//===- lib/ReaderWriter/MachO/MachONormalizedFileBinaryReader.cpp ---------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file For mach-o object files, this implementation converts from
/// mach-o on-disk binary format to in-memory normalized mach-o.
///
/// +---------------+
/// | binary mach-o |
/// +---------------+
/// |
/// |
/// v
/// +------------+
/// | normalized |
/// +------------+
#include "ArchHandler.h"
#include "MachONormalizedFile.h"
#include "MachONormalizedFileBinaryUtils.h"
#include "lld/Common/LLVM.h"
#include "lld/Core/Error.h"
#include "lld/Core/SharedLibraryFile.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/BinaryFormat/Magic.h"
#include "llvm/Object/MachO.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileOutputBuffer.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <functional>
#include <system_error>
using namespace llvm::MachO;
using llvm::object::ExportEntry;
using llvm::file_magic;
using llvm::object::MachOObjectFile;
namespace lld {
namespace mach_o {
namespace normalized {
// Utility to call a lambda expression on each load command.
static llvm::Error forEachLoadCommand(
StringRef lcRange, unsigned lcCount, bool isBig, bool is64,
std::function<bool(uint32_t cmd, uint32_t size, const char *lc)> func) {
const char* p = lcRange.begin();
for (unsigned i=0; i < lcCount; ++i) {
const load_command *lc = reinterpret_cast<const load_command*>(p);
load_command lcCopy;
const load_command *slc = lc;
if (isBig != llvm::sys::IsBigEndianHost) {
memcpy(&lcCopy, lc, sizeof(load_command));
swapStruct(lcCopy);
slc = &lcCopy;
}
if ( (p + slc->cmdsize) > lcRange.end() )
return llvm::make_error<GenericError>("Load command exceeds range");
if (func(slc->cmd, slc->cmdsize, p))
return llvm::Error::success();
p += slc->cmdsize;
}
return llvm::Error::success();
}
static std::error_code appendRelocations(Relocations &relocs, StringRef buffer,
bool bigEndian,
uint32_t reloff, uint32_t nreloc) {
if ((reloff + nreloc*8) > buffer.size())
return make_error_code(llvm::errc::executable_format_error);
const any_relocation_info* relocsArray =
reinterpret_cast<const any_relocation_info*>(buffer.begin()+reloff);
for(uint32_t i=0; i < nreloc; ++i) {
relocs.push_back(unpackRelocation(relocsArray[i], bigEndian));
}
return std::error_code();
}
static std::error_code
appendIndirectSymbols(IndirectSymbols &isyms, StringRef buffer, bool isBig,
uint32_t istOffset, uint32_t istCount,
uint32_t startIndex, uint32_t count) {
if ((istOffset + istCount*4) > buffer.size())
return make_error_code(llvm::errc::executable_format_error);
if (startIndex+count > istCount)
return make_error_code(llvm::errc::executable_format_error);
const uint8_t *indirectSymbolArray = (const uint8_t *)buffer.data();
for(uint32_t i=0; i < count; ++i) {
isyms.push_back(read32(
indirectSymbolArray + (startIndex + i) * sizeof(uint32_t), isBig));
}
return std::error_code();
}
template <typename T> static T readBigEndian(T t) {
if (llvm::sys::IsLittleEndianHost)
llvm::sys::swapByteOrder(t);
return t;
}
static bool isMachOHeader(const mach_header *mh, bool &is64, bool &isBig) {
switch (read32(&mh->magic, false)) {
case llvm::MachO::MH_MAGIC:
is64 = false;
isBig = false;
return true;
case llvm::MachO::MH_MAGIC_64:
is64 = true;
isBig = false;
return true;
case llvm::MachO::MH_CIGAM:
is64 = false;
isBig = true;
return true;
case llvm::MachO::MH_CIGAM_64:
is64 = true;
isBig = true;
return true;
default:
return false;
}
}
bool isThinObjectFile(StringRef path, MachOLinkingContext::Arch &arch) {
// Try opening and mapping file at path.
ErrorOr<std::unique_ptr<MemoryBuffer>> b = MemoryBuffer::getFileOrSTDIN(path);
if (b.getError())
return false;
// If file length < 32 it is too small to be mach-o object file.
