Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
//===- lib/ReaderWriter/MachO/MachONormalizedFileBinaryReader.cpp ---------===//
//
//                             The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

///
/// \file For mach-o object files, this implementation converts from
/// mach-o on-disk binary format to in-memory normalized mach-o.
///
///                 +---------------+
///                 | binary mach-o |
///                 +---------------+
///                        |
///                        |
///                        v
///                  +------------+
///                  | normalized |
///                  +------------+

#include "ArchHandler.h"
#include "MachONormalizedFile.h"
#include "MachONormalizedFileBinaryUtils.h"
#include "lld/Common/LLVM.h"
#include "lld/Core/Error.h"
#include "lld/Core/SharedLibraryFile.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/BinaryFormat/Magic.h"
#include "llvm/Object/MachO.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileOutputBuffer.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <functional>
#include <system_error>

using namespace llvm::MachO;
using llvm::object::ExportEntry;
using llvm::file_magic;
using llvm::object::MachOObjectFile;

namespace lld {
namespace mach_o {
namespace normalized {

// Utility to call a lambda expression on each load command.
static llvm::Error forEachLoadCommand(
    StringRef lcRange, unsigned lcCount, bool isBig, bool is64,
    std::function<bool(uint32_t cmd, uint32_t size, const char *lc)> func) {
  const char* p = lcRange.begin();
  for (unsigned i=0; i < lcCount; ++i) {
    const load_command *lc = reinterpret_cast<const load_command*>(p);
    load_command lcCopy;
    const load_command *slc = lc;
    if (isBig != llvm::sys::IsBigEndianHost) {
      memcpy(&lcCopy, lc, sizeof(load_command));
      swapStruct(lcCopy);
      slc = &lcCopy;
    }
    if ( (p + slc->cmdsize) > lcRange.end() )
      return llvm::make_error<GenericError>("Load command exceeds range");

    if (func(slc->cmd, slc->cmdsize, p))
      return llvm::Error::success();

    p += slc->cmdsize;
  }

  return llvm::Error::success();
}

static std::error_code appendRelocations(Relocations &relocs, StringRef buffer,
                                         bool bigEndian,
                                         uint32_t reloff, uint32_t nreloc) {
  if ((reloff + nreloc*8) > buffer.size())
    return make_error_code(llvm::errc::executable_format_error);
  const any_relocation_info* relocsArray =
            reinterpret_cast<const any_relocation_info*>(buffer.begin()+reloff);

  for(uint32_t i=0; i < nreloc; ++i) {
    relocs.push_back(unpackRelocation(relocsArray[i], bigEndian));
  }
  return std::error_code();
}

static std::error_code
appendIndirectSymbols(IndirectSymbols &isyms, StringRef buffer, bool isBig,
                      uint32_t istOffset, uint32_t istCount,
                      uint32_t startIndex, uint32_t count) {
  if ((istOffset + istCount*4) > buffer.size())
    return make_error_code(llvm::errc::executable_format_error);
  if (startIndex+count  > istCount)
    return make_error_code(llvm::errc::executable_format_error);
  const uint8_t *indirectSymbolArray = (const uint8_t *)buffer.data();

  for(uint32_t i=0; i < count; ++i) {
    isyms.push_back(read32(
        indirectSymbolArray + (startIndex + i) * sizeof(uint32_t), isBig));
  }
  return std::error_code();
}


template <typename T> static T readBigEndian(T t) {
  if (llvm::sys::IsLittleEndianHost)
    llvm::sys::swapByteOrder(t);
  return t;
}


static bool isMachOHeader(const mach_header *mh, bool &is64, bool &isBig) {
  switch (read32(&mh->magic, false)) {
  case llvm::MachO::MH_MAGIC:
    is64 = false;
    isBig = false;
    return true;
  case llvm::MachO::MH_MAGIC_64:
    is64 = true;
    isBig = false;
    return true;
  case llvm::MachO::MH_CIGAM:
    is64 = false;
    isBig = true;
    return true;
  case llvm::MachO::MH_CIGAM_64:
    is64 = true;
    isBig = true;
    return true;
  default:
    return false;
  }
}


bool isThinObjectFile(StringRef path, MachOLinkingContext::Arch &arch) {
  // Try opening and mapping file at path.
  ErrorOr<std::unique_ptr<MemoryBuffer>> b = MemoryBuffer::getFileOrSTDIN(path);
  if (b.getError())
    return false;

