Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
//===-- x86AssemblyInspectionEngine.cpp -------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "x86AssemblyInspectionEngine.h"

#include "llvm-c/Disassembler.h"

#include "lldb/Core/Address.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/UnwindAssembly.h"

using namespace lldb_private;
using namespace lldb;

x86AssemblyInspectionEngine::x86AssemblyInspectionEngine(const ArchSpec &arch)
    : m_cur_insn(nullptr), m_machine_ip_regnum(LLDB_INVALID_REGNUM),
      m_machine_sp_regnum(LLDB_INVALID_REGNUM),
      m_machine_fp_regnum(LLDB_INVALID_REGNUM),
      m_lldb_ip_regnum(LLDB_INVALID_REGNUM),
      m_lldb_sp_regnum(LLDB_INVALID_REGNUM),
      m_lldb_fp_regnum(LLDB_INVALID_REGNUM),

      m_reg_map(), m_arch(arch), m_cpu(k_cpu_unspecified), m_wordsize(-1),
      m_register_map_initialized(false), m_disasm_context() {
  m_disasm_context =
      ::LLVMCreateDisasm(arch.GetTriple().getTriple().c_str(), nullptr,
                         /*TagType=*/1, nullptr, nullptr);
}

x86AssemblyInspectionEngine::~x86AssemblyInspectionEngine() {
  ::LLVMDisasmDispose(m_disasm_context);
}

void x86AssemblyInspectionEngine::Initialize(RegisterContextSP &reg_ctx) {
  m_cpu = k_cpu_unspecified;
  m_wordsize = -1;
  m_register_map_initialized = false;

  const llvm::Triple::ArchType cpu = m_arch.GetMachine();
  if (cpu == llvm::Triple::x86)
    m_cpu = k_i386;
  else if (cpu == llvm::Triple::x86_64)
    m_cpu = k_x86_64;

  if (m_cpu == k_cpu_unspecified)
    return;

  if (reg_ctx.get() == nullptr)
    return;

  if (m_cpu == k_i386) {
    m_machine_ip_regnum = k_machine_eip;
    m_machine_sp_regnum = k_machine_esp;
    m_machine_fp_regnum = k_machine_ebp;
    m_wordsize = 4;

    struct lldb_reg_info reginfo;
    reginfo.name = "eax";
    m_reg_map[k_machine_eax] = reginfo;
    reginfo.name = "edx";
    m_reg_map[k_machine_edx] = reginfo;
    reginfo.name = "esp";
    m_reg_map[k_machine_esp] = reginfo;
    reginfo.name = "esi";
    m_reg_map[k_machine_esi] = reginfo;
    reginfo.name = "eip";
    m_reg_map[k_machine_eip] = reginfo;
    reginfo.name = "ecx";
    m_reg_map[k_machine_ecx] = reginfo;
    reginfo.name = "ebx";
    m_reg_map[k_machine_ebx] = reginfo;
    reginfo.name = "ebp";
    m_reg_map[k_machine_ebp] = reginfo;
    reginfo.name = "edi";
    m_reg_map[k_machine_edi] = reginfo;
  } else {
    m_machine_ip_regnum = k_machine_rip;
    m_machine_sp_regnum = k_machine_rsp;
    m_machine_fp_regnum = k_machine_rbp;
    m_wordsize = 8;

    struct lldb_reg_info reginfo;
    reginfo.name = "rax";
    m_reg_map[k_machine_rax] = reginfo;
    reginfo.name = "rdx";
    m_reg_map[k_machine_rdx] = reginfo;
    reginfo.name = "rsp";
    m_reg_map[k_machine_rsp] = reginfo;
    reginfo.name = "rsi";
    m_reg_map[k_machine_rsi] = reginfo;
    reginfo.name = "r8";
    m_reg_map[k_machine_r8] = reginfo;
    reginfo.name = "r10";
    m_reg_map[k_machine_r10] = reginfo;
    reginfo.name = "r12";
    m_reg_map[k_machine_r12] = reginfo;
    reginfo.name = "r14";
    m_reg_map[k_machine_r14] = reginfo;
    reginfo.name = "rip";
    m_reg_map[k_machine_rip] = reginfo;
    reginfo.name = "rcx";
    m_reg_map[k_machine_rcx] = reginfo;
    reginfo.name = "rbx";
    m_reg_map[k_machine_rbx] = reginfo;
    reginfo.name = "rbp";
    m_reg_map[k_machine_rbp] = reginfo;
    reginfo.name = "rdi";
    m_reg_map[k_machine_rdi] = reginfo;
    reginfo.name = "r9";
    m_reg_map[k_machine_r9] = reginfo;
    reginfo.name = "r11";
    m_reg_map[k_machine_r11] = reginfo;
    reginfo.name = "r13";
    m_reg_map[k_machine_r13] = reginfo;
    reginfo.name = "r15";
    m_reg_map[k_machine_r15] = reginfo;
  }

  for (MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.begin();
       it != m_reg_map.end(); ++it) {
    const RegisterInfo *ri = reg_ctx->GetRegisterInfoByName(it->second.name);
    if (ri)
      it->second.lldb_regnum = ri->kinds[eRegisterKindLLDB];
  }

  uint32_t lldb_regno;
  if (machine_regno_to_lldb_regno(m_machine_sp_regnum, lldb_regno))
    m_lldb_sp_regnum = lldb_regno;
  if (machine_regno_to_lldb_regno(m_machine_fp_regnum, lldb_regno))
    m_lldb_fp_regnum = lldb_regno;
  if (machine_regno_to_lldb_regno(m_machine_ip_regnum, lldb_regno))
    m_lldb_ip_regnum = lldb_regno;