StringRef fileBuffer = b->get()->getBuffer();
if (fileBuffer.size() < 32)
return false;
// If file buffer does not start with MH_MAGIC (and variants), not obj file.
const mach_header *mh = reinterpret_cast<const mach_header *>(
fileBuffer.begin());
bool is64, isBig;
if (!isMachOHeader(mh, is64, isBig))
return false;
// If not MH_OBJECT, not object file.
if (read32(&mh->filetype, isBig) != MH_OBJECT)
return false;
// Lookup up arch from cpu/subtype pair.
arch = MachOLinkingContext::archFromCpuType(
read32(&mh->cputype, isBig),
read32(&mh->cpusubtype, isBig));
return true;
}
bool sliceFromFatFile(MemoryBufferRef mb, MachOLinkingContext::Arch arch,
uint32_t &offset, uint32_t &size) {
const char *start = mb.getBufferStart();
const llvm::MachO::fat_header *fh =
reinterpret_cast<const llvm::MachO::fat_header *>(start);
if (readBigEndian(fh->magic) != llvm::MachO::FAT_MAGIC)
return false;
uint32_t nfat_arch = readBigEndian(fh->nfat_arch);
const fat_arch *fstart =
reinterpret_cast<const fat_arch *>(start + sizeof(fat_header));
const fat_arch *fend =
reinterpret_cast<const fat_arch *>(start + sizeof(fat_header) +
sizeof(fat_arch) * nfat_arch);
const uint32_t reqCpuType = MachOLinkingContext::cpuTypeFromArch(arch);
const uint32_t reqCpuSubtype = MachOLinkingContext::cpuSubtypeFromArch(arch);
for (const fat_arch *fa = fstart; fa < fend; ++fa) {
if ((readBigEndian(fa->cputype) == reqCpuType) &&
(readBigEndian(fa->cpusubtype) == reqCpuSubtype)) {
offset = readBigEndian(fa->offset);
size = readBigEndian(fa->size);
if ((offset + size) > mb.getBufferSize())
return false;
return true;
}
}
return false;
}
/// Reads a mach-o file and produces an in-memory normalized view.
llvm::Expected<std::unique_ptr<NormalizedFile>>
readBinary(std::unique_ptr<MemoryBuffer> &mb,
const MachOLinkingContext::Arch arch) {
// Make empty NormalizedFile.
std::unique_ptr<NormalizedFile> f(new NormalizedFile());
const char *start = mb->getBufferStart();
size_t objSize = mb->getBufferSize();
const mach_header *mh = reinterpret_cast<const mach_header *>(start);
uint32_t sliceOffset;
uint32_t sliceSize;
if (sliceFromFatFile(mb->getMemBufferRef(), arch, sliceOffset, sliceSize)) {
start = &start[sliceOffset];
objSize = sliceSize;
mh = reinterpret_cast<const mach_header *>(start);
}
// Determine endianness and pointer size for mach-o file.
bool is64, isBig;
if (!isMachOHeader(mh, is64, isBig))
return llvm::make_error<GenericError>("File is not a mach-o");
// Endian swap header, if needed.
mach_header headerCopy;
const mach_header *smh = mh;
if (isBig != llvm::sys::IsBigEndianHost) {
memcpy(&headerCopy, mh, sizeof(mach_header));
swapStruct(headerCopy);
smh = &headerCopy;
}
// Validate head and load commands fit in buffer.
const uint32_t lcCount = smh->ncmds;
const char *lcStart =
start + (is64 ? sizeof(mach_header_64) : sizeof(mach_header));
StringRef lcRange(lcStart, smh->sizeofcmds);
if (lcRange.end() > (start + objSize))
return llvm::make_error<GenericError>("Load commands exceed file size");
// Get architecture from mach_header.
f->arch = MachOLinkingContext::archFromCpuType(smh->cputype, smh->cpusubtype);
if (f->arch != arch) {
return llvm::make_error<GenericError>(
Twine("file is wrong architecture. Expected "
"(" + MachOLinkingContext::nameFromArch(arch)
+ ") found ("
+ MachOLinkingContext::nameFromArch(f->arch)
+ ")" ));
}
// Copy file type and flags
f->fileType = HeaderFileType(smh->filetype);
f->flags = smh->flags;
// Pre-scan load commands looking for indirect symbol table.