  // If file length < 32 it is too small to be mach-o object file.
  StringRef fileBuffer = b->get()->getBuffer();
  if (fileBuffer.size() < 32)
    return false;

  // If file buffer does not start with MH_MAGIC (and variants), not obj file.
  const mach_header *mh = reinterpret_cast<const mach_header *>(
                                                            fileBuffer.begin());
  bool is64, isBig;
  if (!isMachOHeader(mh, is64, isBig))
    return false;

  // If not MH_OBJECT, not object file.
  if (read32(&mh->filetype, isBig) != MH_OBJECT)
    return false;

  // Lookup up arch from cpu/subtype pair.
  arch = MachOLinkingContext::archFromCpuType(
      read32(&mh->cputype, isBig),
      read32(&mh->cpusubtype, isBig));
  return true;
}

bool sliceFromFatFile(MemoryBufferRef mb, MachOLinkingContext::Arch arch,
                      uint32_t &offset, uint32_t &size) {
  const char *start = mb.getBufferStart();
  const llvm::MachO::fat_header *fh =
      reinterpret_cast<const llvm::MachO::fat_header *>(start);
  if (readBigEndian(fh->magic) != llvm::MachO::FAT_MAGIC)
    return false;
  uint32_t nfat_arch = readBigEndian(fh->nfat_arch);
  const fat_arch *fstart =
      reinterpret_cast<const fat_arch *>(start + sizeof(fat_header));
  const fat_arch *fend =
      reinterpret_cast<const fat_arch *>(start + sizeof(fat_header) +
                                         sizeof(fat_arch) * nfat_arch);
  const uint32_t reqCpuType = MachOLinkingContext::cpuTypeFromArch(arch);
  const uint32_t reqCpuSubtype = MachOLinkingContext::cpuSubtypeFromArch(arch);
  for (const fat_arch *fa = fstart; fa < fend; ++fa) {
    if ((readBigEndian(fa->cputype) == reqCpuType) &&
        (readBigEndian(fa->cpusubtype) == reqCpuSubtype)) {
      offset = readBigEndian(fa->offset);
      size = readBigEndian(fa->size);
      if ((offset + size) > mb.getBufferSize())
        return false;
      return true;
    }
  }
  return false;
}

/// Reads a mach-o file and produces an in-memory normalized view.
llvm::Expected<std::unique_ptr<NormalizedFile>>
readBinary(std::unique_ptr<MemoryBuffer> &mb,
           const MachOLinkingContext::Arch arch) {
  // Make empty NormalizedFile.
  std::unique_ptr<NormalizedFile> f(new NormalizedFile());

  const char *start = mb->getBufferStart();
  size_t objSize = mb->getBufferSize();
  const mach_header *mh = reinterpret_cast<const mach_header *>(start);

  uint32_t sliceOffset;
  uint32_t sliceSize;
  if (sliceFromFatFile(mb->getMemBufferRef(), arch, sliceOffset, sliceSize)) {
    start = &start[sliceOffset];
    objSize = sliceSize;
    mh = reinterpret_cast<const mach_header *>(start);
  }

  // Determine endianness and pointer size for mach-o file.
  bool is64, isBig;
  if (!isMachOHeader(mh, is64, isBig))
    return llvm::make_error<GenericError>("File is not a mach-o");

  // Endian swap header, if needed.
  mach_header headerCopy;
  const mach_header *smh = mh;
  if (isBig != llvm::sys::IsBigEndianHost) {
    memcpy(&headerCopy, mh, sizeof(mach_header));
    swapStruct(headerCopy);
    smh = &headerCopy;
  }