  m_register_map_initialized = true;
}

void x86AssemblyInspectionEngine::Initialize(
    std::vector<lldb_reg_info> &reg_info) {
  m_cpu = k_cpu_unspecified;
  m_wordsize = -1;
  m_register_map_initialized = false;

  const llvm::Triple::ArchType cpu = m_arch.GetMachine();
  if (cpu == llvm::Triple::x86)
    m_cpu = k_i386;
  else if (cpu == llvm::Triple::x86_64)
    m_cpu = k_x86_64;

  if (m_cpu == k_cpu_unspecified)
    return;

  if (m_cpu == k_i386) {
    m_machine_ip_regnum = k_machine_eip;
    m_machine_sp_regnum = k_machine_esp;
    m_machine_fp_regnum = k_machine_ebp;
    m_wordsize = 4;

    struct lldb_reg_info reginfo;
    reginfo.name = "eax";
    m_reg_map[k_machine_eax] = reginfo;
    reginfo.name = "edx";
    m_reg_map[k_machine_edx] = reginfo;
    reginfo.name = "esp";
    m_reg_map[k_machine_esp] = reginfo;
    reginfo.name = "esi";
    m_reg_map[k_machine_esi] = reginfo;
    reginfo.name = "eip";
    m_reg_map[k_machine_eip] = reginfo;
    reginfo.name = "ecx";
    m_reg_map[k_machine_ecx] = reginfo;
    reginfo.name = "ebx";
    m_reg_map[k_machine_ebx] = reginfo;
    reginfo.name = "ebp";
    m_reg_map[k_machine_ebp] = reginfo;
    reginfo.name = "edi";
    m_reg_map[k_machine_edi] = reginfo;
  } else {
    m_machine_ip_regnum = k_machine_rip;
    m_machine_sp_regnum = k_machine_rsp;
    m_machine_fp_regnum = k_machine_rbp;
    m_wordsize = 8;

    struct lldb_reg_info reginfo;
    reginfo.name = "rax";
    m_reg_map[k_machine_rax] = reginfo;
    reginfo.name = "rdx";
    m_reg_map[k_machine_rdx] = reginfo;
    reginfo.name = "rsp";
    m_reg_map[k_machine_rsp] = reginfo;
    reginfo.name = "rsi";
    m_reg_map[k_machine_rsi] = reginfo;
    reginfo.name = "r8";
    m_reg_map[k_machine_r8] = reginfo;
    reginfo.name = "r10";
    m_reg_map[k_machine_r10] = reginfo;
    reginfo.name = "r12";
    m_reg_map[k_machine_r12] = reginfo;
    reginfo.name = "r14";
    m_reg_map[k_machine_r14] = reginfo;
    reginfo.name = "rip";
    m_reg_map[k_machine_rip] = reginfo;
    reginfo.name = "rcx";
    m_reg_map[k_machine_rcx] = reginfo;
    reginfo.name = "rbx";
    m_reg_map[k_machine_rbx] = reginfo;
    reginfo.name = "rbp";
    m_reg_map[k_machine_rbp] = reginfo;
    reginfo.name = "rdi";
    m_reg_map[k_machine_rdi] = reginfo;
    reginfo.name = "r9";
    m_reg_map[k_machine_r9] = reginfo;
    reginfo.name = "r11";
    m_reg_map[k_machine_r11] = reginfo;
    reginfo.name = "r13";
    m_reg_map[k_machine_r13] = reginfo;
    reginfo.name = "r15";
    m_reg_map[k_machine_r15] = reginfo;
  }

  for (MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.begin();
       it != m_reg_map.end(); ++it) {
    for (size_t i = 0; i < reg_info.size(); ++i) {
      if (::strcmp(reg_info[i].name, it->second.name) == 0) {
        it->second.lldb_regnum = reg_info[i].lldb_regnum;
        break;
      }
    }
  }

  uint32_t lldb_regno;
  if (machine_regno_to_lldb_regno(m_machine_sp_regnum, lldb_regno))
    m_lldb_sp_regnum = lldb_regno;
  if (machine_regno_to_lldb_regno(m_machine_fp_regnum, lldb_regno))
    m_lldb_fp_regnum = lldb_regno;
  if (machine_regno_to_lldb_regno(m_machine_ip_regnum, lldb_regno))
    m_lldb_ip_regnum = lldb_regno;

  m_register_map_initialized = true;
}

// This function expects an x86 native register number (i.e. the bits stripped
// out of the
// actual instruction), not an lldb register number.
//
// FIXME: This is ABI dependent, it shouldn't be hardcoded here.

bool x86AssemblyInspectionEngine::nonvolatile_reg_p(int machine_regno) {
  if (m_cpu == k_i386) {
    switch (machine_regno) {
    case k_machine_ebx:
    case k_machine_ebp: // not actually a nonvolatile but often treated as such
                        // by convention
    case k_machine_esi:
    case k_machine_edi:
    case k_machine_esp:
      return true;
    default:
      return false;
    }
  }
  if (m_cpu == k_x86_64) {
    switch (machine_regno) {
    case k_machine_rbx:
    case k_machine_rsp:
    case k_machine_rbp: // not actually a nonvolatile but often treated as such
                        // by convention
    case k_machine_r12:
    case k_machine_r13:
    case k_machine_r14:
    case k_machine_r15:
      return true;
    default:
      return false;
    }
  }
  return false;
}

