Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
//===------------------------- UnwindCursor.hpp ---------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//
// C++ interface to lower levels of libunwind
//===----------------------------------------------------------------------===//

#ifndef __UNWINDCURSOR_HPP__
#define __UNWINDCURSOR_HPP__

#include <algorithm>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <unwind.h>

#ifdef __APPLE__
  #include <mach-o/dyld.h>
#endif

#include "config.h"

#include "AddressSpace.hpp"
#include "CompactUnwinder.hpp"
#include "config.h"
#include "DwarfInstructions.hpp"
#include "EHHeaderParser.hpp"
#include "libunwind.h"
#include "Registers.hpp"
#include "Unwind-EHABI.h"

namespace libunwind {

#if _LIBUNWIND_SUPPORT_DWARF_UNWIND
/// Cache of recently found FDEs.
template <typename A>
class _LIBUNWIND_HIDDEN DwarfFDECache {
  typedef typename A::pint_t pint_t;
public:
  static pint_t findFDE(pint_t mh, pint_t pc);
  static void add(pint_t mh, pint_t ip_start, pint_t ip_end, pint_t fde);
  static void removeAllIn(pint_t mh);
  static void iterateCacheEntries(void (*func)(unw_word_t ip_start,
                                               unw_word_t ip_end,
                                               unw_word_t fde, unw_word_t mh));

private:

  struct entry {
    pint_t mh;
    pint_t ip_start;
    pint_t ip_end;
    pint_t fde;
  };

  // These fields are all static to avoid needing an initializer.
  // There is only one instance of this class per process.
  static pthread_rwlock_t _lock;
#ifdef __APPLE__
  static void dyldUnloadHook(const struct mach_header *mh, intptr_t slide);
  static bool _registeredForDyldUnloads;
#endif
  // Can't use std::vector<> here because this code is below libc++.
  static entry *_buffer;
  static entry *_bufferUsed;
  static entry *_bufferEnd;
  static entry _initialBuffer[64];
};

template <typename A>
typename DwarfFDECache<A>::entry *
DwarfFDECache<A>::_buffer = _initialBuffer;

template <typename A>
typename DwarfFDECache<A>::entry *
DwarfFDECache<A>::_bufferUsed = _initialBuffer;

template <typename A>
typename DwarfFDECache<A>::entry *
DwarfFDECache<A>::_bufferEnd = &_initialBuffer[64];

template <typename A>
typename DwarfFDECache<A>::entry DwarfFDECache<A>::_initialBuffer[64];

template <typename A>
pthread_rwlock_t DwarfFDECache<A>::_lock = PTHREAD_RWLOCK_INITIALIZER;

#ifdef __APPLE__
template <typename A>
bool DwarfFDECache<A>::_registeredForDyldUnloads = false;
#endif

template <typename A>
typename A::pint_t DwarfFDECache<A>::findFDE(pint_t mh, pint_t pc) {
  pint_t result = 0;
  _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_rdlock(&_lock));
  for (entry *p = _buffer; p < _bufferUsed; ++p) {
    if ((mh == p->mh) || (mh == 0)) {
      if ((p->ip_start <= pc) && (pc < p->ip_end)) {
        result = p->fde;
        break;
      }
    }
  }
  _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_unlock(&_lock));
  return result;
}

template <typename A>
void DwarfFDECache<A>::add(pint_t mh, pint_t ip_start, pint_t ip_end,
                           pint_t fde) {
#if !defined(_LIBUNWIND_NO_HEAP)
  _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_wrlock(&_lock));
  if (_bufferUsed >= _bufferEnd) {
    size_t oldSize = (size_t)(_bufferEnd - _buffer);
    size_t newSize = oldSize * 4;
    // Can't use operator new (we are below it).
    entry *newBuffer = (entry *)malloc(newSize * sizeof(entry));
    memcpy(newBuffer, _buffer, oldSize * sizeof(entry));
    if (_buffer != _initialBuffer)
      free(_buffer);
    _buffer = newBuffer;
    _bufferUsed = &newBuffer[oldSize];
    _bufferEnd = &newBuffer[newSize];
  }
  _bufferUsed->mh = mh;
  _bufferUsed->ip_start = ip_start;
  _bufferUsed->ip_end = ip_end;
  _bufferUsed->fde = fde;
  ++_bufferUsed;
#ifdef __APPLE__
  if (!_registeredForDyldUnloads) {
    _dyld_register_func_for_remove_image(&dyldUnloadHook);
    _registeredForDyldUnloads = true;
  }
#endif
  _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_unlock(&_lock));
#endif
}

template <typename A>
void DwarfFDECache<A>::removeAllIn(pint_t mh) {
  _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_wrlock(&_lock));
  entry *d = _buffer;
  for (const entry *s = _buffer; s < _bufferUsed; ++s) {
    if (s->mh != mh) {
      if (d != s)
        *d = *s;
      ++d;
    }
  }
  _bufferUsed = d;
  _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_unlock(&_lock));
}

#ifdef __APPLE__
template <typename A>
void DwarfFDECache<A>::dyldUnloadHook(const struct mach_header *mh, intptr_t ) {
  removeAllIn((pint_t) mh);
}
#endif

template <typename A>
void DwarfFDECache<A>::iterateCacheEntries(void (*func)(
    unw_word_t ip_start, unw_word_t ip_end, unw_word_t fde, unw_word_t mh)) {
  _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_wrlock(&_lock));
  for (entry *p = _buffer; p < _bufferUsed; ++p) {
    (*func)(p->ip_start, p->ip_end, p->fde, p->mh);
  }
  _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_unlock(&_lock));
}
#endif // _LIBUNWIND_SUPPORT_DWARF_UNWIND


#define arrayoffsetof(type, index, field) ((size_t)(&((type *)0)[index].field))

