Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
/*
 * Copyright (c) 2014-2018, Intel Corporation
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  * Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *  * Neither the name of Intel Corporation nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include "pt_time.h"
#include "pt_opcodes.h"

#include "intel-pt.h"

#include <string.h>
#include <limits.h>


void pt_time_init(struct pt_time *time)
{
	if (!time)
		return;

	memset(time, 0, sizeof(*time));
}

int pt_time_query_tsc(uint64_t *tsc, uint32_t *lost_mtc,
		      uint32_t *lost_cyc, const struct pt_time *time)
{
	if (!tsc || !time)
		return -pte_internal;

	*tsc = time->tsc;

	if (lost_mtc)
		*lost_mtc = time->lost_mtc;
	if (lost_cyc)
		*lost_cyc = time->lost_cyc;

	if (!time->have_tsc)
		return -pte_no_time;

	return 0;
}

int pt_time_query_cbr(uint32_t *cbr, const struct pt_time *time)
{
	if (!cbr || !time)
		return -pte_internal;

	if (!time->have_cbr)
		return -pte_no_cbr;

	*cbr = time->cbr;

	return 0;
}

/* Compute the distance between two CTC sources.
 *
 * We adjust a single wrap-around but fail if the distance is bigger than that.
 *
 * Returns zero on success, a negative error code otherwise.
 */
static int pt_time_ctc_delta(uint32_t *ctc_delta, uint32_t ctc,
			     uint32_t last_ctc, const struct pt_config *config)
{
	if (!config || !ctc_delta)
		return -pte_internal;

	/* Correct a single wrap-around.  If we lost enough MTCs to wrap
	 * around twice, timing will be wrong until the next TSC.
	 */
	if (ctc < last_ctc) {
		ctc += 1u << (config->mtc_freq + pt_pl_mtc_bit_size);

		/* Since we only store the CTC between TMA/MTC or MTC/TMC a
		 * single correction should suffice.
		 */
		if (ctc < last_ctc)
			return -pte_bad_packet;
	}

	*ctc_delta = ctc - last_ctc;
	return 0;
}

/* Translate CTC into the same unit as the FastCounter by multiplying with P.
 *
 * Returns zero on success, a negative error code otherwise.
 */
static int pt_time_ctc_fc(uint64_t *fc, uint64_t ctc,
			  const struct pt_config *config)
{
	uint32_t eax, ebx;

	if (!fc || !config)
		return -pte_internal;

	eax = config->cpuid_0x15_eax;
	ebx = config->cpuid_0x15_ebx;

	/* Neither multiply nor divide by zero. */
	if (!eax || !ebx)
		return -pte_bad_config;

	*fc = (ctc * ebx) / eax;
	return 0;
}

int pt_time_update_tsc(struct pt_time *time,
		       const struct pt_packet_tsc *packet,
		       const struct pt_config *config)
{
	(void) config;

	if (!time || !packet)
		return -pte_internal;

	time->have_tsc = 1;
	time->have_tma = 0;
	time->have_mtc = 0;
	time->tsc = time->base = packet->tsc;
	time->ctc = 0;
	time->fc = 0ull;

	/* We got the full time; we recover from previous losses. */
	time->lost_mtc = 0;
	time->lost_cyc = 0;

	return 0;
}

int pt_time_update_cbr(struct pt_time *time,
		       const struct pt_packet_cbr *packet,
		       const struct pt_config *config)
{
	(void) config;

	if (!time || !packet)
		return -pte_internal;

	time->have_cbr = 1;
	time->cbr = packet->ratio;

	return 0;
}

int pt_time_update_tma(struct pt_time *time,
		       const struct pt_packet_tma *packet,
		       const struct pt_config *config)
{
	uint32_t ctc, mtc_freq, mtc_hi, ctc_mask;
	uint64_t fc;

	if (!time || !packet || !config)
		return -pte_internal;

	/* Without a TSC something is seriously wrong. */
	if (!time->have_tsc)
		return -pte_bad_context;

	/* We shouldn't have more than one TMA per TSC. */
	if (time->have_tma)
		return -pte_bad_context;

	/* We're ignoring MTC between TSC and TMA. */
	if (time->have_mtc)
		return -pte_internal;

	ctc = packet->ctc;
	fc = packet->fc;

	mtc_freq = config->mtc_freq;
	mtc_hi = mtc_freq + pt_pl_mtc_bit_size;

	/* A mask for the relevant CTC bits ignoring high-order bits that are
	 * not provided by MTC.
	 */
	ctc_mask = (1u << mtc_hi) - 1u;

	time->have_tma = 1;
	time->base -= fc;
	time->fc += fc;

