Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
//===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of the abstract lowering for the Swift calling convention.
//
//===----------------------------------------------------------------------===//

#include "clang/CodeGen/SwiftCallingConv.h"
#include "clang/Basic/TargetInfo.h"
#include "CodeGenModule.h"
#include "TargetInfo.h"

using namespace clang;
using namespace CodeGen;
using namespace swiftcall;

static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) {
  return cast<SwiftABIInfo>(CGM.getTargetCodeGenInfo().getABIInfo());
}

static bool isPowerOf2(unsigned n) {
  return n == (n & -n);
}

/// Given two types with the same size, try to find a common type.
static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) {
  assert(first != second);

  // Allow pointers to merge with integers, but prefer the integer type.
  if (first->isIntegerTy()) {
    if (second->isPointerTy()) return first;
  } else if (first->isPointerTy()) {
    if (second->isIntegerTy()) return second;
    if (second->isPointerTy()) return first;

  // Allow two vectors to be merged (given that they have the same size).
  // This assumes that we never have two different vector register sets.
  } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) {
    if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) {
      if (auto commonTy = getCommonType(firstVecTy->getElementType(),
                                        secondVecTy->getElementType())) {
        return (commonTy == firstVecTy->getElementType() ? first : second);
      }
    }
  }

  return nullptr;
}

static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) {
  return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type));
}

static CharUnits getTypeAllocSize(CodeGenModule &CGM, llvm::Type *type) {
  return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(type));
}

void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) {
  // Deal with various aggregate types as special cases:

  // Record types.
  if (auto recType = type->getAs<RecordType>()) {
    addTypedData(recType->getDecl(), begin);

  // Array types.
  } else if (type->isArrayType()) {
    // Incomplete array types (flexible array members?) don't provide
    // data to lay out, and the other cases shouldn't be possible.
    auto arrayType = CGM.getContext().getAsConstantArrayType(type);
    if (!arrayType) return;

    QualType eltType = arrayType->getElementType();
    auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
    for (uint64_t i = 0, e = arrayType->getSize().getZExtValue(); i != e; ++i) {
      addTypedData(eltType, begin + i * eltSize);
    }

  // Complex types.
  } else if (auto complexType = type->getAs<ComplexType>()) {
    auto eltType = complexType->getElementType();
    auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
    auto eltLLVMType = CGM.getTypes().ConvertType(eltType);
    addTypedData(eltLLVMType, begin, begin + eltSize);
    addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize);

  // Member pointer types.
  } else if (type->getAs<MemberPointerType>()) {
    // Just add it all as opaque.
    addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type));

  // Everything else is scalar and should not convert as an LLVM aggregate.
  } else {
    // We intentionally convert as !ForMem because we want to preserve
    // that a type was an i1.
    auto llvmType = CGM.getTypes().ConvertType(type);
    addTypedData(llvmType, begin);
  }
}

void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) {
  addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record));
}

void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin,
                                    const ASTRecordLayout &layout) {
  // Unions are a special case.
  if (record->isUnion()) {
    for (auto field : record->fields()) {
      if (field->isBitField()) {
        addBitFieldData(field, begin, 0);
      } else {
        addTypedData(field->getType(), begin);
      }
    }
    return;
  }

  // Note that correctness does not rely on us adding things in
  // their actual order of layout; it's just somewhat more efficient
  // for the builder.

  // With that in mind, add "early" C++ data.
  auto cxxRecord = dyn_cast<CXXRecordDecl>(record);
  if (cxxRecord) {
    //   - a v-table pointer, if the class adds its own
    if (layout.hasOwnVFPtr()) {
      addTypedData(CGM.Int8PtrTy, begin);
    }

    //   - non-virtual bases
    for (auto &baseSpecifier : cxxRecord->bases()) {
      if (baseSpecifier.isVirtual()) continue;

      auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl();
      addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord));
    }

    //   - a vbptr if the class adds its own
    if (layout.hasOwnVBPtr()) {
      addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset());
    }
  }

  // Add fields.
  for (auto field : record->fields()) {
    auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex());
    if (field->isBitField()) {
      addBitFieldData(field, begin, fieldOffsetInBits);
    } else {
      addTypedData(field->getType(),
              begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits));
    }
  }

