Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
/*-
 * SPDX-License-Identifier: BSD-3-Clause
 *
 * Copyright (c) 1988, 1989, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)radix.c	8.4 (Berkeley) 11/2/94
 *
 * $FreeBSD$
 */

/*
 * Routines to build and maintain radix trees for routing lookups.
 */

#include "defs.h"

#ifdef __NetBSD__
__RCSID("$NetBSD$");
#elif defined(__FreeBSD__)
__RCSID("$FreeBSD$");
#else
__RCSID("$Revision: 2.23 $");
#ident "$Revision: 2.23 $"
#endif

#define log(x, msg) syslog(x, msg)
#define panic(s) {log(LOG_ERR,s); exit(1);}
#define min(a,b) (((a)<(b))?(a):(b))

int	max_keylen;
static struct radix_mask *rn_mkfreelist;
static struct radix_node_head *mask_rnhead;
static char *addmask_key;
static const uint8_t normal_chars[] =
    { 0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
static char *rn_zeros, *rn_ones;

#define rn_masktop (mask_rnhead->rnh_treetop)
#define Bcmp(a, b, l) (l == 0 ? 0 \
		       : memcmp((caddr_t)(a), (caddr_t)(b), (size_t)l))

static int rn_satisfies_leaf(char *, struct radix_node *, int);
static struct radix_node *rn_addmask(void *n_arg, int search, int skip);
static struct radix_node *rn_addroute(void *v_arg, void *n_arg,
	    struct radix_node_head *head, struct radix_node treenodes[2]);
static struct radix_node *rn_match(void *v_arg, struct radix_node_head *head);

/*
 * The data structure for the keys is a radix tree with one way
 * branching removed.  The index rn_b at an internal node n represents a bit
 * position to be tested.  The tree is arranged so that all descendants
 * of a node n have keys whose bits all agree up to position rn_b - 1.
 * (We say the index of n is rn_b.)
 *
 * There is at least one descendant which has a one bit at position rn_b,
 * and at least one with a zero there.
 *
 * A route is determined by a pair of key and mask.  We require that the
 * bit-wise logical and of the key and mask to be the key.
 * We define the index of a route to associated with the mask to be
 * the first bit number in the mask where 0 occurs (with bit number 0
 * representing the highest order bit).
 *
 * We say a mask is normal if every bit is 0, past the index of the mask.
 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
 * and m is a normal mask, then the route applies to every descendant of n.
 * If the index(m) < rn_b, this implies the trailing last few bits of k
 * before bit b are all 0, (and hence consequently true of every descendant
 * of n), so the route applies to all descendants of the node as well.
 *
 * Similar logic shows that a non-normal mask m such that
 * index(m) <= index(n) could potentially apply to many children of n.
 * Thus, for each non-host route, we attach its mask to a list at an internal
 * node as high in the tree as we can go.
 *
 * The present version of the code makes use of normal routes in short-
 * circuiting an explicit mask and compare operation when testing whether
 * a key satisfies a normal route, and also in remembering the unique leaf
 * that governs a subtree.
 */

static struct radix_node *
rn_search(void *v_arg,
	  struct radix_node *head)
{
	struct radix_node *x;
	caddr_t v;

	for (x = head, v = v_arg; x->rn_b >= 0;) {
		if (x->rn_bmask & v[x->rn_off])
			x = x->rn_r;
		else
			x = x->rn_l;
	}
	return (x);
}

static struct radix_node *
rn_search_m(void *v_arg,
	    struct radix_node *head,
	    void *m_arg)
{
	struct radix_node *x;
	caddr_t v = v_arg, m = m_arg;

	for (x = head; x->rn_b >= 0;) {
		if ((x->rn_bmask & m[x->rn_off]) &&
		    (x->rn_bmask & v[x->rn_off]))
			x = x->rn_r;
		else
			x = x->rn_l;
	}
	return x;
}

static int
rn_refines(void* m_arg, void *n_arg)
{
	caddr_t m = m_arg, n = n_arg;
	caddr_t lim, lim2 = lim = n + *(u_char *)n;
	int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
	int masks_are_equal = 1;

	if (longer > 0)
		lim -= longer;
	while (n < lim) {
		if (*n & ~(*m))
			return 0;
		if (*n++ != *m++)
			masks_are_equal = 0;
	}
	while (n < lim2)
		if (*n++)
			return 0;
	if (masks_are_equal && (longer < 0))
		for (lim2 = m - longer; m < lim2; )
			if (*m++)
				return 1;
	return (!masks_are_equal);
}