#if _LIBUNWIND_SUPPORT_COMPACT_UNWIND
template <typename A> class UnwindSectionHeader {
public:
  UnwindSectionHeader(A &addressSpace, typename A::pint_t addr)
      : _addressSpace(addressSpace), _addr(addr) {}

  uint32_t version() const {
    return _addressSpace.get32(_addr +
                               offsetof(unwind_info_section_header, version));
  }
  uint32_t commonEncodingsArraySectionOffset() const {
    return _addressSpace.get32(_addr +
                               offsetof(unwind_info_section_header,
                                        commonEncodingsArraySectionOffset));
  }
  uint32_t commonEncodingsArrayCount() const {
    return _addressSpace.get32(_addr + offsetof(unwind_info_section_header,
                                                commonEncodingsArrayCount));
  }
  uint32_t personalityArraySectionOffset() const {
    return _addressSpace.get32(_addr + offsetof(unwind_info_section_header,
                                                personalityArraySectionOffset));
  }
  uint32_t personalityArrayCount() const {
    return _addressSpace.get32(
        _addr + offsetof(unwind_info_section_header, personalityArrayCount));
  }
  uint32_t indexSectionOffset() const {
    return _addressSpace.get32(
        _addr + offsetof(unwind_info_section_header, indexSectionOffset));
  }
  uint32_t indexCount() const {
    return _addressSpace.get32(
        _addr + offsetof(unwind_info_section_header, indexCount));
  }

private:
  A                     &_addressSpace;
  typename A::pint_t     _addr;
};

template <typename A> class UnwindSectionIndexArray {
public:
  UnwindSectionIndexArray(A &addressSpace, typename A::pint_t addr)
      : _addressSpace(addressSpace), _addr(addr) {}

  uint32_t functionOffset(uint32_t index) const {
    return _addressSpace.get32(
        _addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
                              functionOffset));
  }
  uint32_t secondLevelPagesSectionOffset(uint32_t index) const {
    return _addressSpace.get32(
        _addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
                              secondLevelPagesSectionOffset));
  }
  uint32_t lsdaIndexArraySectionOffset(uint32_t index) const {
    return _addressSpace.get32(
        _addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
                              lsdaIndexArraySectionOffset));
  }

private:
  A                   &_addressSpace;
  typename A::pint_t   _addr;
};

template <typename A> class UnwindSectionRegularPageHeader {
public:
  UnwindSectionRegularPageHeader(A &addressSpace, typename A::pint_t addr)
      : _addressSpace(addressSpace), _addr(addr) {}

  uint32_t kind() const {
    return _addressSpace.get32(
        _addr + offsetof(unwind_info_regular_second_level_page_header, kind));
  }
  uint16_t entryPageOffset() const {
    return _addressSpace.get16(
        _addr + offsetof(unwind_info_regular_second_level_page_header,
                         entryPageOffset));
  }
  uint16_t entryCount() const {
    return _addressSpace.get16(
        _addr +
        offsetof(unwind_info_regular_second_level_page_header, entryCount));
  }

private:
  A &_addressSpace;
  typename A::pint_t _addr;
};

template <typename A> class UnwindSectionRegularArray {
public:
  UnwindSectionRegularArray(A &addressSpace, typename A::pint_t addr)
      : _addressSpace(addressSpace), _addr(addr) {}

  uint32_t functionOffset(uint32_t index) const {
    return _addressSpace.get32(
        _addr + arrayoffsetof(unwind_info_regular_second_level_entry, index,
                              functionOffset));
  }
  uint32_t encoding(uint32_t index) const {
    return _addressSpace.get32(
        _addr +
        arrayoffsetof(unwind_info_regular_second_level_entry, index, encoding));
  }

private:
  A &_addressSpace;
  typename A::pint_t _addr;
};

template <typename A> class UnwindSectionCompressedPageHeader {
public:
  UnwindSectionCompressedPageHeader(A &addressSpace, typename A::pint_t addr)
      : _addressSpace(addressSpace), _addr(addr) {}

  uint32_t kind() const {
    return _addressSpace.get32(
        _addr +
        offsetof(unwind_info_compressed_second_level_page_header, kind));
  }
  uint16_t entryPageOffset() const {
    return _addressSpace.get16(
        _addr + offsetof(unwind_info_compressed_second_level_page_header,
                         entryPageOffset));
  }
  uint16_t entryCount() const {
    return _addressSpace.get16(
        _addr +
        offsetof(unwind_info_compressed_second_level_page_header, entryCount));
  }
  uint16_t encodingsPageOffset() const {
    return _addressSpace.get16(
        _addr + offsetof(unwind_info_compressed_second_level_page_header,
                         encodingsPageOffset));
  }
  uint16_t encodingsCount() const {
    return _addressSpace.get16(
        _addr + offsetof(unwind_info_compressed_second_level_page_header,
                         encodingsCount));
  }

private:
  A &_addressSpace;
  typename A::pint_t _addr;
};

template <typename A> class UnwindSectionCompressedArray {
public:
  UnwindSectionCompressedArray(A &addressSpace, typename A::pint_t addr)
      : _addressSpace(addressSpace), _addr(addr) {}

  uint32_t functionOffset(uint32_t index) const {
    return UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(
        _addressSpace.get32(_addr + index * sizeof(uint32_t)));
  }
  uint16_t encodingIndex(uint32_t index) const {
    return UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX(
        _addressSpace.get32(_addr + index * sizeof(uint32_t)));
  }

private:
  A &_addressSpace;
  typename A::pint_t _addr;
};

template <typename A> class UnwindSectionLsdaArray {
public:
  UnwindSectionLsdaArray(A &addressSpace, typename A::pint_t addr)
      : _addressSpace(addressSpace), _addr(addr) {}

  uint32_t functionOffset(uint32_t index) const {
    return _addressSpace.get32(
        _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry,
                              index, functionOffset));
  }
  uint32_t lsdaOffset(uint32_t index) const {
    return _addressSpace.get32(
        _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry,
                              index, lsdaOffset));
  }

private:
  A                   &_addressSpace;
  typename A::pint_t   _addr;
};
#endif // _LIBUNWIND_SUPPORT_COMPACT_UNWIND

class _LIBUNWIND_HIDDEN AbstractUnwindCursor {
public:
  // NOTE: provide a class specific placement deallocation function (S5.3.4 p20)
  // This avoids an unnecessary dependency to libc++abi.
  void operator delete(void *, size_t) {}

