GuardsInBlock[BB];

    for (auto &I : *BB)
      if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>()))
        CurrentList.push_back(cast<IntrinsicInst>(&I));

    for (auto *II : CurrentList)
      Changed |= eliminateGuardViaWidening(II, DFI, GuardsInBlock);
  }

  for (auto *II : EliminatedGuards)
    if (!WidenedGuards.count(II))
      II->eraseFromParent();

  return Changed;
}

bool GuardWideningImpl::eliminateGuardViaWidening(
    IntrinsicInst *GuardInst, const df_iterator<DomTreeNode *> &DFSI,
    const DenseMap<BasicBlock *, SmallVector<IntrinsicInst *, 8>> &
        GuardsInBlock) {
  IntrinsicInst *BestSoFar = nullptr;
  auto BestScoreSoFar = WS_IllegalOrNegative;
  auto *GuardInstLoop = LI.getLoopFor(GuardInst->getParent());

  // In the set of dominating guards, find the one we can merge GuardInst with
  // for the most profit.
  for (unsigned i = 0, e = DFSI.getPathLength(); i != e; ++i) {
    auto *CurBB = DFSI.getPath(i)->getBlock();
    auto *CurLoop = LI.getLoopFor(CurBB);
    assert(GuardsInBlock.count(CurBB) && "Must have been populated by now!");
    const auto &GuardsInCurBB = GuardsInBlock.find(CurBB)->second;

    auto I = GuardsInCurBB.begin();
    auto E = GuardsInCurBB.end();

#ifndef NDEBUG
    {
      unsigned Index = 0;
      for (auto &I : *CurBB) {
        if (Index == GuardsInCurBB.size())
          break;
        if (GuardsInCurBB[Index] == &I)
          Index++;
      }
      assert(Index == GuardsInCurBB.size() &&
             "Guards expected to be in order!");
    }
#endif

    assert((i == (e - 1)) == (GuardInst->getParent() == CurBB) && "Bad DFS?");

    if (i == (e - 1)) {
      // Corner case: make sure we're only looking at guards strictly dominating
      // GuardInst when visiting GuardInst->getParent().
      auto NewEnd = std::find(I, E, GuardInst);
      assert(NewEnd != E && "GuardInst not in its own block?");
      E = NewEnd;
    }

    for (auto *Candidate : make_range(I, E)) {
      auto Score =
          computeWideningScore(GuardInst, GuardInstLoop, Candidate, CurLoop);
      DEBUG(dbgs() << "Score between " << *GuardInst->getArgOperand(0)
                   << " and " << *Candidate->getArgOperand(0) << " is "
                   << scoreTypeToString(Score) << "\n");
      if (Score > BestScoreSoFar) {
        BestScoreSoFar = Score;
        BestSoFar = Candidate;
      }
    }
  }

  if (BestScoreSoFar == WS_IllegalOrNegative) {
    DEBUG(dbgs() << "Did not eliminate guard " << *GuardInst << "\n");
    return false;
  }

  assert(BestSoFar != GuardInst && "Should have never visited same guard!");
  assert(DT.dominates(BestSoFar, GuardInst) && "Should be!");

  DEBUG(dbgs() << "Widening " << *GuardInst << " into " << *BestSoFar
               << " with score " << scoreTypeToString(BestScoreSoFar) << "\n");
  widenGuard(BestSoFar, GuardInst->getArgOperand(0));
  GuardInst->setArgOperand(0, ConstantInt::getTrue(GuardInst->getContext()));
  EliminatedGuards.push_back(GuardInst);
  WidenedGuards.insert(BestSoFar);
  return true;
}

GuardWideningImpl::WideningScore GuardWideningImpl::computeWideningScore(
    IntrinsicInst *DominatedGuard, Loop *DominatedGuardLoop,
    IntrinsicInst *DominatingGuard, Loop *DominatingGuardLoop) {
  bool HoistingOutOfLoop = false;

  if (DominatingGuardLoop != DominatedGuardLoop) {
    if (DominatingGuardLoop &&
        !DominatingGuardLoop->contains(DominatedGuardLoop))
      return WS_IllegalOrNegative;