static struct radix_node *
rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head)
{
	struct radix_node *x;
	caddr_t netmask = 0;

	if (m_arg) {
		if ((x = rn_addmask(m_arg, 1,
		    head->rnh_treetop->rn_off)) == NULL)
			return (0);
		netmask = x->rn_key;
	}
	x = rn_match(v_arg, head);
	if (x && netmask) {
		while (x && x->rn_mask != netmask)
			x = x->rn_dupedkey;
	}
	return x;
}

static int
rn_satisfies_leaf(char *trial,
		  struct radix_node *leaf,
		  int skip)
{
	char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
	char *cplim;
	int length = min(*(u_char *)cp, *(u_char *)cp2);

	if (cp3 == NULL)
		cp3 = rn_ones;
	else
		length = min(length, *(u_char *)cp3);
	cplim = cp + length; cp3 += skip; cp2 += skip;
	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
		if ((*cp ^ *cp2) & *cp3)
			return 0;
	return 1;
}

static struct radix_node *
rn_match(void *v_arg,
	 struct radix_node_head *head)
{
	caddr_t v = v_arg;
	struct radix_node *t = head->rnh_treetop, *x;
	caddr_t cp = v, cp2;
	caddr_t cplim;
	struct radix_node *saved_t, *top = t;
	int off = t->rn_off, vlen = *(u_char *)cp, matched_off;
	int test, b, rn_b;

	/*
	 * Open code rn_search(v, top) to avoid overhead of extra
	 * subroutine call.
	 */
	for (; t->rn_b >= 0; ) {
		if (t->rn_bmask & cp[t->rn_off])
			t = t->rn_r;
		else
			t = t->rn_l;
	}
	/*
	 * See if we match exactly as a host destination
	 * or at least learn how many bits match, for normal mask finesse.
	 *
	 * It doesn't hurt us to limit how many bytes to check
	 * to the length of the mask, since if it matches we had a genuine
	 * match and the leaf we have is the most specific one anyway;
	 * if it didn't match with a shorter length it would fail
	 * with a long one.  This wins big for class B&C netmasks which
	 * are probably the most common case...
	 */
	if (t->rn_mask)
		vlen = *(u_char *)t->rn_mask;
	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
	for (; cp < cplim; cp++, cp2++)
		if (*cp != *cp2)
			goto on1;
	/*
	 * This extra grot is in case we are explicitly asked
	 * to look up the default.  Ugh!
	 * Or 255.255.255.255
	 *
	 * In this case, we have a complete match of the key.  Unless
	 * the node is one of the roots, we are finished.
	 * If it is the zeros root, then take what we have, preferring
	 * any real data.
	 * If it is the ones root, then pretend the target key was followed
	 * by a byte of zeros.
	 */
	if (!(t->rn_flags & RNF_ROOT))
		return t;		/* not a root */
	if (t->rn_dupedkey) {
		t = t->rn_dupedkey;
		return t;		/* have some real data */
	}
	if (*(cp-1) == 0)
		return t;		/* not the ones root */
	b = 0;				/* fake a zero after 255.255.255.255 */
	goto on2;
on1:
	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
	for (b = 7; (test >>= 1) > 0;)
		b--;
on2:
	matched_off = cp - v;
	b += matched_off << 3;
	rn_b = -1 - b;
	/*
	 * If there is a host route in a duped-key chain, it will be first.
	 */
	if ((saved_t = t)->rn_mask == 0)
		t = t->rn_dupedkey;
	for (; t; t = t->rn_dupedkey) {
		/*
		 * Even if we don't match exactly as a host,
		 * we may match if the leaf we wound up at is
		 * a route to a net.
		 */
		if (t->rn_flags & RNF_NORMAL) {
			if (rn_b <= t->rn_b)
				return t;
		} else if (rn_satisfies_leaf(v, t, matched_off)) {
			return t;
		}
	}
	t = saved_t;
	/* start searching up the tree */
	do {
		struct radix_mask *m;
		t = t->rn_p;
		if ((m = t->rn_mklist)) {
			/*
			 * If non-contiguous masks ever become important
			 * we can restore the masking and open coding of
			 * the search and satisfaction test and put the
			 * calculation of "off" back before the "do".
			 */
			do {
				if (m->rm_flags & RNF_NORMAL) {
					if (rn_b <= m->rm_b)
						return (m->rm_leaf);
				} else {
					off = min(t->rn_off, matched_off);
					x = rn_search_m(v, t, m->rm_mask);
					while (x && x->rn_mask != m->rm_mask)
						x = x->rn_dupedkey;
					if (x && rn_satisfies_leaf(v, x, off))
						    return x;
				}
			} while ((m = m->rm_mklist));
		}
	} while (t != top);
	return 0;
}