// Macro to detect if this is a REX mode prefix byte.
#define REX_W_PREFIX_P(opcode) (((opcode) & (~0x5)) == 0x48)

// The high bit which should be added to the source register number (the "R"
// bit)
#define REX_W_SRCREG(opcode) (((opcode)&0x4) >> 2)

// The high bit which should be added to the destination register number (the
// "B" bit)
#define REX_W_DSTREG(opcode) ((opcode)&0x1)

// pushq %rbp [0x55]
bool x86AssemblyInspectionEngine::push_rbp_pattern_p() {
  uint8_t *p = m_cur_insn;
  if (*p == 0x55)
    return true;
  return false;
}

// pushq $0 ; the first instruction in start() [0x6a 0x00]
bool x86AssemblyInspectionEngine::push_0_pattern_p() {
  uint8_t *p = m_cur_insn;
  if (*p == 0x6a && *(p + 1) == 0x0)
    return true;
  return false;
}

// pushq $0
// pushl $0
bool x86AssemblyInspectionEngine::push_imm_pattern_p() {
  uint8_t *p = m_cur_insn;
  if (*p == 0x68 || *p == 0x6a)
    return true;
  return false;
}

// pushl imm8(%esp)
//
// e.g. 0xff 0x74 0x24 0x20 - 'pushl 0x20(%esp)'
// (same byte pattern for 'pushq 0x20(%rsp)' in an x86_64 program)
//
// 0xff (with opcode bits '6' in next byte, PUSH r/m32)
// 0x74 (ModR/M byte with three bits used to specify the opcode)
//      mod == b01, opcode == b110, R/M == b100
//      "+disp8"
// 0x24 (SIB byte - scaled index = 0, r32 == esp)
// 0x20 imm8 value

bool x86AssemblyInspectionEngine::push_extended_pattern_p() {
  if (*m_cur_insn == 0xff) {
    // Get the 3 opcode bits from the ModR/M byte
    uint8_t opcode = (*(m_cur_insn + 1) >> 3) & 7;
    if (opcode == 6) {
      // I'm only looking for 0xff /6 here - I
      // don't really care what value is being pushed,
      // just that we're pushing a 32/64 bit value on
      // to the stack is enough.
      return true;
    }
  }
  return false;
}

// instructions only valid in 32-bit mode:
// 0x0e - push cs
// 0x16 - push ss
// 0x1e - push ds
// 0x06 - push es
bool x86AssemblyInspectionEngine::push_misc_reg_p() {
  uint8_t p = *m_cur_insn;
  if (m_wordsize == 4) {
    if (p == 0x0e || p == 0x16 || p == 0x1e || p == 0x06)
      return true;
  }
  return false;
}

// pushq %rbx
// pushl %ebx
bool x86AssemblyInspectionEngine::push_reg_p(int &regno) {
  uint8_t *p = m_cur_insn;
  int regno_prefix_bit = 0;
  // If we have a rex prefix byte, check to see if a B bit is set
  if (m_wordsize == 8 && *p == 0x41) {
    regno_prefix_bit = 1 << 3;
    p++;
  }
  if (*p >= 0x50 && *p <= 0x57) {
    regno = (*p - 0x50) | regno_prefix_bit;
    return true;
  }
  return false;
}

// movq %rsp, %rbp [0x48 0x8b 0xec] or [0x48 0x89 0xe5]
// movl %esp, %ebp [0x8b 0xec] or [0x89 0xe5]
bool x86AssemblyInspectionEngine::mov_rsp_rbp_pattern_p() {
  uint8_t *p = m_cur_insn;
  if (m_wordsize == 8 && *p == 0x48)
    p++;
  if (*(p) == 0x8b && *(p + 1) == 0xec)
    return true;
  if (*(p) == 0x89 && *(p + 1) == 0xe5)
    return true;
  return false;
}

// subq $0x20, %rsp
bool x86AssemblyInspectionEngine::sub_rsp_pattern_p(int &amount) {
  uint8_t *p = m_cur_insn;
  if (m_wordsize == 8 && *p == 0x48)
    p++;
  // 8-bit immediate operand
  if (*p == 0x83 && *(p + 1) == 0xec) {
    amount = (int8_t) * (p + 2);
    return true;
  }
  // 32-bit immediate operand
  if (*p == 0x81 && *(p + 1) == 0xec) {
    amount = (int32_t)extract_4(p + 2);
    return true;
  }
  return false;
}

// addq $0x20, %rsp
bool x86AssemblyInspectionEngine::add_rsp_pattern_p(int &amount) {
  uint8_t *p = m_cur_insn;
  if (m_wordsize == 8 && *p == 0x48)
    p++;
  // 8-bit immediate operand
  if (*p == 0x83 && *(p + 1) == 0xc4) {
    amount = (int8_t) * (p + 2);
    return true;
  }
  // 32-bit immediate operand
  if (*p == 0x81 && *(p + 1) == 0xc4) {
    amount = (int32_t)extract_4(p + 2);
    return true;
  }
  return false;
}

// lea esp, [esp - 0x28]
// lea esp, [esp + 0x28]
bool x86AssemblyInspectionEngine::lea_rsp_pattern_p(int &amount) {
  uint8_t *p = m_cur_insn;
  if (m_wordsize == 8 && *p == 0x48)
    p++;