  virtual ~AbstractUnwindCursor() {}
  virtual bool validReg(int) { _LIBUNWIND_ABORT("validReg not implemented"); }
  virtual unw_word_t getReg(int) { _LIBUNWIND_ABORT("getReg not implemented"); }
  virtual void setReg(int, unw_word_t) {
    _LIBUNWIND_ABORT("setReg not implemented");
  }
  virtual bool validFloatReg(int) {
    _LIBUNWIND_ABORT("validFloatReg not implemented");
  }
  virtual unw_fpreg_t getFloatReg(int) {
    _LIBUNWIND_ABORT("getFloatReg not implemented");
  }
  virtual void setFloatReg(int, unw_fpreg_t) {
    _LIBUNWIND_ABORT("setFloatReg not implemented");
  }
  virtual int step() { _LIBUNWIND_ABORT("step not implemented"); }
  virtual void getInfo(unw_proc_info_t *) {
    _LIBUNWIND_ABORT("getInfo not implemented");
  }
  virtual void jumpto() { _LIBUNWIND_ABORT("jumpto not implemented"); }
  virtual bool isSignalFrame() {
    _LIBUNWIND_ABORT("isSignalFrame not implemented");
  }
  virtual bool getFunctionName(char *, size_t, unw_word_t *) {
    _LIBUNWIND_ABORT("getFunctionName not implemented");
  }
  virtual void setInfoBasedOnIPRegister(bool = false) {
    _LIBUNWIND_ABORT("setInfoBasedOnIPRegister not implemented");
  }
  virtual const char *getRegisterName(int) {
    _LIBUNWIND_ABORT("getRegisterName not implemented");
  }
#ifdef __arm__
  virtual void saveVFPAsX() { _LIBUNWIND_ABORT("saveVFPAsX not implemented"); }
#endif
};

/// UnwindCursor contains all state (including all register values) during
/// an unwind.  This is normally stack allocated inside a unw_cursor_t.
template <typename A, typename R>
class UnwindCursor : public AbstractUnwindCursor{
  typedef typename A::pint_t pint_t;
public:
                      UnwindCursor(unw_context_t *context, A &as);
                      UnwindCursor(A &as, void *threadArg);
  virtual             ~UnwindCursor() {}
  virtual bool        validReg(int);
  virtual unw_word_t  getReg(int);
  virtual void        setReg(int, unw_word_t);
  virtual bool        validFloatReg(int);
  virtual unw_fpreg_t getFloatReg(int);
  virtual void        setFloatReg(int, unw_fpreg_t);
  virtual int         step();
  virtual void        getInfo(unw_proc_info_t *);
  virtual void        jumpto();
  virtual bool        isSignalFrame();
  virtual bool        getFunctionName(char *buf, size_t len, unw_word_t *off);
  virtual void        setInfoBasedOnIPRegister(bool isReturnAddress = false);
  virtual const char *getRegisterName(int num);
#ifdef __arm__
  virtual void        saveVFPAsX();
#endif

private:

#if _LIBUNWIND_ARM_EHABI
  bool getInfoFromEHABISection(pint_t pc, const UnwindInfoSections &sects);

  int stepWithEHABI() {
    size_t len = 0;
    size_t off = 0;
    // FIXME: Calling decode_eht_entry() here is violating the libunwind
    // abstraction layer.
    const uint32_t *ehtp =
        decode_eht_entry(reinterpret_cast<const uint32_t *>(_info.unwind_info),
                         &off, &len);
    if (_Unwind_VRS_Interpret((_Unwind_Context *)this, ehtp, off, len) !=
            _URC_CONTINUE_UNWIND)
      return UNW_STEP_END;
    return UNW_STEP_SUCCESS;
  }
#endif

#if _LIBUNWIND_SUPPORT_DWARF_UNWIND
  bool getInfoFromDwarfSection(pint_t pc, const UnwindInfoSections &sects,
                                            uint32_t fdeSectionOffsetHint=0);
  int stepWithDwarfFDE() {
    return DwarfInstructions<A, R>::stepWithDwarf(_addressSpace,
                                              (pint_t)this->getReg(UNW_REG_IP),
                                              (pint_t)_info.unwind_info,
                                              _registers);
  }
#endif

#if _LIBUNWIND_SUPPORT_COMPACT_UNWIND
  bool getInfoFromCompactEncodingSection(pint_t pc,
                                            const UnwindInfoSections &sects);
  int stepWithCompactEncoding() {
  #if _LIBUNWIND_SUPPORT_DWARF_UNWIND
    if ( compactSaysUseDwarf() )
      return stepWithDwarfFDE();
  #endif
    R dummy;
    return stepWithCompactEncoding(dummy);
  }

#if defined(_LIBUNWIND_TARGET_X86_64)
  int stepWithCompactEncoding(Registers_x86_64 &) {
    return CompactUnwinder_x86_64<A>::stepWithCompactEncoding(
        _info.format, _info.start_ip, _addressSpace, _registers);
  }
#endif

#if defined(_LIBUNWIND_TARGET_I386)
  int stepWithCompactEncoding(Registers_x86 &) {
    return CompactUnwinder_x86<A>::stepWithCompactEncoding(
        _info.format, (uint32_t)_info.start_ip, _addressSpace, _registers);
  }
#endif

#if defined(_LIBUNWIND_TARGET_PPC)
  int stepWithCompactEncoding(Registers_ppc &) {
    return UNW_EINVAL;
  }
#endif

#if defined(_LIBUNWIND_TARGET_AARCH64)
  int stepWithCompactEncoding(Registers_arm64 &) {
    return CompactUnwinder_arm64<A>::stepWithCompactEncoding(
        _info.format, _info.start_ip, _addressSpace, _registers);
  }
#endif

#if defined(_LIBUNWIND_TARGET_MIPS_O32)
  int stepWithCompactEncoding(Registers_mips_o32 &) {
    return UNW_EINVAL;
  }
#endif

#if defined(_LIBUNWIND_TARGET_MIPS_NEWABI)
  int stepWithCompactEncoding(Registers_mips_newabi &) {
    return UNW_EINVAL;
  }
#endif

  bool compactSaysUseDwarf(uint32_t *offset=NULL) const {
    R dummy;
    return compactSaysUseDwarf(dummy, offset);
  }

#if defined(_LIBUNWIND_TARGET_X86_64)
  bool compactSaysUseDwarf(Registers_x86_64 &, uint32_t *offset) const {
    if ((_info.format & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_DWARF) {
      if (offset)
        *offset = (_info.format & UNWIND_X86_64_DWARF_SECTION_OFFSET);
      return true;
    }
    return false;
  }
#endif

#if defined(_LIBUNWIND_TARGET_I386)
  bool compactSaysUseDwarf(Registers_x86 &, uint32_t *offset) const {
    if ((_info.format & UNWIND_X86_MODE_MASK) == UNWIND_X86_MODE_DWARF) {
      if (offset)
        *offset = (_info.format & UNWIND_X86_DWARF_SECTION_OFFSET);
      return true;
    }
    return false;
  }
#endif

#if defined(_LIBUNWIND_TARGET_PPC)
  bool compactSaysUseDwarf(Registers_ppc &, uint32_t *) const {
    return true;
  }
#endif