#ifdef RN_DEBUG
int	rn_nodenum;
struct	radix_node *rn_clist;
int	rn_saveinfo;
int	rn_debug =  1;
#endif

static struct radix_node *
rn_newpair(void *v, int b, struct radix_node nodes[2])
{
	struct radix_node *tt = nodes, *t = tt + 1;
	t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
	t->rn_l = tt; t->rn_off = b >> 3;
	tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t;
	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
#ifdef RN_DEBUG
	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
	tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
#endif
	return t;
}

static struct radix_node *
rn_insert(void* v_arg,
	  struct radix_node_head *head,
	  int *dupentry,
	  struct radix_node nodes[2])
{
	caddr_t v = v_arg;
	struct radix_node *top = head->rnh_treetop;
	int head_off = top->rn_off, vlen = (int)*((u_char *)v);
	struct radix_node *t = rn_search(v_arg, top);
	caddr_t cp = v + head_off;
	int b;
	struct radix_node *tt;

	/*
	 * Find first bit at which v and t->rn_key differ
	 */
    {
		caddr_t cp2 = t->rn_key + head_off;
		int cmp_res;
	caddr_t cplim = v + vlen;

	while (cp < cplim)
		if (*cp2++ != *cp++)
			goto on1;
	/* handle adding 255.255.255.255 */
	if (!(t->rn_flags & RNF_ROOT) || *(cp2-1) == 0) {
		*dupentry = 1;
		return t;
	}
on1:
	*dupentry = 0;
	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
	for (b = (cp - v) << 3; cmp_res; b--)
		cmp_res >>= 1;
    }
    {
	    struct radix_node *p, *x = top;
	cp = v;
	do {
		p = x;
		if (cp[x->rn_off] & x->rn_bmask)
			x = x->rn_r;
		else x = x->rn_l;
	} while ((unsigned)b > (unsigned)x->rn_b);
#ifdef RN_DEBUG
	if (rn_debug)
		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
#endif
	t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
	if ((cp[p->rn_off] & p->rn_bmask) == 0)
		p->rn_l = t;
	else
		p->rn_r = t;
	x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
	if ((cp[t->rn_off] & t->rn_bmask) == 0) {
		t->rn_r = x;
	} else {
		t->rn_r = tt; t->rn_l = x;
	}
#ifdef RN_DEBUG
	if (rn_debug)
		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
#endif
    }
	return (tt);
}

static struct radix_node *
rn_addmask(void *n_arg, int search, int skip)
{
	caddr_t netmask = (caddr_t)n_arg;
	struct radix_node *x;
	caddr_t cp, cplim;
	int b = 0, mlen, j;
	int maskduplicated, m0, isnormal;
	struct radix_node *saved_x;
	static int last_zeroed = 0;

	if ((mlen = *(u_char *)netmask) > max_keylen)
		mlen = max_keylen;
	if (skip == 0)
		skip = 1;
	if (mlen <= skip)
		return (mask_rnhead->rnh_nodes);
	if (skip > 1)
		Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
	if ((m0 = mlen) > skip)
		Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
	/*
	 * Trim trailing zeroes.
	 */
	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
		cp--;
	mlen = cp - addmask_key;
	if (mlen <= skip) {
		if (m0 >= last_zeroed)
			last_zeroed = mlen;
		return (mask_rnhead->rnh_nodes);
	}
	if (m0 < last_zeroed)
		Bzero(addmask_key + m0, last_zeroed - m0);
	*addmask_key = last_zeroed = mlen;
	x = rn_search(addmask_key, rn_masktop);
	if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
		x = NULL;
	if (x || search)
		return (x);
	x = (struct radix_node *)rtmalloc(max_keylen + 2*sizeof(*x),
					  "rn_addmask");
	saved_x = x;
	Bzero(x, max_keylen + 2 * sizeof (*x));
	netmask = cp = (caddr_t)(x + 2);
	Bcopy(addmask_key, cp, mlen);
	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
	if (maskduplicated) {
		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
		Free(saved_x);
		return (x);
	}
	/*
	 * Calculate index of mask, and check for normalcy.
	 */
	cplim = netmask + mlen; isnormal = 1;
	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
		cp++;
	if (cp != cplim) {
		for (j = 0x80; (j & *cp) != 0; j >>= 1)
			b++;
		if (*cp != normal_chars[b] || cp != (cplim - 1))
			isnormal = 0;
	}
	b += (cp - netmask) << 3;
	x->rn_b = -1 - b;
	if (isnormal)
		x->rn_flags |= RNF_NORMAL;
	return (x);
}