  // Add "late" C++ data:
  if (cxxRecord) {
    //   - virtual bases
    for (auto &vbaseSpecifier : cxxRecord->vbases()) {
      auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl();
      addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord));      
    }
  }
}

void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield,
                                       CharUnits recordBegin,
                                       uint64_t bitfieldBitBegin) {
  assert(bitfield->isBitField());
  auto &ctx = CGM.getContext();
  auto width = bitfield->getBitWidthValue(ctx);

  // We can ignore zero-width bit-fields.
  if (width == 0) return;

  // toCharUnitsFromBits rounds down.
  CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin);

  // Find the offset of the last byte that is partially occupied by the
  // bit-field; since we otherwise expect exclusive ends, the end is the
  // next byte.
  uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1;
  CharUnits bitfieldByteEnd =
    ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One();
  addOpaqueData(recordBegin + bitfieldByteBegin,
                recordBegin + bitfieldByteEnd);
}

void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) {
  assert(type && "didn't provide type for typed data");
  addTypedData(type, begin, begin + getTypeStoreSize(CGM, type));
}

void SwiftAggLowering::addTypedData(llvm::Type *type,
                                    CharUnits begin, CharUnits end) {
  assert(type && "didn't provide type for typed data");
  assert(getTypeStoreSize(CGM, type) == end - begin);

  // Legalize vector types.
  if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
    SmallVector<llvm::Type*, 4> componentTys;
    legalizeVectorType(CGM, end - begin, vecTy, componentTys);
    assert(componentTys.size() >= 1);

    // Walk the initial components.
    for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) {
      llvm::Type *componentTy = componentTys[i];
      auto componentSize = getTypeStoreSize(CGM, componentTy);
      assert(componentSize < end - begin);
      addLegalTypedData(componentTy, begin, begin + componentSize);
      begin += componentSize;
    }

    return addLegalTypedData(componentTys.back(), begin, end);
  }

  // Legalize integer types.
  if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
    if (!isLegalIntegerType(CGM, intTy))
      return addOpaqueData(begin, end);
  }

  // All other types should be legal.
  return addLegalTypedData(type, begin, end);
}

void SwiftAggLowering::addLegalTypedData(llvm::Type *type,
                                         CharUnits begin, CharUnits end) {
  // Require the type to be naturally aligned.
  if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) {

    // Try splitting vector types.
    if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
      auto split = splitLegalVectorType(CGM, end - begin, vecTy);
      auto eltTy = split.first;
      auto numElts = split.second;

      auto eltSize = (end - begin) / numElts;
      assert(eltSize == getTypeStoreSize(CGM, eltTy));
      for (size_t i = 0, e = numElts; i != e; ++i) {
        addLegalTypedData(eltTy, begin, begin + eltSize);
        begin += eltSize;
      }
      assert(begin == end);
      return;
    }

    return addOpaqueData(begin, end);
  }

  addEntry(type, begin, end);
}

void SwiftAggLowering::addEntry(llvm::Type *type,
                                CharUnits begin, CharUnits end) {
  assert((!type ||
          (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) &&
         "cannot add aggregate-typed data");
  assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type)));

  // Fast path: we can just add entries to the end.
  if (Entries.empty() || Entries.back().End <= begin) {
    Entries.push_back({begin, end, type});
    return;
  }

  // Find the first existing entry that ends after the start of the new data.
  // TODO: do a binary search if Entries is big enough for it to matter.
  size_t index = Entries.size() - 1;
  while (index != 0) {
    if (Entries[index - 1].End <= begin) break;
    --index;
  }

  // The entry ends after the start of the new data.
  // If the entry starts after the end of the new data, there's no conflict.
  if (Entries[index].Begin >= end) {
    // This insertion is potentially O(n), but the way we generally build
    // these layouts makes that unlikely to matter: we'd need a union of
    // several very large types.
    Entries.insert(Entries.begin() + index, {begin, end, type});
    return;
  }

  // Otherwise, the ranges overlap.  The new range might also overlap
  // with later ranges.
restartAfterSplit:

  // Simplest case: an exact overlap.
  if (Entries[index].Begin == begin && Entries[index].End == end) {
    // If the types match exactly, great.
    if (Entries[index].Type == type) return;

    // If either type is opaque, make the entry opaque and return.
    if (Entries[index].Type == nullptr) {
      return;
    } else if (type == nullptr) {
      Entries[index].Type = nullptr;
      return;
    }

    // If they disagree in an ABI-agnostic way, just resolve the conflict
    // arbitrarily.
    if (auto entryType = getCommonType(Entries[index].Type, type)) {
      Entries[index].Type = entryType;
      return;
    }

    // Otherwise, make the entry opaque.
    Entries[index].Type = nullptr;
    return;
  }

  // Okay, we have an overlapping conflict of some sort.