#if defined(_LIBUNWIND_TARGET_AARCH64)
  bool compactSaysUseDwarf(Registers_arm64 &, uint32_t *offset) const {
    if ((_info.format & UNWIND_ARM64_MODE_MASK) == UNWIND_ARM64_MODE_DWARF) {
      if (offset)
        *offset = (_info.format & UNWIND_ARM64_DWARF_SECTION_OFFSET);
      return true;
    }
    return false;
  }
#endif

#if defined(_LIBUNWIND_TARGET_MIPS_O32)
  bool compactSaysUseDwarf(Registers_mips_o32 &, uint32_t *) const {
    return true;
  }
#endif

#if defined(_LIBUNWIND_TARGET_MIPS_NEWABI)
  bool compactSaysUseDwarf(Registers_mips_newabi &, uint32_t *) const {
    return true;
  }
#endif
#endif // _LIBUNWIND_SUPPORT_COMPACT_UNWIND

#if _LIBUNWIND_SUPPORT_DWARF_UNWIND
  compact_unwind_encoding_t dwarfEncoding() const {
    R dummy;
    return dwarfEncoding(dummy);
  }

#if defined(_LIBUNWIND_TARGET_X86_64)
  compact_unwind_encoding_t dwarfEncoding(Registers_x86_64 &) const {
    return UNWIND_X86_64_MODE_DWARF;
  }
#endif

#if defined(_LIBUNWIND_TARGET_I386)
  compact_unwind_encoding_t dwarfEncoding(Registers_x86 &) const {
    return UNWIND_X86_MODE_DWARF;
  }
#endif

#if defined(_LIBUNWIND_TARGET_PPC)
  compact_unwind_encoding_t dwarfEncoding(Registers_ppc &) const {
    return 0;
  }
#endif

#if defined(_LIBUNWIND_TARGET_AARCH64)
  compact_unwind_encoding_t dwarfEncoding(Registers_arm64 &) const {
    return UNWIND_ARM64_MODE_DWARF;
  }
#endif

#if defined (_LIBUNWIND_TARGET_OR1K)
  compact_unwind_encoding_t dwarfEncoding(Registers_or1k &) const {
    return 0;
  }
#endif

#if defined (_LIBUNWIND_TARGET_RISCV)
  compact_unwind_encoding_t dwarfEncoding(Registers_riscv &) const {
    return 0;
  }
#endif

#if defined (_LIBUNWIND_TARGET_MIPS_O32)
  compact_unwind_encoding_t dwarfEncoding(Registers_mips_o32 &) const {
    return 0;
  }
#endif

#if defined (_LIBUNWIND_TARGET_MIPS_NEWABI)
  compact_unwind_encoding_t dwarfEncoding(Registers_mips_newabi &) const {
    return 0;
  }
#endif
#endif // _LIBUNWIND_SUPPORT_DWARF_UNWIND


  A               &_addressSpace;
  R                _registers;
  unw_proc_info_t  _info;
  bool             _unwindInfoMissing;
  bool             _isSignalFrame;
};


template <typename A, typename R>
UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as)
    : _addressSpace(as), _registers(context), _unwindInfoMissing(false),
      _isSignalFrame(false) {
  static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit),
                "UnwindCursor<> does not fit in unw_cursor_t");
  memset(&_info, 0, sizeof(_info));
}

template <typename A, typename R>
UnwindCursor<A, R>::UnwindCursor(A &as, void *)
    : _addressSpace(as), _unwindInfoMissing(false), _isSignalFrame(false) {
  memset(&_info, 0, sizeof(_info));
  // FIXME
  // fill in _registers from thread arg
}


template <typename A, typename R>
bool UnwindCursor<A, R>::validReg(int regNum) {
  return _registers.validRegister(regNum);
}

template <typename A, typename R>
unw_word_t UnwindCursor<A, R>::getReg(int regNum) {
  return _registers.getRegister(regNum);
}

template <typename A, typename R>
void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) {
  _registers.setRegister(regNum, (typename A::pint_t)value);
}

template <typename A, typename R>
bool UnwindCursor<A, R>::validFloatReg(int regNum) {
  return _registers.validFloatRegister(regNum);
}

template <typename A, typename R>
unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) {
  return _registers.getFloatRegister(regNum);
}

template <typename A, typename R>
void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) {
  _registers.setFloatRegister(regNum, value);
}

template <typename A, typename R> void UnwindCursor<A, R>::jumpto() {
  _registers.jumpto();
}

#ifdef __arm__
template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() {
  _registers.saveVFPAsX();
}
#endif

template <typename A, typename R>
const char *UnwindCursor<A, R>::getRegisterName(int regNum) {
  return _registers.getRegisterName(regNum);
}

template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() {
  return _isSignalFrame;
}

#if _LIBUNWIND_ARM_EHABI
struct EHABIIndexEntry {
  uint32_t functionOffset;
  uint32_t data;
};

template<typename A>
struct EHABISectionIterator {
  typedef EHABISectionIterator _Self;

  typedef std::random_access_iterator_tag iterator_category;
  typedef typename A::pint_t value_type;
  typedef typename A::pint_t* pointer;
  typedef typename A::pint_t& reference;
  typedef size_t size_type;
  typedef size_t difference_type;

  static _Self begin(A& addressSpace, const UnwindInfoSections& sects) {
    return _Self(addressSpace, sects, 0);
  }
  static _Self end(A& addressSpace, const UnwindInfoSections& sects) {
    return _Self(addressSpace, sects, sects.arm_section_length);
  }

  EHABISectionIterator(A& addressSpace, const UnwindInfoSections& sects, size_t i)
      : _i(i), _addressSpace(&addressSpace), _sects(&sects) {}

  _Self& operator++() { ++_i; return *this; }
  _Self& operator+=(size_t a) { _i += a; return *this; }
  _Self& operator--() { assert(_i > 0); --_i; return *this; }
  _Self& operator-=(size_t a) { assert(_i >= a); _i -= a; return *this; }