  // Validate head and load commands fit in buffer.
  const uint32_t lcCount = smh->ncmds;
  const char *lcStart =
      start + (is64 ? sizeof(mach_header_64) : sizeof(mach_header));
  StringRef lcRange(lcStart, smh->sizeofcmds);
  if (lcRange.end() > (start + objSize))
    return llvm::make_error<GenericError>("Load commands exceed file size");

  // Get architecture from mach_header.
  f->arch = MachOLinkingContext::archFromCpuType(smh->cputype, smh->cpusubtype);
  if (f->arch != arch) {
    return llvm::make_error<GenericError>(
                                  Twine("file is wrong architecture. Expected "
                                  "(" + MachOLinkingContext::nameFromArch(arch)
                                  + ") found ("
                                  + MachOLinkingContext::nameFromArch(f->arch)
                                  + ")" ));
  }
  // Copy file type and flags
  f->fileType = HeaderFileType(smh->filetype);
  f->flags = smh->flags;


  // Pre-scan load commands looking for indirect symbol table.
  uint32_t indirectSymbolTableOffset = 0;
  uint32_t indirectSymbolTableCount = 0;
  auto ec = forEachLoadCommand(lcRange, lcCount, isBig, is64,
                               [&](uint32_t cmd, uint32_t size,
                                   const char *lc) -> bool {
    if (cmd == LC_DYSYMTAB) {
      const dysymtab_command *d = reinterpret_cast<const dysymtab_command*>(lc);
      indirectSymbolTableOffset = read32(&d->indirectsymoff, isBig);
      indirectSymbolTableCount = read32(&d->nindirectsyms, isBig);
      return true;
    }
    return false;
  });
  if (ec)
    return std::move(ec);