  // Check opcode
  if (*p != 0x8d)
    return false;

  // 8 bit displacement
  if (*(p + 1) == 0x64 && (*(p + 2) & 0x3f) == 0x24) {
    amount = (int8_t) * (p + 3);
    return true;
  }

  // 32 bit displacement
  if (*(p + 1) == 0xa4 && (*(p + 2) & 0x3f) == 0x24) {
    amount = (int32_t)extract_4(p + 3);
    return true;
  }

  return false;
}

// lea -0x28(%ebp), %esp
// (32-bit and 64-bit variants, 8-bit and 32-bit displacement)
bool x86AssemblyInspectionEngine::lea_rbp_rsp_pattern_p(int &amount) {
  uint8_t *p = m_cur_insn;
  if (m_wordsize == 8 && *p == 0x48)
    p++;

  // Check opcode
  if (*p != 0x8d)
    return false;
  ++p;

  // 8 bit displacement
  if (*p == 0x65) {
    amount = (int8_t)p[1];
    return true;
  }

  // 32 bit displacement
  if (*p == 0xa5) {
    amount = (int32_t)extract_4(p + 1);
    return true;
  }

  return false;
}

// popq %rbx
// popl %ebx
bool x86AssemblyInspectionEngine::pop_reg_p(int &regno) {
  uint8_t *p = m_cur_insn;
  int regno_prefix_bit = 0;
  // If we have a rex prefix byte, check to see if a B bit is set
  if (m_wordsize == 8 && *p == 0x41) {
    regno_prefix_bit = 1 << 3;
    p++;
  }
  if (*p >= 0x58 && *p <= 0x5f) {
    regno = (*p - 0x58) | regno_prefix_bit;
    return true;
  }
  return false;
}

// popq %rbp [0x5d]
// popl %ebp [0x5d]
bool x86AssemblyInspectionEngine::pop_rbp_pattern_p() {
  uint8_t *p = m_cur_insn;
  return (*p == 0x5d);
}

// instructions valid only in 32-bit mode:
// 0x1f - pop ds
// 0x07 - pop es
// 0x17 - pop ss
bool x86AssemblyInspectionEngine::pop_misc_reg_p() {
  uint8_t p = *m_cur_insn;
  if (m_wordsize == 4) {
    if (p == 0x1f || p == 0x07 || p == 0x17)
      return true;
  }
  return false;
}

// leave [0xc9]
bool x86AssemblyInspectionEngine::leave_pattern_p() {
  uint8_t *p = m_cur_insn;
  return (*p == 0xc9);
}

// call $0 [0xe8 0x0 0x0 0x0 0x0]
bool x86AssemblyInspectionEngine::call_next_insn_pattern_p() {
  uint8_t *p = m_cur_insn;
  return (*p == 0xe8) && (*(p + 1) == 0x0) && (*(p + 2) == 0x0) &&
         (*(p + 3) == 0x0) && (*(p + 4) == 0x0);
}

// Look for an instruction sequence storing a nonvolatile register
// on to the stack frame.

//  movq %rax, -0x10(%rbp) [0x48 0x89 0x45 0xf0]
//  movl %eax, -0xc(%ebp)  [0x89 0x45 0xf4]

// The offset value returned in rbp_offset will be positive --
// but it must be subtraced from the frame base register to get
// the actual location.  The positive value returned for the offset
// is a convention used elsewhere for CFA offsets et al.

bool x86AssemblyInspectionEngine::mov_reg_to_local_stack_frame_p(
    int &regno, int &rbp_offset) {
  uint8_t *p = m_cur_insn;
  int src_reg_prefix_bit = 0;
  int target_reg_prefix_bit = 0;

  if (m_wordsize == 8 && REX_W_PREFIX_P(*p)) {
    src_reg_prefix_bit = REX_W_SRCREG(*p) << 3;
    target_reg_prefix_bit = REX_W_DSTREG(*p) << 3;
    if (target_reg_prefix_bit == 1) {
      // rbp/ebp don't need a prefix bit - we know this isn't the
      // reg we care about.
      return false;
    }
    p++;
  }

  if (*p == 0x89) {
    /* Mask off the 3-5 bits which indicate the destination register
       if this is a ModR/M byte.  */
    int opcode_destreg_masked_out = *(p + 1) & (~0x38);

    /* Is this a ModR/M byte with Mod bits 01 and R/M bits 101
       and three bits between them, e.g. 01nnn101
       We're looking for a destination of ebp-disp8 or ebp-disp32.   */
    int immsize;
    if (opcode_destreg_masked_out == 0x45)
      immsize = 2;
    else if (opcode_destreg_masked_out == 0x85)
      immsize = 4;
    else
      return false;

    int offset = 0;
    if (immsize == 2)
      offset = (int8_t) * (p + 2);
    if (immsize == 4)
      offset = (uint32_t)extract_4(p + 2);
    if (offset > 0)
      return false;

    regno = ((*(p + 1) >> 3) & 0x7) | src_reg_prefix_bit;
    rbp_offset = offset > 0 ? offset : -offset;
    return true;
  }
  return false;
}