static int	/* XXX: arbitrary ordering for non-contiguous masks */
rn_lexobetter(void *m_arg, void *n_arg)
{
	u_char *mp = m_arg, *np = n_arg, *lim;

	if (*mp > *np)
		return 1;  /* not really, but need to check longer one first */
	if (*mp == *np)
		for (lim = mp + *mp; mp < lim;)
			if (*mp++ > *np++)
				return 1;
	return 0;
}

static struct radix_mask *
rn_new_radix_mask(struct radix_node *tt,
		  struct radix_mask *next)
{
	struct radix_mask *m;

	MKGet(m);
	if (m == NULL) {
		log(LOG_ERR, "Mask for route not entered\n");
		return (0);
	}
	Bzero(m, sizeof *m);
	m->rm_b = tt->rn_b;
	m->rm_flags = tt->rn_flags;
	if (tt->rn_flags & RNF_NORMAL)
		m->rm_leaf = tt;
	else
		m->rm_mask = tt->rn_mask;
	m->rm_mklist = next;
	tt->rn_mklist = m;
	return m;
}

static struct radix_node *
rn_addroute(void *v_arg,
	    void *n_arg,
	    struct radix_node_head *head,
	    struct radix_node treenodes[2])
{
	caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
	struct radix_node *t, *x = NULL, *tt;
	struct radix_node *saved_tt, *top = head->rnh_treetop;
	short b = 0, b_leaf = 0;
	int keyduplicated;
	caddr_t mmask;
	struct radix_mask *m, **mp;

	/*
	 * In dealing with non-contiguous masks, there may be
	 * many different routes which have the same mask.
	 * We will find it useful to have a unique pointer to
	 * the mask to speed avoiding duplicate references at
	 * nodes and possibly save time in calculating indices.
	 */
	if (netmask)  {
		if ((x = rn_addmask(netmask, 0, top->rn_off)) == NULL)
			return (0);
		b_leaf = x->rn_b;
		b = -1 - x->rn_b;
		netmask = x->rn_key;
	}
	/*
	 * Deal with duplicated keys: attach node to previous instance
	 */
	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
	if (keyduplicated) {
		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
			if (tt->rn_mask == netmask)
				return (0);
			if (netmask == 0 ||
			    (tt->rn_mask &&
			     ((b_leaf < tt->rn_b) || /* index(netmask) > node */
			       rn_refines(netmask, tt->rn_mask) ||
			       rn_lexobetter(netmask, tt->rn_mask))))
				break;
		}
		/*
		 * If the mask is not duplicated, we wouldn't
		 * find it among possible duplicate key entries
		 * anyway, so the above test doesn't hurt.
		 *
		 * We sort the masks for a duplicated key the same way as
		 * in a masklist -- most specific to least specific.
		 * This may require the unfortunate nuisance of relocating
		 * the head of the list.
		 */
		if (tt == saved_tt) {
			struct	radix_node *xx = x;
			/* link in at head of list */
			(tt = treenodes)->rn_dupedkey = t;
			tt->rn_flags = t->rn_flags;
			tt->rn_p = x = t->rn_p;
			if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
			saved_tt = tt; x = xx;
		} else {
			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
			t->rn_dupedkey = tt;
		}
#ifdef RN_DEBUG
		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
#endif
		tt->rn_key = (caddr_t) v;
		tt->rn_b = -1;
		tt->rn_flags = RNF_ACTIVE;
	}
	/*
	 * Put mask in tree.
	 */
	if (netmask) {
		tt->rn_mask = netmask;
		tt->rn_b = x->rn_b;
		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
	}
	t = saved_tt->rn_p;
	if (keyduplicated)
		goto on2;
	b_leaf = -1 - t->rn_b;
	if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
	/* Promote general routes from below */
	if (x->rn_b < 0) {
	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
		if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
			if ((*mp = m = rn_new_radix_mask(x, 0)))
				mp = &m->rm_mklist;
		}
	} else if (x->rn_mklist) {
		/*
		 * Skip over masks whose index is > that of new node
		 */
		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
			if (m->rm_b >= b_leaf)
				break;
		t->rn_mklist = m; *mp = NULL;
	}
on2:
	/* Add new route to highest possible ancestor's list */
	if ((netmask == 0) || (b > t->rn_b ))
		return tt; /* can't lift at all */
	b_leaf = tt->rn_b;
	do {
		x = t;
		t = t->rn_p;
	} while (b <= t->rn_b && x != top);
	/*
	 * Search through routes associated with node to
	 * insert new route according to index.
	 * Need same criteria as when sorting dupedkeys to avoid
	 * double loop on deletion.
	 */
	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
		if (m->rm_b < b_leaf)
			continue;
		if (m->rm_b > b_leaf)
			break;
		if (m->rm_flags & RNF_NORMAL) {
			mmask = m->rm_leaf->rn_mask;
			if (tt->rn_flags & RNF_NORMAL) {
				log(LOG_ERR,
				   "Non-unique normal route, mask not entered");
				return tt;
			}
		} else
			mmask = m->rm_mask;
		if (mmask == netmask) {
			m->rm_refs++;
			tt->rn_mklist = m;
			return tt;
		}
		if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
			break;
	}
	*mp = rn_new_radix_mask(tt, *mp);
	return tt;
}