uint32_t indirectSymbolTableOffset = 0;
uint32_t indirectSymbolTableCount = 0;
auto ec = forEachLoadCommand(lcRange, lcCount, isBig, is64,
[&](uint32_t cmd, uint32_t size,
const char *lc) -> bool {
if (cmd == LC_DYSYMTAB) {
const dysymtab_command *d = reinterpret_cast<const dysymtab_command*>(lc);
indirectSymbolTableOffset = read32(&d->indirectsymoff, isBig);
indirectSymbolTableCount = read32(&d->nindirectsyms, isBig);
return true;
}
return false;
});
if (ec)
return std::move(ec);
// Walk load commands looking for segments/sections and the symbol table.
const data_in_code_entry *dataInCode = nullptr;
const dyld_info_command *dyldInfo = nullptr;
uint32_t dataInCodeSize = 0;
ec = forEachLoadCommand(lcRange, lcCount, isBig, is64,
[&] (uint32_t cmd, uint32_t size, const char* lc) -> bool {
switch(cmd) {
case LC_SEGMENT_64:
if (is64) {
const segment_command_64 *seg =
reinterpret_cast<const segment_command_64*>(lc);
const unsigned sectionCount = read32(&seg->nsects, isBig);
const section_64 *sects = reinterpret_cast<const section_64*>
(lc + sizeof(segment_command_64));
const unsigned lcSize = sizeof(segment_command_64)
+ sectionCount*sizeof(section_64);
// Verify sections don't extend beyond end of segment load command.
if (lcSize > size)
return true;
for (unsigned i=0; i < sectionCount; ++i) {
const section_64 *sect = §s[i];
Section section;
section.segmentName = getString16(sect->segname);
section.sectionName = getString16(sect->sectname);
section.type = (SectionType)(read32(§->flags, isBig) &
SECTION_TYPE);
section.attributes = read32(§->flags, isBig) & SECTION_ATTRIBUTES;
section.alignment = 1 << read32(§->align, isBig);
section.address = read64(§->addr, isBig);
const uint8_t *content =
(const uint8_t *)start + read32(§->offset, isBig);
size_t contentSize = read64(§->size, isBig);
// Note: this assign() is copying the content bytes. Ideally,
// we can use a custom allocator for vector to avoid the copy.
section.content = llvm::makeArrayRef(content, contentSize);
appendRelocations(section.relocations, mb->getBuffer(), isBig,
read32(§->reloff, isBig),
read32(§->nreloc, isBig));
if (section.type == S_NON_LAZY_SYMBOL_POINTERS) {
appendIndirectSymbols(section.indirectSymbols, mb->getBuffer(),
isBig,
indirectSymbolTableOffset,
indirectSymbolTableCount,
read32(§->reserved1, isBig),
contentSize/4);
}
f->sections.push_back(section);
}
}
break;
case LC_SEGMENT:
if (!is64) {
const segment_command *seg =
reinterpret_cast<const segment_command*>(lc);
const unsigned sectionCount = read32(&seg->nsects, isBig);
const section *sects = reinterpret_cast<const section*>
(lc + sizeof(segment_command));
const unsigned lcSize = sizeof(segment_command)
+ sectionCount*sizeof(section);
// Verify sections don't extend beyond end of segment load command.
if (lcSize > size)
return true;
for (unsigned i=0; i < sectionCount; ++i) {
const section *sect = §s[i];
Section section;
section.segmentName = getString16(sect->segname);
section.sectionName = getString16(sect->sectname);
section.type = (SectionType)(read32(§->flags, isBig) &
SECTION_TYPE);
section.attributes =
read32((const uint8_t *)§->flags, isBig) & SECTION_ATTRIBUTES;
section.alignment = 1 << read32(§->align, isBig);
section.address = read32(§->addr, isBig);
const uint8_t *content =
(const uint8_t *)start + read32(§->offset, isBig);
size_t contentSize = read32(§->size, isBig);
// Note: this assign() is copying the content bytes. Ideally,
// we can use a custom allocator for vector to avoid the copy.
section.content = llvm::makeArrayRef(content, contentSize);
appendRelocations(section.relocations, mb->getBuffer(), isBig,
read32(§->reloff, isBig),
read32(§->nreloc, isBig));
if (section.type == S_NON_LAZY_SYMBOL_POINTERS) {
appendIndirectSymbols(
section.indirectSymbols, mb->getBuffer(), isBig,
indirectSymbolTableOffset, indirectSymbolTableCount,
read32(§->reserved1, isBig), contentSize / 4);
}
f->sections.push_back(section);
}
}
break;
case LC_SYMTAB: {
const symtab_command *st = reinterpret_cast<const symtab_command*>(lc);
const char *strings = start + read32(&st->stroff, isBig);
const uint32_t strSize = read32(&st->strsize, isBig);
// Validate string pool and symbol table all in buffer.