  _Self operator+(size_t a) { _Self out = *this; out._i += a; return out; }
  _Self operator-(size_t a) { assert(_i >= a); _Self out = *this; out._i -= a; return out; }

  size_t operator-(const _Self& other) { return _i - other._i; }

  bool operator==(const _Self& other) const {
    assert(_addressSpace == other._addressSpace);
    assert(_sects == other._sects);
    return _i == other._i;
  }

  typename A::pint_t operator*() const { return functionAddress(); }

  typename A::pint_t functionAddress() const {
    typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof(
        EHABIIndexEntry, _i, functionOffset);
    return indexAddr + signExtendPrel31(_addressSpace->get32(indexAddr));
  }

  typename A::pint_t dataAddress() {
    typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof(
        EHABIIndexEntry, _i, data);
    return indexAddr;
  }

 private:
  size_t _i;
  A* _addressSpace;
  const UnwindInfoSections* _sects;
};

template <typename A, typename R>
bool UnwindCursor<A, R>::getInfoFromEHABISection(
    pint_t pc,
    const UnwindInfoSections &sects) {
  EHABISectionIterator<A> begin =
      EHABISectionIterator<A>::begin(_addressSpace, sects);
  EHABISectionIterator<A> end =
      EHABISectionIterator<A>::end(_addressSpace, sects);

  EHABISectionIterator<A> itNextPC = std::upper_bound(begin, end, pc);
  if (itNextPC == begin || itNextPC == end)
    return false;
  EHABISectionIterator<A> itThisPC = itNextPC - 1;

  pint_t thisPC = itThisPC.functionAddress();
  pint_t nextPC = itNextPC.functionAddress();
  pint_t indexDataAddr = itThisPC.dataAddress();

  if (indexDataAddr == 0)
    return false;

  uint32_t indexData = _addressSpace.get32(indexDataAddr);
  if (indexData == UNW_EXIDX_CANTUNWIND)
    return false;

  // If the high bit is set, the exception handling table entry is inline inside
  // the index table entry on the second word (aka |indexDataAddr|). Otherwise,
  // the table points at an offset in the exception handling table (section 5 EHABI).
  pint_t exceptionTableAddr;
  uint32_t exceptionTableData;
  bool isSingleWordEHT;
  if (indexData & 0x80000000) {
    exceptionTableAddr = indexDataAddr;
    // TODO(ajwong): Should this data be 0?
    exceptionTableData = indexData;
    isSingleWordEHT = true;
  } else {
    exceptionTableAddr = indexDataAddr + signExtendPrel31(indexData);
    exceptionTableData = _addressSpace.get32(exceptionTableAddr);
    isSingleWordEHT = false;
  }

  // Now we know the 3 things:
  //   exceptionTableAddr -- exception handler table entry.
  //   exceptionTableData -- the data inside the first word of the eht entry.
  //   isSingleWordEHT -- whether the entry is in the index.
  unw_word_t personalityRoutine = 0xbadf00d;
  bool scope32 = false;
  uintptr_t lsda;

  // If the high bit in the exception handling table entry is set, the entry is
  // in compact form (section 6.3 EHABI).
  if (exceptionTableData & 0x80000000) {
    // Grab the index of the personality routine from the compact form.
    uint32_t choice = (exceptionTableData & 0x0f000000) >> 24;
    uint32_t extraWords = 0;
    switch (choice) {
      case 0:
        personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr0;
        extraWords = 0;
        scope32 = false;
        lsda = isSingleWordEHT ? 0 : (exceptionTableAddr + 4);
        break;
      case 1:
        personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr1;
        extraWords = (exceptionTableData & 0x00ff0000) >> 16;
        scope32 = false;
        lsda = exceptionTableAddr + (extraWords + 1) * 4;
        break;
      case 2:
        personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr2;
        extraWords = (exceptionTableData & 0x00ff0000) >> 16;
        scope32 = true;
        lsda = exceptionTableAddr + (extraWords + 1) * 4;
        break;
      default:
        _LIBUNWIND_ABORT("unknown personality routine");
        return false;
    }

    if (isSingleWordEHT) {
      if (extraWords != 0) {
        _LIBUNWIND_ABORT("index inlined table detected but pr function "
                         "requires extra words");
        return false;
      }
    }
  } else {
    pint_t personalityAddr =
        exceptionTableAddr + signExtendPrel31(exceptionTableData);
    personalityRoutine = personalityAddr;

    // ARM EHABI # 6.2, # 9.2
    //
    //  +---- ehtp
    //  v
    // +--------------------------------------+
    // | +--------+--------+--------+-------+ |
    // | |0| prel31 to personalityRoutine   | |
    // | +--------+--------+--------+-------+ |
    // | |      N |      unwind opcodes     | |  <-- UnwindData
    // | +--------+--------+--------+-------+ |
    // | | Word 2        unwind opcodes     | |
    // | +--------+--------+--------+-------+ |
    // | ...                                  |
    // | +--------+--------+--------+-------+ |
    // | | Word N        unwind opcodes     | |
    // | +--------+--------+--------+-------+ |
    // | | LSDA                             | |  <-- lsda
    // | | ...                              | |
    // | +--------+--------+--------+-------+ |
    // +--------------------------------------+

    uint32_t *UnwindData = reinterpret_cast<uint32_t*>(exceptionTableAddr) + 1;
    uint32_t FirstDataWord = *UnwindData;
    size_t N = ((FirstDataWord >> 24) & 0xff);
    size_t NDataWords = N + 1;
    lsda = reinterpret_cast<uintptr_t>(UnwindData + NDataWords);
  }

  _info.start_ip = thisPC;
  _info.end_ip = nextPC;
  _info.handler = personalityRoutine;
  _info.unwind_info = exceptionTableAddr;
  _info.lsda = lsda;
  // flags is pr_cache.additional. See EHABI #7.2 for definition of bit 0.
  _info.flags = isSingleWordEHT ? 1 : 0 | scope32 ? 0x2 : 0;  // Use enum?