  // Walk load commands looking for segments/sections and the symbol table.
  const data_in_code_entry *dataInCode = nullptr;
  const dyld_info_command *dyldInfo = nullptr;
  uint32_t dataInCodeSize = 0;
  ec = forEachLoadCommand(lcRange, lcCount, isBig, is64,
                    [&] (uint32_t cmd, uint32_t size, const char* lc) -> bool {
    switch(cmd) {
    case LC_SEGMENT_64:
      if (is64) {
        const segment_command_64 *seg =
                              reinterpret_cast<const segment_command_64*>(lc);
        const unsigned sectionCount = read32(&seg->nsects, isBig);
        const section_64 *sects = reinterpret_cast<const section_64*>
                                  (lc + sizeof(segment_command_64));
        const unsigned lcSize = sizeof(segment_command_64)
                                              + sectionCount*sizeof(section_64);
        // Verify sections don't extend beyond end of segment load command.
        if (lcSize > size)
          return true;
        for (unsigned i=0; i < sectionCount; ++i) {
          const section_64 *sect = &sects[i];
          Section section;
          section.segmentName = getString16(sect->segname);
          section.sectionName = getString16(sect->sectname);
          section.type = (SectionType)(read32(&sect->flags, isBig) &
                                       SECTION_TYPE);
          section.attributes  = read32(&sect->flags, isBig) & SECTION_ATTRIBUTES;
          section.alignment   = 1 << read32(&sect->align, isBig);
          section.address     = read64(&sect->addr, isBig);
          const uint8_t *content =
            (const uint8_t *)start + read32(&sect->offset, isBig);
          size_t contentSize = read64(&sect->size, isBig);
          // Note: this assign() is copying the content bytes.  Ideally,
          // we can use a custom allocator for vector to avoid the copy.
          section.content = llvm::makeArrayRef(content, contentSize);
          appendRelocations(section.relocations, mb->getBuffer(), isBig,
                            read32(&sect->reloff, isBig),
                            read32(&sect->nreloc, isBig));
          if (section.type == S_NON_LAZY_SYMBOL_POINTERS) {
            appendIndirectSymbols(section.indirectSymbols, mb->getBuffer(),
                                  isBig,
                                  indirectSymbolTableOffset,
                                  indirectSymbolTableCount,
                                  read32(&sect->reserved1, isBig),
                                  contentSize/4);
          }
          f->sections.push_back(section);
        }
      }
      break;
    case LC_SEGMENT:
      if (!is64) {
        const segment_command *seg =
                              reinterpret_cast<const segment_command*>(lc);
        const unsigned sectionCount = read32(&seg->nsects, isBig);
        const section *sects = reinterpret_cast<const section*>
                                  (lc + sizeof(segment_command));
        const unsigned lcSize = sizeof(segment_command)
                                              + sectionCount*sizeof(section);
        // Verify sections don't extend beyond end of segment load command.
        if (lcSize > size)
          return true;
        for (unsigned i=0; i < sectionCount; ++i) {
          const section *sect = &sects[i];
          Section section;
          section.segmentName = getString16(sect->segname);
          section.sectionName = getString16(sect->sectname);
          section.type = (SectionType)(read32(&sect->flags, isBig) &
                                       SECTION_TYPE);
          section.attributes =
              read32((const uint8_t *)&sect->flags, isBig) & SECTION_ATTRIBUTES;
          section.alignment   = 1 << read32(&sect->align, isBig);
          section.address     = read32(&sect->addr, isBig);
          const uint8_t *content =
            (const uint8_t *)start + read32(&sect->offset, isBig);
          size_t contentSize = read32(&sect->size, isBig);
          // Note: this assign() is copying the content bytes.  Ideally,
          // we can use a custom allocator for vector to avoid the copy.
          section.content = llvm::makeArrayRef(content, contentSize);
          appendRelocations(section.relocations, mb->getBuffer(), isBig,
                            read32(&sect->reloff, isBig),
                            read32(&sect->nreloc, isBig));
          if (section.type == S_NON_LAZY_SYMBOL_POINTERS) {
            appendIndirectSymbols(
                section.indirectSymbols, mb->getBuffer(), isBig,
                indirectSymbolTableOffset, indirectSymbolTableCount,
                read32(&sect->reserved1, isBig), contentSize / 4);
          }
          f->sections.push_back(section);
        }
      }
      break;
    case LC_SYMTAB: {
      const symtab_command *st = reinterpret_cast<const symtab_command*>(lc);