    HoistingOutOfLoop = true;
  }

  if (!isAvailableAt(DominatedGuard->getArgOperand(0), DominatingGuard))
    return WS_IllegalOrNegative;

  bool HoistingOutOfIf =
      !PDT.dominates(DominatedGuard->getParent(), DominatingGuard->getParent());

  if (isWideningCondProfitable(DominatedGuard->getArgOperand(0),
                               DominatingGuard->getArgOperand(0)))
    return HoistingOutOfLoop ? WS_VeryPositive : WS_Positive;

  if (HoistingOutOfLoop)
    return WS_Positive;

  return HoistingOutOfIf ? WS_IllegalOrNegative : WS_Neutral;
}

bool GuardWideningImpl::isAvailableAt(Value *V, Instruction *Loc,
                                      SmallPtrSetImpl<Instruction *> &Visited) {
  auto *Inst = dyn_cast<Instruction>(V);
  if (!Inst || DT.dominates(Inst, Loc) || Visited.count(Inst))
    return true;

  if (!isSafeToSpeculativelyExecute(Inst, Loc, &DT) ||
      Inst->mayReadFromMemory())
    return false;

  Visited.insert(Inst);

  // We only want to go _up_ the dominance chain when recursing.
  assert(!isa<PHINode>(Loc) &&
         "PHIs should return false for isSafeToSpeculativelyExecute");
  assert(DT.isReachableFromEntry(Inst->getParent()) &&
         "We did a DFS from the block entry!");
  return all_of(Inst->operands(),
                [&](Value *Op) { return isAvailableAt(Op, Loc, Visited); });
}

void GuardWideningImpl::makeAvailableAt(Value *V, Instruction *Loc) {
  auto *Inst = dyn_cast<Instruction>(V);
  if (!Inst || DT.dominates(Inst, Loc))
    return;

  assert(isSafeToSpeculativelyExecute(Inst, Loc, &DT) &&
         !Inst->mayReadFromMemory() && "Should've checked with isAvailableAt!");

  for (Value *Op : Inst->operands())
    makeAvailableAt(Op, Loc);

  Inst->moveBefore(Loc);
}

bool GuardWideningImpl::widenCondCommon(Value *Cond0, Value *Cond1,
                                        Instruction *InsertPt, Value *&Result) {
  using namespace llvm::PatternMatch;

  {
    // L >u C0 && L >u C1  ->  L >u max(C0, C1)
    ConstantInt *RHS0, *RHS1;
    Value *LHS;
    ICmpInst::Predicate Pred0, Pred1;
    if (match(Cond0, m_ICmp(Pred0, m_Value(LHS), m_ConstantInt(RHS0))) &&
        match(Cond1, m_ICmp(Pred1, m_Specific(LHS), m_ConstantInt(RHS1)))) {

      ConstantRange CR0 =
          ConstantRange::makeExactICmpRegion(Pred0, RHS0->getValue());
      ConstantRange CR1 =
          ConstantRange::makeExactICmpRegion(Pred1, RHS1->getValue());

      // SubsetIntersect is a subset of the actual mathematical intersection of
      // CR0 and CR1, while SupersetIntersect is a superset of the actual
      // mathematical intersection.  If these two ConstantRanges are equal, then
      // we know we were able to represent the actual mathematical intersection
      // of CR0 and CR1, and can use the same to generate an icmp instruction.
      //
      // Given what we're doing here and the semantics of guards, it would
      // actually be correct to just use SubsetIntersect, but that may be too
      // aggressive in cases we care about.
      auto SubsetIntersect = CR0.inverse().unionWith(CR1.inverse()).inverse();
      auto SupersetIntersect = CR0.intersectWith(CR1);

      APInt NewRHSAP;
      CmpInst::Predicate Pred;
      if (SubsetIntersect == SupersetIntersect &&
          SubsetIntersect.getEquivalentICmp(Pred, NewRHSAP)) {
        if (InsertPt) {
          ConstantInt *NewRHS = ConstantInt::get(Cond0->getContext(), NewRHSAP);
          Result = new ICmpInst(InsertPt, Pred, LHS, NewRHS, "wide.chk");
        }
        return true;
      }
    }
  }

  {
    SmallVector<GuardWideningImpl::RangeCheck, 4> Checks, CombinedChecks;
    if (parseRangeChecks(Cond0, Checks) && parseRangeChecks(Cond1, Checks) &&
        combineRangeChecks(Checks, CombinedChecks)) {
      if (InsertPt) {
        Result = nullptr;
        for (auto &RC : CombinedChecks) {
          makeAvailableAt(RC.getCheckInst(), InsertPt);
          if (Result)
            Result = BinaryOperator::CreateAnd(RC.getCheckInst(), Result, "",
                                               InsertPt);
          else
            Result = RC.getCheckInst();
        }