if (read32((const uint8_t *)&st->stroff, isBig) +
read32((const uint8_t *)&st->strsize, isBig) >
objSize)
return true;
if (is64) {
const uint32_t symOffset = read32(&st->symoff, isBig);
const uint32_t symCount = read32(&st->nsyms, isBig);
if ( symOffset+(symCount*sizeof(nlist_64)) > objSize)
return true;
const nlist_64 *symbols =
reinterpret_cast<const nlist_64 *>(start + symOffset);
// Convert each nlist_64 to a lld::mach_o::normalized::Symbol.
for(uint32_t i=0; i < symCount; ++i) {
nlist_64 tempSym;
memcpy(&tempSym, &symbols[i], sizeof(nlist_64));
const nlist_64 *sin = &tempSym;
if (isBig != llvm::sys::IsBigEndianHost)
swapStruct(tempSym);
Symbol sout;
if (sin->n_strx > strSize)
return true;
sout.name = &strings[sin->n_strx];
sout.type = static_cast<NListType>(sin->n_type & (N_STAB|N_TYPE));
sout.scope = (sin->n_type & (N_PEXT|N_EXT));
sout.sect = sin->n_sect;
sout.desc = sin->n_desc;
sout.value = sin->n_value;
if (sin->n_type & N_STAB)
f->stabsSymbols.push_back(sout);
else if (sout.type == N_UNDF)
f->undefinedSymbols.push_back(sout);
else if (sin->n_type & N_EXT)
f->globalSymbols.push_back(sout);
else
f->localSymbols.push_back(sout);
}
} else {
const uint32_t symOffset = read32(&st->symoff, isBig);
const uint32_t symCount = read32(&st->nsyms, isBig);
if ( symOffset+(symCount*sizeof(nlist)) > objSize)
return true;
const nlist *symbols =
reinterpret_cast<const nlist *>(start + symOffset);
// Convert each nlist to a lld::mach_o::normalized::Symbol.
for(uint32_t i=0; i < symCount; ++i) {
const nlist *sin = &symbols[i];
nlist tempSym;
if (isBig != llvm::sys::IsBigEndianHost) {
tempSym = *sin; swapStruct(tempSym); sin = &tempSym;
}
Symbol sout;
if (sin->n_strx > strSize)
return true;
sout.name = &strings[sin->n_strx];
sout.type = (NListType)(sin->n_type & N_TYPE);
sout.scope = (sin->n_type & (N_PEXT|N_EXT));
sout.sect = sin->n_sect;
sout.desc = sin->n_desc;
sout.value = sin->n_value;
if (sout.type == N_UNDF)
f->undefinedSymbols.push_back(sout);
else if (sout.scope == (SymbolScope)N_EXT)
f->globalSymbols.push_back(sout);
else if (sin->n_type & N_STAB)
f->stabsSymbols.push_back(sout);
else
f->localSymbols.push_back(sout);
}
}
}
break;
case LC_ID_DYLIB: {
const dylib_command *dl = reinterpret_cast<const dylib_command*>(lc);
f->installName = lc + read32(&dl->dylib.name, isBig);
f->currentVersion = read32(&dl->dylib.current_version, isBig);
f->compatVersion = read32(&dl->dylib.compatibility_version, isBig);
}
break;
case LC_DATA_IN_CODE: {
const linkedit_data_command *ldc =
reinterpret_cast<const linkedit_data_command*>(lc);
dataInCode = reinterpret_cast<const data_in_code_entry *>(
start + read32(&ldc->dataoff, isBig));
dataInCodeSize = read32(&ldc->datasize, isBig);
}
break;
case LC_LOAD_DYLIB:
case LC_LOAD_WEAK_DYLIB:
case LC_REEXPORT_DYLIB:
case LC_LOAD_UPWARD_DYLIB: {
const dylib_command *dl = reinterpret_cast<const dylib_command*>(lc);
DependentDylib entry;
entry.path = lc + read32(&dl->dylib.name, isBig);
entry.kind = LoadCommandType(cmd);
entry.compatVersion = read32(&dl->dylib.compatibility_version, isBig);
entry.currentVersion = read32(&dl->dylib.current_version, isBig);
f->dependentDylibs.push_back(entry);
}
break;
case LC_RPATH: {
const rpath_command *rpc = reinterpret_cast<const rpath_command *>(lc);
f->rpaths.push_back(lc + read32(&rpc->path, isBig));
}
break;
case LC_DYLD_INFO:
case LC_DYLD_INFO_ONLY:
dyldInfo = reinterpret_cast<const dyld_info_command*>(lc);
break;
case LC_VERSION_MIN_MACOSX:
case LC_VERSION_MIN_IPHONEOS:
case LC_VERSION_MIN_WATCHOS:
case LC_VERSION_MIN_TVOS:
// If we are emitting an object file, then we may take the load command
// kind from these commands and pass it on to the output
// file.