  // If we have a vector type, split it.
  if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) {
    auto eltTy = vecTy->getElementType();
    CharUnits eltSize = (end - begin) / vecTy->getNumElements();
    assert(eltSize == getTypeStoreSize(CGM, eltTy));
    for (unsigned i = 0, e = vecTy->getNumElements(); i != e; ++i) {
      addEntry(eltTy, begin, begin + eltSize);
      begin += eltSize;
    }
    assert(begin == end);
    return;
  }

  // If the entry is a vector type, split it and try again.
  if (Entries[index].Type && Entries[index].Type->isVectorTy()) {
    splitVectorEntry(index);
    goto restartAfterSplit;
  }

  // Okay, we have no choice but to make the existing entry opaque.

  Entries[index].Type = nullptr;

  // Stretch the start of the entry to the beginning of the range.
  if (begin < Entries[index].Begin) {
    Entries[index].Begin = begin;
    assert(index == 0 || begin >= Entries[index - 1].End);
  }

  // Stretch the end of the entry to the end of the range; but if we run
  // into the start of the next entry, just leave the range there and repeat.
  while (end > Entries[index].End) {
    assert(Entries[index].Type == nullptr);

    // If the range doesn't overlap the next entry, we're done.
    if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) {
      Entries[index].End = end;
      break;
    }

    // Otherwise, stretch to the start of the next entry.
    Entries[index].End = Entries[index + 1].Begin;

    // Continue with the next entry.
    index++;

    // This entry needs to be made opaque if it is not already.
    if (Entries[index].Type == nullptr)
      continue;

    // Split vector entries unless we completely subsume them.
    if (Entries[index].Type->isVectorTy() &&
        end < Entries[index].End) {
      splitVectorEntry(index);
    }

    // Make the entry opaque.
    Entries[index].Type = nullptr;
  }
}

/// Replace the entry of vector type at offset 'index' with a sequence
/// of its component vectors.
void SwiftAggLowering::splitVectorEntry(unsigned index) {
  auto vecTy = cast<llvm::VectorType>(Entries[index].Type);
  auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy);

  auto eltTy = split.first;
  CharUnits eltSize = getTypeStoreSize(CGM, eltTy);
  auto numElts = split.second;
  Entries.insert(Entries.begin() + index + 1, numElts - 1, StorageEntry());

  CharUnits begin = Entries[index].Begin;
  for (unsigned i = 0; i != numElts; ++i) {
    Entries[index].Type = eltTy;
    Entries[index].Begin = begin;
    Entries[index].End = begin + eltSize;
    begin += eltSize;
  }
}

/// Given a power-of-two unit size, return the offset of the aligned unit
/// of that size which contains the given offset.
///
/// In other words, round down to the nearest multiple of the unit size.
static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) {
  assert(isPowerOf2(unitSize.getQuantity()));
  auto unitMask = ~(unitSize.getQuantity() - 1);
  return CharUnits::fromQuantity(offset.getQuantity() & unitMask);
}

static bool areBytesInSameUnit(CharUnits first, CharUnits second,
                               CharUnits chunkSize) {
  return getOffsetAtStartOfUnit(first, chunkSize)
      == getOffsetAtStartOfUnit(second, chunkSize);
}

void SwiftAggLowering::finish() {
  if (Entries.empty()) {
    Finished = true;
    return;
  }

  // We logically split the layout down into a series of chunks of this size,
  // which is generally the size of a pointer.
  const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM);

  // First pass: if two entries share a chunk, make them both opaque
  // and stretch one to meet the next.
  bool hasOpaqueEntries = (Entries[0].Type == nullptr);
  for (size_t i = 1, e = Entries.size(); i != e; ++i) {
    if (areBytesInSameUnit(Entries[i - 1].End - CharUnits::One(),
                           Entries[i].Begin, chunkSize)) {
      Entries[i - 1].Type = nullptr;
      Entries[i].Type = nullptr;
      Entries[i - 1].End = Entries[i].Begin;
      hasOpaqueEntries = true;