// ret [0xc9] or [0xc2 imm8] or [0xca imm8]
bool x86AssemblyInspectionEngine::ret_pattern_p() {
  uint8_t *p = m_cur_insn;
  if (*p == 0xc9 || *p == 0xc2 || *p == 0xca || *p == 0xc3)
    return true;
  return false;
}

uint32_t x86AssemblyInspectionEngine::extract_4(uint8_t *b) {
  uint32_t v = 0;
  for (int i = 3; i >= 0; i--)
    v = (v << 8) | b[i];
  return v;
}

bool x86AssemblyInspectionEngine::instruction_length(uint8_t *insn_p,
                                                     int &length, 
                                                     uint32_t buffer_remaining_bytes) {

  uint32_t max_op_byte_size = std::min(buffer_remaining_bytes, m_arch.GetMaximumOpcodeByteSize());
  llvm::SmallVector<uint8_t, 32> opcode_data;
  opcode_data.resize(max_op_byte_size);

  char out_string[512];
  const size_t inst_size =
      ::LLVMDisasmInstruction(m_disasm_context, insn_p, max_op_byte_size, 0,
                              out_string, sizeof(out_string));

  length = inst_size;
  return true;
}

bool x86AssemblyInspectionEngine::machine_regno_to_lldb_regno(
    int machine_regno, uint32_t &lldb_regno) {
  MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.find(machine_regno);
  if (it != m_reg_map.end()) {
    lldb_regno = it->second.lldb_regnum;
    return true;
  }
  return false;
  return false;
}

bool x86AssemblyInspectionEngine::GetNonCallSiteUnwindPlanFromAssembly(
    uint8_t *data, size_t size, AddressRange &func_range,
    UnwindPlan &unwind_plan) {
  unwind_plan.Clear();

  if (data == nullptr || size == 0)
    return false;

  if (m_register_map_initialized == false)
    return false;

  addr_t current_func_text_offset = 0;
  int current_sp_bytes_offset_from_cfa = 0;
  UnwindPlan::Row::RegisterLocation initial_regloc;
  UnwindPlan::RowSP row(new UnwindPlan::Row);

  unwind_plan.SetPlanValidAddressRange(func_range);
  unwind_plan.SetRegisterKind(eRegisterKindLLDB);

  // At the start of the function, find the CFA by adding wordsize to the SP
  // register
  row->SetOffset(current_func_text_offset);
  row->GetCFAValue().SetIsRegisterPlusOffset(m_lldb_sp_regnum, m_wordsize);

  // caller's stack pointer value before the call insn is the CFA address
  initial_regloc.SetIsCFAPlusOffset(0);
  row->SetRegisterInfo(m_lldb_sp_regnum, initial_regloc);

  // saved instruction pointer can be found at CFA - wordsize.
  current_sp_bytes_offset_from_cfa = m_wordsize;
  initial_regloc.SetAtCFAPlusOffset(-current_sp_bytes_offset_from_cfa);
  row->SetRegisterInfo(m_lldb_ip_regnum, initial_regloc);

  unwind_plan.AppendRow(row);

  // Allocate a new Row, populate it with the existing Row contents.
  UnwindPlan::Row *newrow = new UnwindPlan::Row;
  *newrow = *row.get();
  row.reset(newrow);

  // Track which registers have been saved so far in the prologue.
  // If we see another push of that register, it's not part of the prologue.
  // The register numbers used here are the machine register #'s
  // (i386_register_numbers, x86_64_register_numbers).
  std::vector<bool> saved_registers(32, false);

  // Once the prologue has completed we'll save a copy of the unwind
  // instructions
  // If there is an epilogue in the middle of the function, after that epilogue
  // we'll reinstate
  // the unwind setup -- we assume that some code path jumps over the
  // mid-function epilogue

  UnwindPlan::RowSP prologue_completed_row; // copy of prologue row of CFI
  int prologue_completed_sp_bytes_offset_from_cfa; // The sp value before the
                                                   // epilogue started executed
  std::vector<bool> prologue_completed_saved_registers;

  while (current_func_text_offset < size) {
    int stack_offset, insn_len;
    int machine_regno;   // register numbers masked directly out of instructions
    uint32_t lldb_regno; // register numbers in lldb's eRegisterKindLLDB
                         // numbering scheme

    bool in_epilogue = false; // we're in the middle of an epilogue sequence
    bool row_updated = false; // The UnwindPlan::Row 'row' has been updated

    m_cur_insn = data + current_func_text_offset;
    if (!instruction_length(m_cur_insn, insn_len, size - current_func_text_offset)
        || insn_len == 0 
        || insn_len > kMaxInstructionByteSize) {
      // An unrecognized/junk instruction
      break;
    }

    if (push_rbp_pattern_p()) {
      current_sp_bytes_offset_from_cfa += m_wordsize;
      row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
      UnwindPlan::Row::RegisterLocation regloc;
      regloc.SetAtCFAPlusOffset(-row->GetCFAValue().GetOffset());
      row->SetRegisterInfo(m_lldb_fp_regnum, regloc);
      saved_registers[m_machine_fp_regnum] = true;
      row_updated = true;
    }

    else if (mov_rsp_rbp_pattern_p()) {
      row->GetCFAValue().SetIsRegisterPlusOffset(
          m_lldb_fp_regnum, row->GetCFAValue().GetOffset());
      row_updated = true;
    }