f->minOSVersionKind = (LoadCommandType)cmd;
break;
}
return false;
});
if (ec)
return std::move(ec);
if (dataInCode) {
// Convert on-disk data_in_code_entry array to DataInCode vector.
for (unsigned i=0; i < dataInCodeSize/sizeof(data_in_code_entry); ++i) {
DataInCode entry;
entry.offset = read32(&dataInCode[i].offset, isBig);
entry.length = read16(&dataInCode[i].length, isBig);
entry.kind =
(DataRegionType)read16((const uint8_t *)&dataInCode[i].kind, isBig);
f->dataInCode.push_back(entry);
}
}
if (dyldInfo) {
// If any exports, extract and add to normalized exportInfo vector.
if (dyldInfo->export_size) {
const uint8_t *trieStart = reinterpret_cast<const uint8_t *>(
start + read32(&dyldInfo->export_off, isBig));
ArrayRef<uint8_t> trie(trieStart, read32(&dyldInfo->export_size, isBig));
Error Err = Error::success();
for (const ExportEntry &trieExport : MachOObjectFile::exports(Err, trie)) {
Export normExport;
normExport.name = trieExport.name().copy(f->ownedAllocations);
normExport.offset = trieExport.address();
normExport.kind = ExportSymbolKind(trieExport.flags() & EXPORT_SYMBOL_FLAGS_KIND_MASK);
normExport.flags = trieExport.flags() & ~EXPORT_SYMBOL_FLAGS_KIND_MASK;
normExport.otherOffset = trieExport.other();
if (!trieExport.otherName().empty())
normExport.otherName = trieExport.otherName().copy(f->ownedAllocations);
f->exportInfo.push_back(normExport);
}
if (Err)
return std::move(Err);
}
}
return std::move(f);
}
class MachOObjectReader : public Reader {
public:
MachOObjectReader(MachOLinkingContext &ctx) : _ctx(ctx) {}
bool canParse(file_magic magic, MemoryBufferRef mb) const override {
return (magic == file_magic::macho_object && mb.getBufferSize() > 32);
}
ErrorOr<std::unique_ptr<File>>
loadFile(std::unique_ptr<MemoryBuffer> mb,
const Registry ®istry) const override {
std::unique_ptr<File> ret =
llvm::make_unique<MachOFile>(std::move(mb), &_ctx);
return std::move(ret);
}
private:
MachOLinkingContext &_ctx;
};
class MachODylibReader : public Reader {
public:
MachODylibReader(MachOLinkingContext &ctx) : _ctx(ctx) {}
bool canParse(file_magic magic, MemoryBufferRef mb) const override {
switch (magic) {
case file_magic::macho_dynamically_linked_shared_lib:
case file_magic::macho_dynamically_linked_shared_lib_stub:
return mb.getBufferSize() > 32;
default:
return false;
}
}
ErrorOr<std::unique_ptr<File>>
loadFile(std::unique_ptr<MemoryBuffer> mb,
const Registry ®istry) const override {
std::unique_ptr<File> ret =
llvm::make_unique<MachODylibFile>(std::move(mb), &_ctx);
return std::move(ret);
}
private:
MachOLinkingContext &_ctx;
};
} // namespace normalized
} // namespace mach_o
void Registry::addSupportMachOObjects(MachOLinkingContext &ctx) {
MachOLinkingContext::Arch arch = ctx.arch();
add(std::unique_ptr<Reader>(new mach_o::normalized::MachOObjectReader(ctx)));
add(std::unique_ptr<Reader>(new mach_o::normalized::MachODylibReader(ctx)));
addKindTable(Reference::KindNamespace::mach_o, ctx.archHandler().kindArch(),
ctx.archHandler().kindStrings());
add(std::unique_ptr<YamlIOTaggedDocumentHandler>(
new mach_o::MachOYamlIOTaggedDocumentHandler(arch)));
}
} // namespace lld