    } else if (Entries[i].Type == nullptr) {
      hasOpaqueEntries = true;
    }
  }

  // The rest of the algorithm leaves non-opaque entries alone, so if we
  // have no opaque entries, we're done.
  if (!hasOpaqueEntries) {
    Finished = true;
    return;
  }

  // Okay, move the entries to a temporary and rebuild Entries.
  auto orig = std::move(Entries);
  assert(Entries.empty());

  for (size_t i = 0, e = orig.size(); i != e; ++i) {
    // Just copy over non-opaque entries.
    if (orig[i].Type != nullptr) {
      Entries.push_back(orig[i]);
      continue;
    }

    // Scan forward to determine the full extent of the next opaque range.
    // We know from the first pass that only contiguous ranges will overlap
    // the same aligned chunk.
    auto begin = orig[i].Begin;
    auto end = orig[i].End;
    while (i + 1 != e &&
           orig[i + 1].Type == nullptr &&
           end == orig[i + 1].Begin) {
      end = orig[i + 1].End;
      i++;
    }

    // Add an entry per intersected chunk.
    do {
      // Find the smallest aligned storage unit in the maximal aligned
      // storage unit containing 'begin' that contains all the bytes in
      // the intersection between the range and this chunk.
      CharUnits localBegin = begin;
      CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize);
      CharUnits chunkEnd = chunkBegin + chunkSize;
      CharUnits localEnd = std::min(end, chunkEnd);

      // Just do a simple loop over ever-increasing unit sizes.
      CharUnits unitSize = CharUnits::One();
      CharUnits unitBegin, unitEnd;
      for (; ; unitSize *= 2) {
        assert(unitSize <= chunkSize);
        unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize);
        unitEnd = unitBegin + unitSize;
        if (unitEnd >= localEnd) break;
      }

      // Add an entry for this unit.
      auto entryTy =
        llvm::IntegerType::get(CGM.getLLVMContext(),
                               CGM.getContext().toBits(unitSize));
      Entries.push_back({unitBegin, unitEnd, entryTy});

      // The next chunk starts where this chunk left off.
      begin = localEnd;
    } while (begin != end);
  }

  // Okay, finally finished.
  Finished = true;
}

void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const {
  assert(Finished && "haven't yet finished lowering");

  for (auto &entry : Entries) {
    callback(entry.Begin, entry.End, entry.Type);
  }
}

std::pair<llvm::StructType*, llvm::Type*>
SwiftAggLowering::getCoerceAndExpandTypes() const {
  assert(Finished && "haven't yet finished lowering");

  auto &ctx = CGM.getLLVMContext();

  if (Entries.empty()) {
    auto type = llvm::StructType::get(ctx);
    return { type, type };
  }

  SmallVector<llvm::Type*, 8> elts;
  CharUnits lastEnd = CharUnits::Zero();
  bool hasPadding = false;
  bool packed = false;
  for (auto &entry : Entries) {
    if (entry.Begin != lastEnd) {
      auto paddingSize = entry.Begin - lastEnd;
      assert(!paddingSize.isNegative());

      auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx),
                                          paddingSize.getQuantity());
      elts.push_back(padding);
      hasPadding = true;
    }

    if (!packed && !entry.Begin.isMultipleOf(
          CharUnits::fromQuantity(
            CGM.getDataLayout().getABITypeAlignment(entry.Type))))
      packed = true;

    elts.push_back(entry.Type);

    lastEnd = entry.Begin + getTypeAllocSize(CGM, entry.Type);
    assert(entry.End <= lastEnd);
  }

  // We don't need to adjust 'packed' to deal with possible tail padding
  // because we never do that kind of access through the coercion type.
  auto coercionType = llvm::StructType::get(ctx, elts, packed);

  llvm::Type *unpaddedType = coercionType;
  if (hasPadding) {
    elts.clear();
    for (auto &entry : Entries) {
      elts.push_back(entry.Type);
    }
    if (elts.size() == 1) {
      unpaddedType = elts[0];
    } else {
      unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false);
    }
  } else if (Entries.size() == 1) {
    unpaddedType = Entries[0].Type;
  }

  return { coercionType, unpaddedType };
}

bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const {
  assert(Finished && "haven't yet finished lowering");