        Result->setName("wide.chk");
      }
      return true;
    }
  }

  // Base case -- just logical-and the two conditions together.

  if (InsertPt) {
    makeAvailableAt(Cond0, InsertPt);
    makeAvailableAt(Cond1, InsertPt);

    Result = BinaryOperator::CreateAnd(Cond0, Cond1, "wide.chk", InsertPt);
  }

  // We were not able to compute Cond0 AND Cond1 for the price of one.
  return false;
}

bool GuardWideningImpl::parseRangeChecks(
    Value *CheckCond, SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks,
    SmallPtrSetImpl<Value *> &Visited) {
  if (!Visited.insert(CheckCond).second)
    return true;

  using namespace llvm::PatternMatch;

  {
    Value *AndLHS, *AndRHS;
    if (match(CheckCond, m_And(m_Value(AndLHS), m_Value(AndRHS))))
      return parseRangeChecks(AndLHS, Checks) &&
             parseRangeChecks(AndRHS, Checks);
  }

  auto *IC = dyn_cast<ICmpInst>(CheckCond);
  if (!IC || !IC->getOperand(0)->getType()->isIntegerTy() ||
      (IC->getPredicate() != ICmpInst::ICMP_ULT &&
       IC->getPredicate() != ICmpInst::ICMP_UGT))
    return false;

  Value *CmpLHS = IC->getOperand(0), *CmpRHS = IC->getOperand(1);
  if (IC->getPredicate() == ICmpInst::ICMP_UGT)
    std::swap(CmpLHS, CmpRHS);

  auto &DL = IC->getModule()->getDataLayout();

  GuardWideningImpl::RangeCheck Check(
      CmpLHS, cast<ConstantInt>(ConstantInt::getNullValue(CmpRHS->getType())),
      CmpRHS, IC);

  if (!isKnownNonNegative(Check.getLength(), DL))
    return false;

  // What we have in \c Check now is a correct interpretation of \p CheckCond.
  // Try to see if we can move some constant offsets into the \c Offset field.

  bool Changed;
  auto &Ctx = CheckCond->getContext();

  do {
    Value *OpLHS;
    ConstantInt *OpRHS;
    Changed = false;

#ifndef NDEBUG
    auto *BaseInst = dyn_cast<Instruction>(Check.getBase());
    assert((!BaseInst || DT.isReachableFromEntry(BaseInst->getParent())) &&
           "Unreachable instruction?");
#endif

    if (match(Check.getBase(), m_Add(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
      Check.setBase(OpLHS);
      APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
      Check.setOffset(ConstantInt::get(Ctx, NewOffset));
      Changed = true;
    } else if (match(Check.getBase(),
                     m_Or(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
      KnownBits Known = computeKnownBits(OpLHS, DL);
      if ((OpRHS->getValue() & Known.Zero) == OpRHS->getValue()) {
        Check.setBase(OpLHS);
        APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
        Check.setOffset(ConstantInt::get(Ctx, NewOffset));
        Changed = true;
      }
    }
  } while (Changed);

  Checks.push_back(Check);
  return true;
}

bool GuardWideningImpl::combineRangeChecks(
    SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks,
    SmallVectorImpl<GuardWideningImpl::RangeCheck> &RangeChecksOut) {
  unsigned OldCount = Checks.size();
  while (!Checks.empty()) {
    // Pick all of the range checks with a specific base and length, and try to
    // merge them.
    Value *CurrentBase = Checks.front().getBase();
    Value *CurrentLength = Checks.front().getLength();

    SmallVector<GuardWideningImpl::RangeCheck, 3> CurrentChecks;

    auto IsCurrentCheck = [&](GuardWideningImpl::RangeCheck &RC) {
      return RC.getBase() == CurrentBase && RC.getLength() == CurrentLength;
    };

    copy_if(Checks, std::back_inserter(CurrentChecks), IsCurrentCheck);
    Checks.erase(remove_if(Checks, IsCurrentCheck), Checks.end());

    assert(CurrentChecks.size() != 0 && "We know we have at least one!");

    if (CurrentChecks.size() < 3) {
      RangeChecksOut.insert(RangeChecksOut.end(), CurrentChecks.begin(),
                            CurrentChecks.end());
      continue;
    }

    // CurrentChecks.size() will typically be 3 here, but so far there has been
    // no need to hard-code that fact.

    std::sort(CurrentChecks.begin(), CurrentChecks.end(),
              [&](const GuardWideningImpl::RangeCheck &LHS,
                  const GuardWideningImpl::RangeCheck &RHS) {
      return LHS.getOffsetValue().slt(RHS.getOffsetValue());
    });

    // Note: std::sort should not invalidate the ChecksStart iterator.