  return true;
}
#endif

#if _LIBUNWIND_SUPPORT_DWARF_UNWIND
template <typename A, typename R>
bool UnwindCursor<A, R>::getInfoFromDwarfSection(pint_t pc,
                                                const UnwindInfoSections &sects,
                                                uint32_t fdeSectionOffsetHint) {
  typename CFI_Parser<A>::FDE_Info fdeInfo;
  typename CFI_Parser<A>::CIE_Info cieInfo;
  bool foundFDE = false;
  bool foundInCache = false;
  // If compact encoding table gave offset into dwarf section, go directly there
  if (fdeSectionOffsetHint != 0) {
    foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
                                    (uint32_t)sects.dwarf_section_length,
                                    sects.dwarf_section + fdeSectionOffsetHint,
                                    &fdeInfo, &cieInfo);
  }
#if _LIBUNWIND_SUPPORT_DWARF_INDEX
  if (!foundFDE && (sects.dwarf_index_section != 0)) {
    foundFDE = EHHeaderParser<A>::findFDE(
        _addressSpace, pc, sects.dwarf_index_section,
        (uint32_t)sects.dwarf_index_section_length, &fdeInfo, &cieInfo);
  }
#endif
  if (!foundFDE) {
    // otherwise, search cache of previously found FDEs.
    pint_t cachedFDE = DwarfFDECache<A>::findFDE(sects.dso_base, pc);
    if (cachedFDE != 0) {
      foundFDE =
          CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
                                 (uint32_t)sects.dwarf_section_length,
                                 cachedFDE, &fdeInfo, &cieInfo);
      foundInCache = foundFDE;
    }
  }
  if (!foundFDE) {
    // Still not found, do full scan of __eh_frame section.
    foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
                                      (uint32_t)sects.dwarf_section_length, 0,
                                      &fdeInfo, &cieInfo);
  }
  if (foundFDE) {
    typename CFI_Parser<A>::PrologInfo prolog;
    if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, pc,
                                            &prolog)) {
      // Save off parsed FDE info
      _info.start_ip          = fdeInfo.pcStart;
      _info.end_ip            = fdeInfo.pcEnd;
      _info.lsda              = fdeInfo.lsda;
      _info.handler           = cieInfo.personality;
      _info.gp                = prolog.spExtraArgSize;
      _info.flags             = 0;
      _info.format            = dwarfEncoding();
      _info.unwind_info       = fdeInfo.fdeStart;
      _info.unwind_info_size  = (uint32_t)fdeInfo.fdeLength;
      _info.extra             = (unw_word_t) sects.dso_base;

      // Add to cache (to make next lookup faster) if we had no hint
      // and there was no index.
      if (!foundInCache && (fdeSectionOffsetHint == 0)) {
  #if _LIBUNWIND_SUPPORT_DWARF_INDEX
        if (sects.dwarf_index_section == 0)
  #endif
        DwarfFDECache<A>::add(sects.dso_base, fdeInfo.pcStart, fdeInfo.pcEnd,
                              fdeInfo.fdeStart);
      }
      return true;
    }
  }
  //_LIBUNWIND_DEBUG_LOG("can't find/use FDE for pc=0x%llX", (uint64_t)pc);
  return false;
}
#endif // _LIBUNWIND_SUPPORT_DWARF_UNWIND


#if _LIBUNWIND_SUPPORT_COMPACT_UNWIND
template <typename A, typename R>
bool UnwindCursor<A, R>::getInfoFromCompactEncodingSection(pint_t pc,
                                              const UnwindInfoSections &sects) {
  const bool log = false;
  if (log)
    fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX, mh=0x%llX)\n",
            (uint64_t)pc, (uint64_t)sects.dso_base);

  const UnwindSectionHeader<A> sectionHeader(_addressSpace,
                                                sects.compact_unwind_section);
  if (sectionHeader.version() != UNWIND_SECTION_VERSION)
    return false;

  // do a binary search of top level index to find page with unwind info
  pint_t targetFunctionOffset = pc - sects.dso_base;
  const UnwindSectionIndexArray<A> topIndex(_addressSpace,
                                           sects.compact_unwind_section
                                         + sectionHeader.indexSectionOffset());
  uint32_t low = 0;
  uint32_t high = sectionHeader.indexCount();
  uint32_t last = high - 1;
  while (low < high) {
    uint32_t mid = (low + high) / 2;
    //if ( log ) fprintf(stderr, "\tmid=%d, low=%d, high=%d, *mid=0x%08X\n",
    //mid, low, high, topIndex.functionOffset(mid));
    if (topIndex.functionOffset(mid) <= targetFunctionOffset) {
      if ((mid == last) ||
          (topIndex.functionOffset(mid + 1) > targetFunctionOffset)) {
        low = mid;
        break;
      } else {
        low = mid + 1;
      }
    } else {
      high = mid;
    }
  }
  const uint32_t firstLevelFunctionOffset = topIndex.functionOffset(low);
  const uint32_t firstLevelNextPageFunctionOffset =
      topIndex.functionOffset(low + 1);
  const pint_t secondLevelAddr =
      sects.compact_unwind_section + topIndex.secondLevelPagesSectionOffset(low);
  const pint_t lsdaArrayStartAddr =
      sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low);
  const pint_t lsdaArrayEndAddr =
      sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low+1);
  if (log)
    fprintf(stderr, "\tfirst level search for result index=%d "
                    "to secondLevelAddr=0x%llX\n",
                    low, (uint64_t) secondLevelAddr);
  // do a binary search of second level page index
  uint32_t encoding = 0;
  pint_t funcStart = 0;
  pint_t funcEnd = 0;
  pint_t lsda = 0;
  pint_t personality = 0;
  uint32_t pageKind = _addressSpace.get32(secondLevelAddr);
  if (pageKind == UNWIND_SECOND_LEVEL_REGULAR) {
    // regular page
    UnwindSectionRegularPageHeader<A> pageHeader(_addressSpace,
                                                 secondLevelAddr);
    UnwindSectionRegularArray<A> pageIndex(
        _addressSpace, secondLevelAddr + pageHeader.entryPageOffset());
    // binary search looks for entry with e where index[e].offset <= pc <
    // index[e+1].offset
    if (log)
      fprintf(stderr, "\tbinary search for targetFunctionOffset=0x%08llX in "
                      "regular page starting at secondLevelAddr=0x%llX\n",
              (uint64_t) targetFunctionOffset, (uint64_t) secondLevelAddr);
    low = 0;
    high = pageHeader.entryCount();
    while (low < high) {
      uint32_t mid = (low + high) / 2;
      if (pageIndex.functionOffset(mid) <= targetFunctionOffset) {
        if (mid == (uint32_t)(pageHeader.entryCount() - 1)) {
          // at end of table
          low = mid;
          funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base;
          break;
        } else if (pageIndex.functionOffset(mid + 1) > targetFunctionOffset) {
          // next is too big, so we found it
          low = mid;
          funcEnd = pageIndex.functionOffset(low + 1) + sects.dso_base;
          break;
        } else {
          low = mid + 1;
        }
      } else {
        high = mid;
      }
    }
    encoding = pageIndex.encoding(low);
    funcStart = pageIndex.functionOffset(low) + sects.dso_base;
    if (pc < funcStart) {
      if (log)
        fprintf(
            stderr,
            "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n",
            (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd);
      return false;
    }
    if (pc > funcEnd) {
      if (log)
        fprintf(
            stderr,
            "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n",
            (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd);
      return false;
    }
  } else if (pageKind == UNWIND_SECOND_LEVEL_COMPRESSED) {
    // compressed page
    UnwindSectionCompressedPageHeader<A> pageHeader(_addressSpace,
                                                    secondLevelAddr);
    UnwindSectionCompressedArray<A> pageIndex(
        _addressSpace, secondLevelAddr + pageHeader.entryPageOffset());
    const uint32_t targetFunctionPageOffset =
        (uint32_t)(targetFunctionOffset - firstLevelFunctionOffset);
    // binary search looks for entry with e where index[e].offset <= pc <
    // index[e+1].offset
    if (log)
      fprintf(stderr, "\tbinary search of compressed page starting at "
                      "secondLevelAddr=0x%llX\n",
              (uint64_t) secondLevelAddr);
    low = 0;
    last = pageHeader.entryCount() - 1;
    high = pageHeader.entryCount();
    while (low < high) {
      uint32_t mid = (low + high) / 2;
      if (pageIndex.functionOffset(mid) <= targetFunctionPageOffset) {
        if ((mid == last) ||
            (pageIndex.functionOffset(mid + 1) > targetFunctionPageOffset)) {
          low = mid;
          break;
        } else {
          low = mid + 1;
        }
      } else {
        high = mid;
      }
    }
    funcStart = pageIndex.functionOffset(low) + firstLevelFunctionOffset
                                                              + sects.dso_base;
    if (low < last)
      funcEnd =
          pageIndex.functionOffset(low + 1) + firstLevelFunctionOffset
                                                              + sects.dso_base;
    else
      funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base;
    if (pc < funcStart) {
      _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX not in second  "
                           "level compressed unwind table. funcStart=0x%llX",
                            (uint64_t) pc, (uint64_t) funcStart);
      return false;
    }
    if (pc > funcEnd) {
      _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX not in second  "
                          "level compressed unwind table. funcEnd=0x%llX",
                           (uint64_t) pc, (uint64_t) funcEnd);
      return false;
    }
    uint16_t encodingIndex = pageIndex.encodingIndex(low);
    if (encodingIndex < sectionHeader.commonEncodingsArrayCount()) {
      // encoding is in common table in section header
      encoding = _addressSpace.get32(
          sects.compact_unwind_section +
          sectionHeader.commonEncodingsArraySectionOffset() +
          encodingIndex * sizeof(uint32_t));
    } else {
      // encoding is in page specific table
      uint16_t pageEncodingIndex =
          encodingIndex - (uint16_t)sectionHeader.commonEncodingsArrayCount();
      encoding = _addressSpace.get32(secondLevelAddr +
                                     pageHeader.encodingsPageOffset() +
                                     pageEncodingIndex * sizeof(uint32_t));
    }
  } else {
    _LIBUNWIND_DEBUG_LOG("malformed __unwind_info at 0x%0llX bad second "
                         "level page",
                          (uint64_t) sects.compact_unwind_section);
    return false;
  }