  // Empty types don't need to be passed indirectly.
  if (Entries.empty()) return false;

  CharUnits totalSize = Entries.back().End;

  // Avoid copying the array of types when there's just a single element.
  if (Entries.size() == 1) {
    return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(totalSize,
                                                           Entries.back().Type,
                                                             asReturnValue);    
  }

  SmallVector<llvm::Type*, 8> componentTys;
  componentTys.reserve(Entries.size());
  for (auto &entry : Entries) {
    componentTys.push_back(entry.Type);
  }
  return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(totalSize,
                                                           componentTys,
                                                           asReturnValue);
}

CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) {
  // Currently always the size of an ordinary pointer.
  return CGM.getContext().toCharUnitsFromBits(
           CGM.getContext().getTargetInfo().getPointerWidth(0));
}

CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) {
  // For Swift's purposes, this is always just the store size of the type
  // rounded up to a power of 2.
  auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity();
  if (!isPowerOf2(size)) {
    size = 1ULL << (llvm::findLastSet(size, llvm::ZB_Undefined) + 1);
  }
  assert(size >= CGM.getDataLayout().getABITypeAlignment(type));
  return CharUnits::fromQuantity(size);
}

bool swiftcall::isLegalIntegerType(CodeGenModule &CGM,
                                   llvm::IntegerType *intTy) {
  auto size = intTy->getBitWidth();
  switch (size) {
  case 1:
  case 8:
  case 16:
  case 32:
  case 64:
    // Just assume that the above are always legal.
    return true;

  case 128:
    return CGM.getContext().getTargetInfo().hasInt128Type();

  default:
    return false;
  }
}

bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
                                  llvm::VectorType *vectorTy) {
  return isLegalVectorType(CGM, vectorSize, vectorTy->getElementType(),
                           vectorTy->getNumElements());
}

bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
                                  llvm::Type *eltTy, unsigned numElts) {
  assert(numElts > 1 && "illegal vector length");
  return getSwiftABIInfo(CGM)
           .isLegalVectorTypeForSwift(vectorSize, eltTy, numElts);
}

std::pair<llvm::Type*, unsigned>
swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
                                llvm::VectorType *vectorTy) {
  auto numElts = vectorTy->getNumElements();
  auto eltTy = vectorTy->getElementType();

  // Try to split the vector type in half.
  if (numElts >= 4 && isPowerOf2(numElts)) {
    if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2))
      return {llvm::VectorType::get(eltTy, numElts / 2), 2};
  }

  return {eltTy, numElts};
}

void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize,
                                   llvm::VectorType *origVectorTy,
                             llvm::SmallVectorImpl<llvm::Type*> &components) {
  // If it's already a legal vector type, use it.
  if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) {
    components.push_back(origVectorTy);
    return;
  }

  // Try to split the vector into legal subvectors.
  auto numElts = origVectorTy->getNumElements();
  auto eltTy = origVectorTy->getElementType();
  assert(numElts != 1);

  // The largest size that we're still considering making subvectors of.
  // Always a power of 2.
  unsigned logCandidateNumElts = llvm::findLastSet(numElts, llvm::ZB_Undefined);
  unsigned candidateNumElts = 1U << logCandidateNumElts;
  assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts);

  // Minor optimization: don't check the legality of this exact size twice.
  if (candidateNumElts == numElts) {
    logCandidateNumElts--;
    candidateNumElts >>= 1;
  }

  CharUnits eltSize = (origVectorSize / numElts);
  CharUnits candidateSize = eltSize * candidateNumElts;

  // The sensibility of this algorithm relies on the fact that we never
  // have a legal non-power-of-2 vector size without having the power of 2
  // also be legal.
  while (logCandidateNumElts > 0) {
    assert(candidateNumElts == 1U << logCandidateNumElts);
    assert(candidateNumElts <= numElts);
    assert(candidateSize == eltSize * candidateNumElts);

    // Skip illegal vector sizes.
    if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) {
      logCandidateNumElts--;
      candidateNumElts /= 2;
      candidateSize /= 2;
      continue;
    }