      const char *strings = start + read32(&st->stroff, isBig);
      const uint32_t strSize = read32(&st->strsize, isBig);
      // Validate string pool and symbol table all in buffer.
      if (read32((const uint8_t *)&st->stroff, isBig) +
              read32((const uint8_t *)&st->strsize, isBig) >
          objSize)
        return true;
      if (is64) {
        const uint32_t symOffset = read32(&st->symoff, isBig);
        const uint32_t symCount = read32(&st->nsyms, isBig);
        if ( symOffset+(symCount*sizeof(nlist_64)) > objSize)
          return true;
        const nlist_64 *symbols =
            reinterpret_cast<const nlist_64 *>(start + symOffset);
        // Convert each nlist_64 to a lld::mach_o::normalized::Symbol.
        for(uint32_t i=0; i < symCount; ++i) {
          nlist_64 tempSym;
          memcpy(&tempSym, &symbols[i], sizeof(nlist_64));
          const nlist_64 *sin = &tempSym;
          if (isBig != llvm::sys::IsBigEndianHost)
            swapStruct(tempSym);
          Symbol sout;
          if (sin->n_strx > strSize)
            return true;
          sout.name  = &strings[sin->n_strx];
          sout.type = static_cast<NListType>(sin->n_type & (N_STAB|N_TYPE));
          sout.scope = (sin->n_type & (N_PEXT|N_EXT));
          sout.sect  = sin->n_sect;
          sout.desc  = sin->n_desc;
          sout.value = sin->n_value;
          if (sin->n_type & N_STAB)
            f->stabsSymbols.push_back(sout);
          else if (sout.type == N_UNDF)
            f->undefinedSymbols.push_back(sout);
          else if (sin->n_type & N_EXT)
            f->globalSymbols.push_back(sout);
          else
            f->localSymbols.push_back(sout);
        }
      } else {
        const uint32_t symOffset = read32(&st->symoff, isBig);
        const uint32_t symCount = read32(&st->nsyms, isBig);
        if ( symOffset+(symCount*sizeof(nlist)) > objSize)
          return true;
        const nlist *symbols =
            reinterpret_cast<const nlist *>(start + symOffset);
        // Convert each nlist to a lld::mach_o::normalized::Symbol.
        for(uint32_t i=0; i < symCount; ++i) {
          const nlist *sin = &symbols[i];
          nlist tempSym;
          if (isBig != llvm::sys::IsBigEndianHost) {
            tempSym = *sin; swapStruct(tempSym); sin = &tempSym;
          }
          Symbol sout;
          if (sin->n_strx > strSize)
            return true;
          sout.name  = &strings[sin->n_strx];
          sout.type  = (NListType)(sin->n_type & N_TYPE);
          sout.scope = (sin->n_type & (N_PEXT|N_EXT));
          sout.sect  = sin->n_sect;
          sout.desc  = sin->n_desc;
          sout.value = sin->n_value;
          if (sout.type == N_UNDF)
            f->undefinedSymbols.push_back(sout);
          else if (sout.scope == (SymbolScope)N_EXT)
            f->globalSymbols.push_back(sout);
          else if (sin->n_type & N_STAB)
            f->stabsSymbols.push_back(sout);
          else
            f->localSymbols.push_back(sout);
        }
      }
      }
      break;
    case LC_ID_DYLIB: {
      const dylib_command *dl = reinterpret_cast<const dylib_command*>(lc);
      f->installName = lc + read32(&dl->dylib.name, isBig);
      f->currentVersion = read32(&dl->dylib.current_version, isBig);
      f->compatVersion = read32(&dl->dylib.compatibility_version, isBig);
      }
      break;
    case LC_DATA_IN_CODE: {
      const linkedit_data_command *ldc =
                            reinterpret_cast<const linkedit_data_command*>(lc);
      dataInCode = reinterpret_cast<const data_in_code_entry *>(
          start + read32(&ldc->dataoff, isBig));
      dataInCodeSize = read32(&ldc->datasize, isBig);
      }
      break;
    case LC_LOAD_DYLIB:
    case LC_LOAD_WEAK_DYLIB:
    case LC_REEXPORT_DYLIB:
    case LC_LOAD_UPWARD_DYLIB: {
      const dylib_command *dl = reinterpret_cast<const dylib_command*>(lc);
      DependentDylib entry;
      entry.path = lc + read32(&dl->dylib.name, isBig);
      entry.kind = LoadCommandType(cmd);
      entry.compatVersion = read32(&dl->dylib.compatibility_version, isBig);
      entry.currentVersion = read32(&dl->dylib.current_version, isBig);
      f->dependentDylibs.push_back(entry);
     }
      break;
    case LC_RPATH: {
      const rpath_command *rpc = reinterpret_cast<const rpath_command *>(lc);
      f->rpaths.push_back(lc + read32(&rpc->path, isBig));
     }
      break;
    case LC_DYLD_INFO:
    case LC_DYLD_INFO_ONLY:
      dyldInfo = reinterpret_cast<const dyld_info_command*>(lc);
      break;
    case LC_VERSION_MIN_MACOSX:
    case LC_VERSION_MIN_IPHONEOS:
    case LC_VERSION_MIN_WATCHOS:
    case LC_VERSION_MIN_TVOS:
      // If we are emitting an object file, then we may take the load command
      // kind from these commands and pass it on to the output
      // file.
      f->minOSVersionKind = (LoadCommandType)cmd;
      break;
    }
    return false;
  });
  if (ec)
    return std::move(ec);