    // This is the start() function (or a pthread equivalent), it starts with a
    // pushl $0x0 which puts the
    // saved pc value of 0 on the stack.  In this case we want to pretend we
    // didn't see a stack movement at all --
    // normally the saved pc value is already on the stack by the time the
    // function starts executing.
    else if (push_0_pattern_p()) {
    }

    else if (push_reg_p(machine_regno)) {
      current_sp_bytes_offset_from_cfa += m_wordsize;
      // the PUSH instruction has moved the stack pointer - if the CFA is set in
      // terms of the stack pointer,
      // we need to add a new row of instructions.
      if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
        row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
        row_updated = true;
      }
      // record where non-volatile (callee-saved, spilled) registers are saved
      // on the stack
      if (nonvolatile_reg_p(machine_regno) &&
          machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
          saved_registers[machine_regno] == false) {
        UnwindPlan::Row::RegisterLocation regloc;
        regloc.SetAtCFAPlusOffset(-current_sp_bytes_offset_from_cfa);
        row->SetRegisterInfo(lldb_regno, regloc);
        saved_registers[machine_regno] = true;
        row_updated = true;
      }
    }

    else if (pop_reg_p(machine_regno)) {
      current_sp_bytes_offset_from_cfa -= m_wordsize;

      if (nonvolatile_reg_p(machine_regno) &&
          machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
          saved_registers[machine_regno] == true) {
        saved_registers[machine_regno] = false;
        row->RemoveRegisterInfo(lldb_regno);

        if (machine_regno == (int)m_machine_fp_regnum) {
          row->GetCFAValue().SetIsRegisterPlusOffset(
              m_lldb_sp_regnum, row->GetCFAValue().GetOffset());
        }

        in_epilogue = true;
        row_updated = true;
      }

      // the POP instruction has moved the stack pointer - if the CFA is set in
      // terms of the stack pointer,
      // we need to add a new row of instructions.
      if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
        row->GetCFAValue().SetIsRegisterPlusOffset(
            m_lldb_sp_regnum, current_sp_bytes_offset_from_cfa);
        row_updated = true;
      }
    }

    else if (pop_misc_reg_p()) {
      current_sp_bytes_offset_from_cfa -= m_wordsize;
      if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
        row->GetCFAValue().SetIsRegisterPlusOffset(
            m_lldb_sp_regnum, current_sp_bytes_offset_from_cfa);
        row_updated = true;
      }
    }

    // The LEAVE instruction moves the value from rbp into rsp and pops
    // a value off the stack into rbp (restoring the caller's rbp value).
    // It is the opposite of ENTER, or 'push rbp, mov rsp rbp'.
    else if (leave_pattern_p()) {
      // We're going to copy the value in rbp into rsp, so re-set the sp offset
      // based on the CFAValue.  Also, adjust it to recognize that we're popping
      // the saved rbp value off the stack.
      current_sp_bytes_offset_from_cfa = row->GetCFAValue().GetOffset();
      current_sp_bytes_offset_from_cfa -= m_wordsize;
      row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);

      // rbp is restored to the caller's value
      saved_registers[m_machine_fp_regnum] = false;
      row->RemoveRegisterInfo(m_lldb_fp_regnum);

      // cfa is now in terms of rsp again.
      row->GetCFAValue().SetIsRegisterPlusOffset(
          m_lldb_sp_regnum, row->GetCFAValue().GetOffset());
      row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);

      in_epilogue = true;
      row_updated = true;
    }

    else if (mov_reg_to_local_stack_frame_p(machine_regno, stack_offset) &&
             nonvolatile_reg_p(machine_regno) &&
             machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
             saved_registers[machine_regno] == false) {
      saved_registers[machine_regno] = true;

      UnwindPlan::Row::RegisterLocation regloc;

      // stack_offset for 'movq %r15, -80(%rbp)' will be 80.
      // In the Row, we want to express this as the offset from the CFA.  If the
      // frame base
      // is rbp (like the above instruction), the CFA offset for rbp is probably
      // 16.  So we
      // want to say that the value is stored at the CFA address - 96.
      regloc.SetAtCFAPlusOffset(
          -(stack_offset + row->GetCFAValue().GetOffset()));

      row->SetRegisterInfo(lldb_regno, regloc);

      row_updated = true;
    }

    else if (sub_rsp_pattern_p(stack_offset)) {
      current_sp_bytes_offset_from_cfa += stack_offset;
      if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
        row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
        row_updated = true;
      }
    }

    else if (add_rsp_pattern_p(stack_offset)) {
      current_sp_bytes_offset_from_cfa -= stack_offset;
      if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
        row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
        row_updated = true;
      }
      in_epilogue = true;
    }

    else if (push_extended_pattern_p() || push_imm_pattern_p() ||
             push_misc_reg_p()) {
      current_sp_bytes_offset_from_cfa += m_wordsize;
      if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
        row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
        row_updated = true;
      }
    }

    else if (lea_rsp_pattern_p(stack_offset)) {
      current_sp_bytes_offset_from_cfa -= stack_offset;
      if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
        row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
        row_updated = true;
      }
      if (stack_offset > 0)
        in_epilogue = true;
    }

    else if (lea_rbp_rsp_pattern_p(stack_offset) &&
             row->GetCFAValue().GetRegisterNumber() == m_lldb_fp_regnum) {
      current_sp_bytes_offset_from_cfa =
          row->GetCFAValue().GetOffset() - stack_offset;
    }

    else if (ret_pattern_p() && prologue_completed_row.get()) {
      // Reinstate the saved prologue setup for any instructions
      // that come after the ret instruction