    // Add the right number of vectors of this size.
    auto numVecs = numElts >> logCandidateNumElts;
    components.append(numVecs, llvm::VectorType::get(eltTy, candidateNumElts));
    numElts -= (numVecs << logCandidateNumElts);

    if (numElts == 0) return;

    // It's possible that the number of elements remaining will be legal.
    // This can happen with e.g. <7 x float> when <3 x float> is legal.
    // This only needs to be separately checked if it's not a power of 2.
    if (numElts > 2 && !isPowerOf2(numElts) &&
        isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) {
      components.push_back(llvm::VectorType::get(eltTy, numElts));
      return;
    }

    // Bring vecSize down to something no larger than numElts.
    do {
      logCandidateNumElts--;
      candidateNumElts /= 2;
      candidateSize /= 2;
    } while (candidateNumElts > numElts);
  }

  // Otherwise, just append a bunch of individual elements.
  components.append(numElts, eltTy);
}

bool swiftcall::shouldPassCXXRecordIndirectly(CodeGenModule &CGM,
                                              const CXXRecordDecl *record) {
  // Following a recommendation from Richard Smith, pass a C++ type
  // indirectly only if the destructor is non-trivial or *all* of the
  // copy/move constructors are deleted or non-trivial.

  if (record->hasNonTrivialDestructor())
    return true;

  // It would be nice if this were summarized on the CXXRecordDecl.
  for (auto ctor : record->ctors()) {
    if (ctor->isCopyOrMoveConstructor() && !ctor->isDeleted() &&
        ctor->isTrivial()) {
      return false;
    }
  }

  return true;
}

static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering,
                                       bool forReturn,
                                       CharUnits alignmentForIndirect) {
  if (lowering.empty()) {
    return ABIArgInfo::getIgnore();
  } else if (lowering.shouldPassIndirectly(forReturn)) {
    return ABIArgInfo::getIndirect(alignmentForIndirect, /*byval*/ false);
  } else {
    auto types = lowering.getCoerceAndExpandTypes();
    return ABIArgInfo::getCoerceAndExpand(types.first, types.second);
  }
}

static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type,
                               bool forReturn) {
  if (auto recordType = dyn_cast<RecordType>(type)) {
    auto record = recordType->getDecl();
    auto &layout = CGM.getContext().getASTRecordLayout(record);

    if (auto cxxRecord = dyn_cast<CXXRecordDecl>(record)) {
      if (shouldPassCXXRecordIndirectly(CGM, cxxRecord))
        return ABIArgInfo::getIndirect(layout.getAlignment(), /*byval*/ false);
    }

    SwiftAggLowering lowering(CGM);
    lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout);
    lowering.finish();

    return classifyExpandedType(lowering, forReturn, layout.getAlignment());
  }

  // Just assume that all of our target ABIs can support returning at least
  // two integer or floating-point values.
  if (isa<ComplexType>(type)) {
    return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand());
  }

  // Vector types may need to be legalized.
  if (isa<VectorType>(type)) {
    SwiftAggLowering lowering(CGM);
    lowering.addTypedData(type, CharUnits::Zero());
    lowering.finish();

    CharUnits alignment = CGM.getContext().getTypeAlignInChars(type);
    return classifyExpandedType(lowering, forReturn, alignment);
  }

  // Member pointer types need to be expanded, but it's a simple form of
  // expansion that 'Direct' can handle.  Note that CanBeFlattened should be
  // true for this to work.

  // 'void' needs to be ignored.
  if (type->isVoidType()) {
    return ABIArgInfo::getIgnore();
  }

  // Everything else can be passed directly.
  return ABIArgInfo::getDirect();
}

ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) {
  return classifyType(CGM, type, /*forReturn*/ true);
}

ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM,
                                           CanQualType type) {
  return classifyType(CGM, type, /*forReturn*/ false);
}

void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
  auto &retInfo = FI.getReturnInfo();
  retInfo = classifyReturnType(CGM, FI.getReturnType());

  for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) {
    auto &argInfo = FI.arg_begin()[i];
    argInfo.info = classifyArgumentType(CGM, argInfo.type);
  }
}

// Is swifterror lowered to a register by the target ABI.
bool swiftcall::isSwiftErrorLoweredInRegister(CodeGenModule &CGM) {
  return getSwiftABIInfo(CGM).isSwiftErrorInRegister();
}