  // look up LSDA, if encoding says function has one
  if (encoding & UNWIND_HAS_LSDA) {
    UnwindSectionLsdaArray<A> lsdaIndex(_addressSpace, lsdaArrayStartAddr);
    uint32_t funcStartOffset = (uint32_t)(funcStart - sects.dso_base);
    low = 0;
    high = (uint32_t)(lsdaArrayEndAddr - lsdaArrayStartAddr) /
                    sizeof(unwind_info_section_header_lsda_index_entry);
    // binary search looks for entry with exact match for functionOffset
    if (log)
      fprintf(stderr,
              "\tbinary search of lsda table for targetFunctionOffset=0x%08X\n",
              funcStartOffset);
    while (low < high) {
      uint32_t mid = (low + high) / 2;
      if (lsdaIndex.functionOffset(mid) == funcStartOffset) {
        lsda = lsdaIndex.lsdaOffset(mid) + sects.dso_base;
        break;
      } else if (lsdaIndex.functionOffset(mid) < funcStartOffset) {
        low = mid + 1;
      } else {
        high = mid;
      }
    }
    if (lsda == 0) {
      _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with HAS_LSDA bit set for "
                    "pc=0x%0llX, but lsda table has no entry",
                    encoding, (uint64_t) pc);
      return false;
    }
  }

  // extact personality routine, if encoding says function has one
  uint32_t personalityIndex = (encoding & UNWIND_PERSONALITY_MASK) >>
                              (__builtin_ctz(UNWIND_PERSONALITY_MASK));
  if (personalityIndex != 0) {
    --personalityIndex; // change 1-based to zero-based index
    if (personalityIndex > sectionHeader.personalityArrayCount()) {
      _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with personality index %d,  "
                            "but personality table has only %d entires",
                            encoding, personalityIndex,
                            sectionHeader.personalityArrayCount());
      return false;
    }
    int32_t personalityDelta = (int32_t)_addressSpace.get32(
        sects.compact_unwind_section +
        sectionHeader.personalityArraySectionOffset() +
        personalityIndex * sizeof(uint32_t));
    pint_t personalityPointer = sects.dso_base + (pint_t)personalityDelta;
    personality = _addressSpace.getP(personalityPointer);
    if (log)
      fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), "
                      "personalityDelta=0x%08X, personality=0x%08llX\n",
              (uint64_t) pc, personalityDelta, (uint64_t) personality);
  }

  if (log)
    fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), "
                    "encoding=0x%08X, lsda=0x%08llX for funcStart=0x%llX\n",
            (uint64_t) pc, encoding, (uint64_t) lsda, (uint64_t) funcStart);
  _info.start_ip = funcStart;
  _info.end_ip = funcEnd;
  _info.lsda = lsda;
  _info.handler = personality;
  _info.gp = 0;
  _info.flags = 0;
  _info.format = encoding;
  _info.unwind_info = 0;
  _info.unwind_info_size = 0;
  _info.extra = sects.dso_base;
  return true;
}
#endif // _LIBUNWIND_SUPPORT_COMPACT_UNWIND


template <typename A, typename R>
void UnwindCursor<A, R>::setInfoBasedOnIPRegister(bool isReturnAddress) {
  pint_t pc = (pint_t)this->getReg(UNW_REG_IP);
#if _LIBUNWIND_ARM_EHABI
  // Remove the thumb bit so the IP represents the actual instruction address.
  // This matches the behaviour of _Unwind_GetIP on arm.
  pc &= (pint_t)~0x1;
#endif