  if (dataInCode) {
    // Convert on-disk data_in_code_entry array to DataInCode vector.
    for (unsigned i=0; i < dataInCodeSize/sizeof(data_in_code_entry); ++i) {
      DataInCode entry;
      entry.offset = read32(&dataInCode[i].offset, isBig);
      entry.length = read16(&dataInCode[i].length, isBig);
      entry.kind =
          (DataRegionType)read16((const uint8_t *)&dataInCode[i].kind, isBig);
      f->dataInCode.push_back(entry);
    }
  }

  if (dyldInfo) {
    // If any exports, extract and add to normalized exportInfo vector.
    if (dyldInfo->export_size) {
      const uint8_t *trieStart = reinterpret_cast<const uint8_t *>(
          start + read32(&dyldInfo->export_off, isBig));
      ArrayRef<uint8_t> trie(trieStart, read32(&dyldInfo->export_size, isBig));
      Error Err = Error::success();
      for (const ExportEntry &trieExport : MachOObjectFile::exports(Err, trie)) {
        Export normExport;
        normExport.name = trieExport.name().copy(f->ownedAllocations);
        normExport.offset = trieExport.address();
        normExport.kind = ExportSymbolKind(trieExport.flags() & EXPORT_SYMBOL_FLAGS_KIND_MASK);
        normExport.flags = trieExport.flags() & ~EXPORT_SYMBOL_FLAGS_KIND_MASK;
        normExport.otherOffset = trieExport.other();
        if (!trieExport.otherName().empty())
          normExport.otherName = trieExport.otherName().copy(f->ownedAllocations);
        f->exportInfo.push_back(normExport);
      }
      if (Err)
        return std::move(Err);
    }
  }

  return std::move(f);
}

class MachOObjectReader : public Reader {
public:
  MachOObjectReader(MachOLinkingContext &ctx) : _ctx(ctx) {}

  bool canParse(file_magic magic, MemoryBufferRef mb) const override {
    return (magic == file_magic::macho_object && mb.getBufferSize() > 32);
  }

  ErrorOr<std::unique_ptr<File>>
  loadFile(std::unique_ptr<MemoryBuffer> mb,
           const Registry &registry) const override {
    std::unique_ptr<File> ret =
      llvm::make_unique<MachOFile>(std::move(mb), &_ctx);
    return std::move(ret);
  }

private:
  MachOLinkingContext &_ctx;
};

class MachODylibReader : public Reader {
public:
  MachODylibReader(MachOLinkingContext &ctx) : _ctx(ctx) {}

  bool canParse(file_magic magic, MemoryBufferRef mb) const override {
    switch (magic) {
    case file_magic::macho_dynamically_linked_shared_lib:
    case file_magic::macho_dynamically_linked_shared_lib_stub:
      return mb.getBufferSize() > 32;
    default:
      return false;
    }
  }

  ErrorOr<std::unique_ptr<File>>
  loadFile(std::unique_ptr<MemoryBuffer> mb,
           const Registry &registry) const override {
    std::unique_ptr<File> ret =
        llvm::make_unique<MachODylibFile>(std::move(mb), &_ctx);
    return std::move(ret);
  }

private:
  MachOLinkingContext &_ctx;
};

} // namespace normalized
} // namespace mach_o

void Registry::addSupportMachOObjects(MachOLinkingContext &ctx) {
  MachOLinkingContext::Arch arch = ctx.arch();
  add(std::unique_ptr<Reader>(new mach_o::normalized::MachOObjectReader(ctx)));
  add(std::unique_ptr<Reader>(new mach_o::normalized::MachODylibReader(ctx)));
  addKindTable(Reference::KindNamespace::mach_o, ctx.archHandler().kindArch(),
               ctx.archHandler().kindStrings());
  add(std::unique_ptr<YamlIOTaggedDocumentHandler>(
                           new mach_o::MachOYamlIOTaggedDocumentHandler(arch)));
}


} // namespace lld