    ConstantInt *MinOffset = CurrentChecks.front().getOffset(),
                *MaxOffset = CurrentChecks.back().getOffset();

    unsigned BitWidth = MaxOffset->getValue().getBitWidth();
    if ((MaxOffset->getValue() - MinOffset->getValue())
            .ugt(APInt::getSignedMinValue(BitWidth)))
      return false;

    APInt MaxDiff = MaxOffset->getValue() - MinOffset->getValue();
    const APInt &HighOffset = MaxOffset->getValue();
    auto OffsetOK = [&](const GuardWideningImpl::RangeCheck &RC) {
      return (HighOffset - RC.getOffsetValue()).ult(MaxDiff);
    };

    if (MaxDiff.isMinValue() ||
        !std::all_of(std::next(CurrentChecks.begin()), CurrentChecks.end(),
                     OffsetOK))
      return false;

    // We have a series of f+1 checks as:
    //
    //   I+k_0 u< L   ... Chk_0
    //   I+k_1 u< L   ... Chk_1
    //   ...
    //   I+k_f u< L   ... Chk_f
    //
    //     with forall i in [0,f]: k_f-k_i u< k_f-k_0  ... Precond_0
    //          k_f-k_0 u< INT_MIN+k_f                 ... Precond_1
    //          k_f != k_0                             ... Precond_2
    //
    // Claim:
    //   Chk_0 AND Chk_f  implies all the other checks
    //
    // Informal proof sketch:
    //
    // We will show that the integer range [I+k_0,I+k_f] does not unsigned-wrap
    // (i.e. going from I+k_0 to I+k_f does not cross the -1,0 boundary) and
    // thus I+k_f is the greatest unsigned value in that range.
    //
    // This combined with Ckh_(f+1) shows that everything in that range is u< L.
    // Via Precond_0 we know that all of the indices in Chk_0 through Chk_(f+1)
    // lie in [I+k_0,I+k_f], this proving our claim.
    //
    // To see that [I+k_0,I+k_f] is not a wrapping range, note that there are
    // two possibilities: I+k_0 u< I+k_f or I+k_0 >u I+k_f (they can't be equal
    // since k_0 != k_f).  In the former case, [I+k_0,I+k_f] is not a wrapping
    // range by definition, and the latter case is impossible:
    //
    //   0-----I+k_f---I+k_0----L---INT_MAX,INT_MIN------------------(-1)
    //   xxxxxx             xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    //
    // For Chk_0 to succeed, we'd have to have k_f-k_0 (the range highlighted
    // with 'x' above) to be at least >u INT_MIN.

    RangeChecksOut.emplace_back(CurrentChecks.front());
    RangeChecksOut.emplace_back(CurrentChecks.back());
  }

  assert(RangeChecksOut.size() <= OldCount && "We pessimized!");
  return RangeChecksOut.size() != OldCount;
}

PreservedAnalyses GuardWideningPass::run(Function &F,
                                         FunctionAnalysisManager &AM) {
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &LI = AM.getResult<LoopAnalysis>(F);
  auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
  if (!GuardWideningImpl(DT, PDT, LI).run())
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  return PA;
}

#ifndef NDEBUG
StringRef GuardWideningImpl::scoreTypeToString(WideningScore WS) {
  switch (WS) {
  case WS_IllegalOrNegative:
    return "IllegalOrNegative";
  case WS_Neutral:
    return "Neutral";
  case WS_Positive:
    return "Positive";
  case WS_VeryPositive:
    return "VeryPositive";
  }

  llvm_unreachable("Fully covered switch above!");
}
#endif

char GuardWideningLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(GuardWideningLegacyPass, "guard-widening", "Widen guards",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(GuardWideningLegacyPass, "guard-widening", "Widen guards",
                    false, false)

FunctionPass *llvm::createGuardWideningPass() {
  return new GuardWideningLegacyPass();
}