      UnwindPlan::Row *newrow = new UnwindPlan::Row;
      *newrow = *prologue_completed_row.get();
      row.reset(newrow);
      current_sp_bytes_offset_from_cfa =
          prologue_completed_sp_bytes_offset_from_cfa;

      saved_registers.clear();
      saved_registers.resize(prologue_completed_saved_registers.size(), false);
      for (size_t i = 0; i < prologue_completed_saved_registers.size(); ++i) {
        saved_registers[i] = prologue_completed_saved_registers[i];
      }

      in_epilogue = true;
      row_updated = true;
    }

    // call next instruction
    //     call 0
    //  => pop  %ebx
    // This is used in i386 programs to get the PIC base address for finding
    // global data
    else if (call_next_insn_pattern_p()) {
      current_sp_bytes_offset_from_cfa += m_wordsize;
      if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
        row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
        row_updated = true;
      }
    }

    if (row_updated) {
      if (current_func_text_offset + insn_len < size) {
        row->SetOffset(current_func_text_offset + insn_len);
        unwind_plan.AppendRow(row);
        // Allocate a new Row, populate it with the existing Row contents.
        newrow = new UnwindPlan::Row;
        *newrow = *row.get();
        row.reset(newrow);
      }
    }

    if (in_epilogue == false && row_updated) {
      // If we're not in an epilogue sequence, save the updated Row
      UnwindPlan::Row *newrow = new UnwindPlan::Row;
      *newrow = *row.get();
      prologue_completed_row.reset(newrow);

      prologue_completed_saved_registers.clear();
      prologue_completed_saved_registers.resize(saved_registers.size(), false);
      for (size_t i = 0; i < saved_registers.size(); ++i) {
        prologue_completed_saved_registers[i] = saved_registers[i];
      }
    }

    // We may change the sp value without adding a new Row necessarily -- keep
    // track of it either way.
    if (in_epilogue == false) {
      prologue_completed_sp_bytes_offset_from_cfa =
          current_sp_bytes_offset_from_cfa;
    }

    m_cur_insn = m_cur_insn + insn_len;
    current_func_text_offset += insn_len;
  }

  unwind_plan.SetSourceName("assembly insn profiling");
  unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
  unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolYes);

  return true;
}

bool x86AssemblyInspectionEngine::AugmentUnwindPlanFromCallSite(
    uint8_t *data, size_t size, AddressRange &func_range,
    UnwindPlan &unwind_plan, RegisterContextSP &reg_ctx) {
  Address addr_start = func_range.GetBaseAddress();
  if (!addr_start.IsValid())
    return false;

  // We either need a live RegisterContext, or we need the UnwindPlan to already
  // be in the lldb register numbering scheme.
  if (reg_ctx.get() == nullptr &&
      unwind_plan.GetRegisterKind() != eRegisterKindLLDB)
    return false;

  // Is original unwind_plan valid?
  // unwind_plan should have at least one row which is ABI-default (CFA register
  // is sp),
  // and another row in mid-function.
  if (unwind_plan.GetRowCount() < 2)
    return false;

  UnwindPlan::RowSP first_row = unwind_plan.GetRowAtIndex(0);
  if (first_row->GetOffset() != 0)
    return false;
  uint32_t cfa_reg = first_row->GetCFAValue().GetRegisterNumber();
  if (unwind_plan.GetRegisterKind() != eRegisterKindLLDB) {
    cfa_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(
        unwind_plan.GetRegisterKind(),
        first_row->GetCFAValue().GetRegisterNumber());
  }
  if (cfa_reg != m_lldb_sp_regnum ||
      first_row->GetCFAValue().GetOffset() != m_wordsize)
    return false;

  UnwindPlan::RowSP original_last_row = unwind_plan.GetRowForFunctionOffset(-1);

  size_t offset = 0;
  int row_id = 1;
  bool unwind_plan_updated = false;
  UnwindPlan::RowSP row(new UnwindPlan::Row(*first_row));
  m_cur_insn = data + offset;

  // After a mid-function epilogue we will need to re-insert the original unwind
  // rules
  // so unwinds work for the remainder of the function.  These aren't common
  // with clang/gcc
  // on x86 but it is possible.
  bool reinstate_unwind_state = false;

  while (offset < size) {
    m_cur_insn = data + offset;
    int insn_len;
    if (!instruction_length(m_cur_insn, insn_len, size - offset)
        || insn_len == 0 
        || insn_len > kMaxInstructionByteSize) {
      // An unrecognized/junk instruction.
      break;
    }

    // Advance offsets.
    offset += insn_len;
    m_cur_insn = data + offset;

    // offset is pointing beyond the bounds of the
    // function; stop looping.
    if (offset >= size) 
      continue;

    if (reinstate_unwind_state) {
      UnwindPlan::RowSP new_row(new UnwindPlan::Row());
      *new_row = *original_last_row;
      new_row->SetOffset(offset);
      unwind_plan.AppendRow(new_row);
      row.reset(new UnwindPlan::Row());
      *row = *new_row;
      reinstate_unwind_state = false;
      unwind_plan_updated = true;
      continue;
    }

    // If we already have one row for this instruction, we can continue.
    while (row_id < unwind_plan.GetRowCount() &&
           unwind_plan.GetRowAtIndex(row_id)->GetOffset() <= offset) {
      row_id++;
    }
    UnwindPlan::RowSP original_row = unwind_plan.GetRowAtIndex(row_id - 1);
    if (original_row->GetOffset() == offset) {
      *row = *original_row;
      continue;
    }

    if (row_id == 0) {
      // If we are here, compiler didn't generate CFI for prologue.
      // This won't happen to GCC or clang.
      // In this case, bail out directly.
      return false;
    }

    // Inspect the instruction to check if we need a new row for it.
    cfa_reg = row->GetCFAValue().GetRegisterNumber();
    if (unwind_plan.GetRegisterKind() != eRegisterKindLLDB) {
      cfa_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(
          unwind_plan.GetRegisterKind(),
          row->GetCFAValue().GetRegisterNumber());
    }
    if (cfa_reg == m_lldb_sp_regnum) {
      // CFA register is sp.