	/* If the MTC frequency is low enough that TMA provides the full CTC
	 * value, we can use the TMA as an MTC.
	 *
	 * If it isn't, we will estimate the preceding MTC based on the CTC bits
	 * the TMA provides at the next MTC.  We forget about the previous MTC
	 * in this case.
	 *
	 * If no MTC packets are dropped around TMA, we will estimate the
	 * forgotten value again at the next MTC.
	 *
	 * If MTC packets are dropped, we can't really tell where in this
	 * extended MTC period the TSC occurred.  The estimation will place it
	 * right before the next MTC.
	 */
	if (mtc_hi <= pt_pl_tma_ctc_bit_size)
		time->have_mtc = 1;

	/* In both cases, we store the TMA's CTC bits until the next MTC. */
	time->ctc = time->ctc_cyc = ctc & ctc_mask;

	return 0;
}

int pt_time_update_mtc(struct pt_time *time,
		       const struct pt_packet_mtc *packet,
		       const struct pt_config *config)
{
	uint32_t last_ctc, ctc, ctc_delta;
	uint64_t tsc, base;
	uint8_t mtc_freq;
	int errcode, have_tsc, have_tma, have_mtc;

	if (!time || !packet || !config)
		return -pte_internal;

	have_tsc = time->have_tsc;
	have_tma = time->have_tma;
	have_mtc = time->have_mtc;

	/* We ignore MTCs between TSC and TMA to avoid apparent CTC overflows.
	 *
	 * Later MTCs will ensure that no time is lost - provided TMA provides
	 * enough bits.  If TMA doesn't provide any of the MTC bits we may place
	 * the TSC into the wrong MTC period.
	 */
	if (have_tsc && !have_tma)
		return 0;

	base = time->base;
	last_ctc = time->ctc;
	mtc_freq = config->mtc_freq;

	ctc = packet->ctc << mtc_freq;

	/* Store our CTC value if we have or would have reset FC. */
	if (time->fc || time->lost_cyc || !have_mtc)
		time->ctc_cyc = ctc;

	/* Prepare for the next packet in case we error out below. */
	time->have_mtc = 1;
	time->fc = 0ull;
	time->ctc = ctc;

	/* We recover from previous CYC losses. */
	time->lost_cyc = 0;

	/* Avoid a big jump when we see the first MTC with an arbitrary CTC
	 * payload.
	 */
	if (!have_mtc) {
		uint32_t ctc_lo, ctc_hi;

		/* If we have not seen a TMA, we ignore this first MTC.
		 *
		 * We have no idea where in this MTC period tracing started.
		 * We could lose an entire MTC period or just a tiny fraction.
		 *
		 * On the other hand, if we assumed a previous MTC value, we
		 * might make just the same error.
		 */
		if (!have_tma)
			return 0;

		/* The TMA's CTC value didn't provide enough bits - otherwise,
		 * we would have treated the TMA as an MTC.
		 */
		if (last_ctc & ~pt_pl_tma_ctc_mask)
			return -pte_internal;

		/* Split this MTC's CTC value into low and high parts with
		 * respect to the bits provided by TMA.
		 */
		ctc_lo = ctc & pt_pl_tma_ctc_mask;
		ctc_hi = ctc & ~pt_pl_tma_ctc_mask;

		/* We estimate the high-order CTC bits that are not provided by
		 * TMA based on the CTC bits provided by this MTC.
		 *
		 * We assume that no MTC packets were dropped around TMA.  If
		 * there are, we might place the TSC into the wrong MTC period
		 * depending on how many CTC bits TMA provides and how many MTC
		 * packets were dropped.
		 *
		 * Note that we may underflow which results in more bits to be
		 * set than MTC packets may provide.  Drop those extra bits.
		 */
		if (ctc_lo < last_ctc) {
			ctc_hi -= 1u << pt_pl_tma_ctc_bit_size;
			ctc_hi &= pt_pl_mtc_mask << mtc_freq;
		}

		last_ctc |= ctc_hi;
	}

	errcode = pt_time_ctc_delta(&ctc_delta, ctc, last_ctc, config);
	if (errcode < 0) {
		time->lost_mtc += 1;
		return errcode;
	}

	errcode = pt_time_ctc_fc(&tsc, ctc_delta, config);
	if (errcode < 0)
		return errcode;

	base += tsc;
	time->tsc = time->base = base;