  // If the last line of a function is a "throw" the compiler sometimes
  // emits no instructions after the call to __cxa_throw.  This means
  // the return address is actually the start of the next function.
  // To disambiguate this, back up the pc when we know it is a return
  // address.
  if (isReturnAddress)
    --pc;

  // Ask address space object to find unwind sections for this pc.
  UnwindInfoSections sects;
  if (_addressSpace.findUnwindSections(pc, sects)) {
#if _LIBUNWIND_SUPPORT_COMPACT_UNWIND
    // If there is a compact unwind encoding table, look there first.
    if (sects.compact_unwind_section != 0) {
      if (this->getInfoFromCompactEncodingSection(pc, sects)) {
  #if _LIBUNWIND_SUPPORT_DWARF_UNWIND
        // Found info in table, done unless encoding says to use dwarf.
        uint32_t dwarfOffset;
        if ((sects.dwarf_section != 0) && compactSaysUseDwarf(&dwarfOffset)) {
          if (this->getInfoFromDwarfSection(pc, sects, dwarfOffset)) {
            // found info in dwarf, done
            return;
          }
        }
  #endif
        // If unwind table has entry, but entry says there is no unwind info,
        // record that we have no unwind info.
        if (_info.format == 0)
          _unwindInfoMissing = true;
        return;
      }
    }
#endif // _LIBUNWIND_SUPPORT_COMPACT_UNWIND

#if _LIBUNWIND_SUPPORT_DWARF_UNWIND
    // If there is dwarf unwind info, look there next.
    if (sects.dwarf_section != 0) {
      if (this->getInfoFromDwarfSection(pc, sects)) {
        // found info in dwarf, done
        return;
      }
    }
#endif

#if _LIBUNWIND_ARM_EHABI
    // If there is ARM EHABI unwind info, look there next.
    if (sects.arm_section != 0 && this->getInfoFromEHABISection(pc, sects))
      return;
#endif
  }

#if _LIBUNWIND_SUPPORT_DWARF_UNWIND
  // There is no static unwind info for this pc. Look to see if an FDE was
  // dynamically registered for it.
  pint_t cachedFDE = DwarfFDECache<A>::findFDE(0, pc);
  if (cachedFDE != 0) {
    CFI_Parser<LocalAddressSpace>::FDE_Info fdeInfo;
    CFI_Parser<LocalAddressSpace>::CIE_Info cieInfo;
    const char *msg = CFI_Parser<A>::decodeFDE(_addressSpace,
                                                cachedFDE, &fdeInfo, &cieInfo);
    if (msg == NULL) {
      typename CFI_Parser<A>::PrologInfo prolog;
      if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo,
                                                                pc, &prolog)) {
        // save off parsed FDE info
        _info.start_ip         = fdeInfo.pcStart;
        _info.end_ip           = fdeInfo.pcEnd;
        _info.lsda             = fdeInfo.lsda;
        _info.handler          = cieInfo.personality;
        _info.gp               = prolog.spExtraArgSize;
                                  // Some frameless functions need SP
                                  // altered when resuming in function.
        _info.flags            = 0;
        _info.format           = dwarfEncoding();
        _info.unwind_info      = fdeInfo.fdeStart;
        _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength;
        _info.extra            = 0;
        return;
      }
    }
  }

  // Lastly, ask AddressSpace object about platform specific ways to locate
  // other FDEs.
  pint_t fde;
  if (_addressSpace.findOtherFDE(pc, fde)) {
    CFI_Parser<LocalAddressSpace>::FDE_Info fdeInfo;
    CFI_Parser<LocalAddressSpace>::CIE_Info cieInfo;
    if (!CFI_Parser<A>::decodeFDE(_addressSpace, fde, &fdeInfo, &cieInfo)) {
      // Double check this FDE is for a function that includes the pc.
      if ((fdeInfo.pcStart <= pc) && (pc < fdeInfo.pcEnd)) {
        typename CFI_Parser<A>::PrologInfo prolog;
        if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo,
                                                cieInfo, pc, &prolog)) {
          // save off parsed FDE info
          _info.start_ip         = fdeInfo.pcStart;
          _info.end_ip           = fdeInfo.pcEnd;
          _info.lsda             = fdeInfo.lsda;
          _info.handler          = cieInfo.personality;
          _info.gp               = prolog.spExtraArgSize;
          _info.flags            = 0;
          _info.format           = dwarfEncoding();
          _info.unwind_info      = fdeInfo.fdeStart;
          _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength;
          _info.extra            = 0;
          return;
        }
      }
    }
  }
#endif // #if _LIBUNWIND_SUPPORT_DWARF_UNWIND

  // no unwind info, flag that we can't reliably unwind
  _unwindInfoMissing = true;
}

template <typename A, typename R>
int UnwindCursor<A, R>::step() {
  // Bottom of stack is defined is when unwind info cannot be found.
  if (_unwindInfoMissing)
    return UNW_STEP_END;

  // Use unwinding info to modify register set as if function returned.
  int result;
#if _LIBUNWIND_SUPPORT_COMPACT_UNWIND
  result = this->stepWithCompactEncoding();
#elif _LIBUNWIND_SUPPORT_DWARF_UNWIND
  result = this->stepWithDwarfFDE();
#elif _LIBUNWIND_ARM_EHABI
  result = this->stepWithEHABI();
#else
  #error Need _LIBUNWIND_SUPPORT_COMPACT_UNWIND or \
              _LIBUNWIND_SUPPORT_DWARF_UNWIND or \
              _LIBUNWIND_ARM_EHABI
#endif

  // update info based on new PC
  if (result == UNW_STEP_SUCCESS) {
    this->setInfoBasedOnIPRegister(true);
    if (_unwindInfoMissing)
      return UNW_STEP_END;
    if (_info.gp)
      setReg(UNW_REG_SP, getReg(UNW_REG_SP) + _info.gp);
  }

  return result;
}

template <typename A, typename R>
void UnwindCursor<A, R>::getInfo(unw_proc_info_t *info) {
  *info = _info;
}

template <typename A, typename R>
bool UnwindCursor<A, R>::getFunctionName(char *buf, size_t bufLen,
                                                           unw_word_t *offset) {
  return _addressSpace.findFunctionName((pint_t)this->getReg(UNW_REG_IP),
                                         buf, bufLen, offset);
}

} // namespace libunwind

#endif // __UNWINDCURSOR_HPP__