      // call next instruction
      //     call 0
      //  => pop  %ebx
      if (call_next_insn_pattern_p()) {
        row->SetOffset(offset);
        row->GetCFAValue().IncOffset(m_wordsize);

        UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
        unwind_plan.InsertRow(new_row);
        unwind_plan_updated = true;
        continue;
      }

      // push/pop register
      int regno;
      if (push_reg_p(regno)) {
        row->SetOffset(offset);
        row->GetCFAValue().IncOffset(m_wordsize);

        UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
        unwind_plan.InsertRow(new_row);
        unwind_plan_updated = true;
        continue;
      }
      if (pop_reg_p(regno)) {
        // Technically, this might be a nonvolatile register recover in
        // epilogue.
        // We should reset RegisterInfo for the register.
        // But in practice, previous rule for the register is still valid...
        // So we ignore this case.

        row->SetOffset(offset);
        row->GetCFAValue().IncOffset(-m_wordsize);

        UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
        unwind_plan.InsertRow(new_row);
        unwind_plan_updated = true;
        continue;
      }

      if (pop_misc_reg_p()) {
        row->SetOffset(offset);
        row->GetCFAValue().IncOffset(-m_wordsize);

        UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
        unwind_plan.InsertRow(new_row);
        unwind_plan_updated = true;
        continue;
      }

      // push imm
      if (push_imm_pattern_p()) {
        row->SetOffset(offset);
        row->GetCFAValue().IncOffset(m_wordsize);
        UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
        unwind_plan.InsertRow(new_row);
        unwind_plan_updated = true;
        continue;
      }

      // push extended
      if (push_extended_pattern_p() || push_misc_reg_p()) {
        row->SetOffset(offset);
        row->GetCFAValue().IncOffset(m_wordsize);
        UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
        unwind_plan.InsertRow(new_row);
        unwind_plan_updated = true;
        continue;
      }

      // add/sub %rsp/%esp
      int amount;
      if (add_rsp_pattern_p(amount)) {
        row->SetOffset(offset);
        row->GetCFAValue().IncOffset(-amount);

        UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
        unwind_plan.InsertRow(new_row);
        unwind_plan_updated = true;
        continue;
      }
      if (sub_rsp_pattern_p(amount)) {
        row->SetOffset(offset);
        row->GetCFAValue().IncOffset(amount);

        UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
        unwind_plan.InsertRow(new_row);
        unwind_plan_updated = true;
        continue;
      }

      // lea %rsp, [%rsp + $offset]
      if (lea_rsp_pattern_p(amount)) {
        row->SetOffset(offset);
        row->GetCFAValue().IncOffset(-amount);

        UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
        unwind_plan.InsertRow(new_row);
        unwind_plan_updated = true;
        continue;
      }

      if (ret_pattern_p()) {
        reinstate_unwind_state = true;
        continue;
      }
    } else if (cfa_reg == m_lldb_fp_regnum) {
      // CFA register is fp.

      // The only case we care about is epilogue:
      //     [0x5d] pop %rbp/%ebp
      //  => [0xc3] ret
      if (pop_rbp_pattern_p() || leave_pattern_p()) {
        offset += 1;
        row->SetOffset(offset);
        row->GetCFAValue().SetIsRegisterPlusOffset(
            first_row->GetCFAValue().GetRegisterNumber(), m_wordsize);

        UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
        unwind_plan.InsertRow(new_row);
        unwind_plan_updated = true;
        reinstate_unwind_state = true;
        continue;
      }
    } else {
      // CFA register is not sp or fp.

      // This must be hand-written assembly.
      // Just trust eh_frame and assume we have finished.
      break;
    }
  }

  unwind_plan.SetPlanValidAddressRange(func_range);
  if (unwind_plan_updated) {
    std::string unwind_plan_source(unwind_plan.GetSourceName().AsCString());
    unwind_plan_source += " plus augmentation from assembly parsing";
    unwind_plan.SetSourceName(unwind_plan_source.c_str());
    unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
    unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolYes);
  }
  return true;
}

bool x86AssemblyInspectionEngine::FindFirstNonPrologueInstruction(
    uint8_t *data, size_t size, size_t &offset) {
  offset = 0;

  if (m_register_map_initialized == false)
    return false;

  while (offset < size) {
    int regno;
    int insn_len;
    int scratch;

    m_cur_insn = data + offset;
    if (!instruction_length(m_cur_insn, insn_len, size - offset) 
        || insn_len > kMaxInstructionByteSize 
        || insn_len == 0) {
      // An error parsing the instruction, i.e. probably data/garbage - stop
      // scanning
      break;
    }

    if (push_rbp_pattern_p() || mov_rsp_rbp_pattern_p() ||
        sub_rsp_pattern_p(scratch) || push_reg_p(regno) ||
        mov_reg_to_local_stack_frame_p(regno, scratch) ||
        (lea_rsp_pattern_p(scratch) && offset == 0)) {
      offset += insn_len;
      continue;
    }
    //
    // Unknown non-prologue instruction - stop scanning
    break;
  }

  return true;
}