	return 0;
}

/* Adjust a CYC packet's payload spanning multiple MTC periods.
 *
 * CYC packets measure the Fast Counter since the last CYC(-eligible) packet.
 * Depending on the CYC threshold, we may not get a CYC for each MTC, so a CYC
 * period may overlap with or even span multiple MTC periods.
 *
 * We can't do much about the overlap case without examining all packets in
 * the respective periods.  We leave this as expected imprecision.
 *
 * If we find a CYC packet to span multiple MTC packets, though, we try to
 * approximate the portion for the current MTC period by subtracting the
 * estimated portion for previous MTC periods using calibration information.
 *
 * We only consider MTC.  For the first CYC after TSC, the corresponding TMA
 * will contain the Fast Counter at TSC.
 *
 * Returns zero on success, a negative error code otherwise.
 */
static int pt_time_adjust_cyc(uint64_t *cyc, const struct pt_time *time,
			      const struct pt_config *config, uint64_t fcr)
{
	uint32_t last_ctc, ctc, ctc_delta;
	uint64_t fc, total_cyc, old_cyc;
	int errcode;

	if (!time || !config || !fcr)
		return -pte_internal;

	last_ctc = time->ctc_cyc;
	ctc = time->ctc;

	/* There is nothing to do if this is the current MTC period. */
	if (ctc == last_ctc)
		return 0;

	/* Calibration computes
	 *
	 *   fc  = (ctc_delta * cpuid[0x15].ebx) / cpuid[0x15].eax.
	 *   fcr = (fc << pt_tcal_fcr_shr) / cyc
	 *
	 * So cyc = (fc << pt_tcal_fcr_shr) / fcr.
	 */

	errcode = pt_time_ctc_delta(&ctc_delta, ctc, last_ctc, config);
	if (errcode < 0)
		return errcode;

	errcode = pt_time_ctc_fc(&fc, ctc_delta, config);
	if (errcode < 0)
		return errcode;

	old_cyc = (fc << pt_tcal_fcr_shr) / fcr;
	total_cyc = *cyc;

	/* Make sure we don't wrap around.  If we would, attribute the entire
	 * CYC payload to any previous MTC period.
	 *
	 * We lost an unknown portion of the CYC payload for the current MTC
	 * period, but it's usually better to run too slow than too fast.
	 */
	if (total_cyc < old_cyc)
		total_cyc = old_cyc;

	*cyc = total_cyc - old_cyc;
	return 0;
}

int pt_time_update_cyc(struct pt_time *time,
		       const struct pt_packet_cyc *packet,
		       const struct pt_config *config, uint64_t fcr)
{
	uint64_t cyc, fc;

	if (!time || !packet || !config)
		return -pte_internal;

	if (!fcr) {
		time->lost_cyc += 1;
		return 0;
	}

	cyc = packet->value;
	fc = time->fc;
	if (!fc) {
		int errcode;

		errcode = pt_time_adjust_cyc(&cyc, time, config, fcr);
		if (errcode < 0)
			return errcode;
	}

	fc += (cyc * fcr) >> pt_tcal_fcr_shr;

	time->fc = fc;
	time->tsc = time->base + fc;

	return 0;
}

void pt_tcal_init(struct pt_time_cal *tcal)
{
	if (!tcal)
		return;

	memset(tcal, 0, sizeof(*tcal));

	tcal->min_fcr = UINT64_MAX;
}

static int pt_tcal_have_fcr(const struct pt_time_cal *tcal)
{
	if (!tcal)
		return 0;

	return (tcal->min_fcr <= tcal->max_fcr);
}

int pt_tcal_fcr(uint64_t *fcr, const struct pt_time_cal *tcal)
{
	if (!fcr || !tcal)
		return -pte_internal;

	if (!pt_tcal_have_fcr(tcal))
		return -pte_no_time;

	*fcr = tcal->fcr;

	return 0;
}

int pt_tcal_set_fcr(struct pt_time_cal *tcal, uint64_t fcr)
{
	if (!tcal)
		return -pte_internal;

	tcal->fcr = fcr;

	if (fcr < tcal->min_fcr)
		tcal->min_fcr = fcr;

	if (fcr > tcal->max_fcr)
		tcal->max_fcr = fcr;

	return 0;
}

int pt_tcal_update_tsc(struct pt_time_cal *tcal,
		      const struct pt_packet_tsc *packet,
		      const struct pt_config *config)
{
	(void) config;

	if (!tcal || !packet)
		return -pte_internal;

	/* A TSC outside of PSB+ may indicate loss of time.  We do not use it
	 * for calibration.  We store the TSC value for calibration at the next
	 * TSC in PSB+, though.
	 */
	tcal->tsc = packet->tsc;
	tcal->cyc_tsc = 0ull;

	return 0;
}

int pt_tcal_header_tsc(struct pt_time_cal *tcal,
		      const struct pt_packet_tsc *packet,
		      const struct pt_config *config)
{
	uint64_t tsc, last_tsc, tsc_delta, cyc, fcr;

	(void) config;

	if (!tcal || !packet)
		return -pte_internal;

	last_tsc = tcal->tsc;
	cyc = tcal->cyc_tsc;

	tsc = packet->tsc;

	tcal->tsc = tsc;
	tcal->cyc_tsc = 0ull;

	if (!last_tsc || !cyc)
		return 0;

	/* Correct a single wrap-around. */
	if (tsc < last_tsc) {
		tsc += 1ull << pt_pl_tsc_bit_size;

		if (tsc < last_tsc)
			return -pte_bad_packet;
	}

	tsc_delta = tsc - last_tsc;

	/* We shift the nominator to improve rounding precision.
	 *
	 * Since we're only collecting the CYCs between two TSC, we shouldn't
	 * overflow.  Let's rather fail than overflow.
	 */
	if (tsc_delta & ~(~0ull >> pt_tcal_fcr_shr))
		return -pte_internal;

	fcr = (tsc_delta << pt_tcal_fcr_shr) / cyc;

	return pt_tcal_set_fcr(tcal, fcr);
}

int pt_tcal_update_cbr(struct pt_time_cal *tcal,
		      const struct pt_packet_cbr *packet,
		      const struct pt_config *config)
{
	/* A CBR outside of PSB+ indicates a frequency change.  Reset our
	 * calibration state.
	 */
	pt_tcal_init(tcal);

	return pt_tcal_header_cbr(tcal, packet, config);
}

int pt_tcal_header_cbr(struct pt_time_cal *tcal,
		      const struct pt_packet_cbr *packet,
		      const struct pt_config *config)
{
	uint64_t cbr, p1, fcr;

	if (!tcal || !packet || !config)
		return -pte_internal;

	p1 = config->nom_freq;
	if (!p1)
		return 0;

	/* If we know the nominal frequency, we can use it for calibration. */
	cbr = packet->ratio;

	fcr = (p1 << pt_tcal_fcr_shr) / cbr;

	return pt_tcal_set_fcr(tcal, fcr);
}

int pt_tcal_update_tma(struct pt_time_cal *tcal,
		      const struct pt_packet_tma *packet,
		      const struct pt_config *config)
{
	(void) tcal;
	(void) packet;
	(void) config;

	/* Nothing to do. */
	return 0;
}

int pt_tcal_update_mtc(struct pt_time_cal *tcal,
		      const struct pt_packet_mtc *packet,
		      const struct pt_config *config)
{
	uint32_t last_ctc, ctc, ctc_delta, have_mtc;
	uint64_t cyc, fc, fcr;
	int errcode;

	if (!tcal || !packet || !config)
		return -pte_internal;

	last_ctc = tcal->ctc;
	have_mtc = tcal->have_mtc;
	cyc = tcal->cyc_mtc;

	ctc = packet->ctc << config->mtc_freq;

	/* We need at least two MTC (including this). */
	if (!have_mtc) {
		tcal->cyc_mtc = 0ull;
		tcal->ctc = ctc;
		tcal->have_mtc = 1;

		return 0;
	}

	/* Without any cycles, we can't calibrate.  Try again at the next
	 * MTC and distribute the cycles over the combined MTC period.
	 */
	if (!cyc)
		return 0;

	/* Prepare for the next packet in case we error out below. */
	tcal->have_mtc = 1;
	tcal->cyc_mtc = 0ull;
	tcal->ctc = ctc;

	/* Let's pretend we will fail.  We'll correct it at the end. */
	tcal->lost_mtc += 1;

	errcode = pt_time_ctc_delta(&ctc_delta, ctc, last_ctc, config);
	if (errcode < 0)
		return errcode;

	errcode = pt_time_ctc_fc(&fc, ctc_delta, config);
	if (errcode < 0)
		return errcode;

	/* We shift the nominator to improve rounding precision.
	 *
	 * Since we're only collecting the CYCs between two MTC, we shouldn't
	 * overflow.  Let's rather fail than overflow.
	 */
	if (fc & ~(~0ull >> pt_tcal_fcr_shr))
		return -pte_internal;

	fcr = (fc << pt_tcal_fcr_shr) / cyc;

	errcode = pt_tcal_set_fcr(tcal, fcr);
	if (errcode < 0)
		return errcode;

	/* We updated the FCR.  This recovers from previous MTC losses. */
	tcal->lost_mtc = 0;

	return 0;
}

int pt_tcal_update_cyc(struct pt_time_cal *tcal,
		      const struct pt_packet_cyc *packet,
		      const struct pt_config *config)
{
	uint64_t cyc;

	(void) config;

	if (!tcal || !packet)
		return -pte_internal;

	cyc = packet->value;
	tcal->cyc_mtc += cyc;
	tcal->cyc_tsc += cyc;

	return 0;
}