static struct radix_node *
rn_delete(void *v_arg,
	  void *netmask_arg,
	  struct radix_node_head *head)
{
	struct radix_node *t, *p, *x, *tt;
	struct radix_mask *m, *saved_m, **mp;
	struct radix_node *dupedkey, *saved_tt, *top;
	caddr_t v, netmask;
	int b, head_off, vlen;

	v = v_arg;
	netmask = netmask_arg;
	x = head->rnh_treetop;
	tt = rn_search(v, x);
	head_off = x->rn_off;
	vlen =  *(u_char *)v;
	saved_tt = tt;
	top = x;
	if (tt == NULL ||
	    Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
		return (0);
	/*
	 * Delete our route from mask lists.
	 */
	if (netmask) {
		if ((x = rn_addmask(netmask, 1, head_off)) == NULL)
			return (0);
		netmask = x->rn_key;
		while (tt->rn_mask != netmask)
			if ((tt = tt->rn_dupedkey) == NULL)
				return (0);
	}
	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == NULL)
		goto on1;
	if (tt->rn_flags & RNF_NORMAL) {
		if (m->rm_leaf != tt || m->rm_refs > 0) {
			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
			return 0;  /* dangling ref could cause disaster */
		}
	} else {
		if (m->rm_mask != tt->rn_mask) {
			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
			goto on1;
		}
		if (--m->rm_refs >= 0)
			goto on1;
	}
	b = -1 - tt->rn_b;
	t = saved_tt->rn_p;
	if (b > t->rn_b)
		goto on1; /* Wasn't lifted at all */
	do {
		x = t;
		t = t->rn_p;
	} while (b <= t->rn_b && x != top);
	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
		if (m == saved_m) {
			*mp = m->rm_mklist;
			MKFree(m);
			break;
		}
	if (m == NULL) {
		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
		if (tt->rn_flags & RNF_NORMAL)
			return (0); /* Dangling ref to us */
	}
on1:
	/*
	 * Eliminate us from tree
	 */
	if (tt->rn_flags & RNF_ROOT)
		return (0);
#ifdef RN_DEBUG
	/* Get us out of the creation list */
	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
	if (t) t->rn_ybro = tt->rn_ybro;
#endif
	t = tt->rn_p;
	if ((dupedkey = saved_tt->rn_dupedkey)) {
		if (tt == saved_tt) {
			x = dupedkey; x->rn_p = t;
			if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
		} else {
			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
				p = p->rn_dupedkey;
			if (p) p->rn_dupedkey = tt->rn_dupedkey;
			else log(LOG_ERR, "rn_delete: couldn't find us\n");
		}
		t = tt + 1;
		if  (t->rn_flags & RNF_ACTIVE) {
#ifndef RN_DEBUG
			*++x = *t; p = t->rn_p;
#else
			b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
#endif
			if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
			x->rn_l->rn_p = x; x->rn_r->rn_p = x;
		}
		goto out;
	}
	if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
	p = t->rn_p;
	if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
	x->rn_p = p;
	/*
	 * Demote routes attached to us.
	 */
	if (t->rn_mklist) {
		if (x->rn_b >= 0) {
			for (mp = &x->rn_mklist; (m = *mp);)
				mp = &m->rm_mklist;
			*mp = t->rn_mklist;
		} else {
			/* If there are any key,mask pairs in a sibling
			   duped-key chain, some subset will appear sorted
			   in the same order attached to our mklist */
			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
				if (m == x->rn_mklist) {
					struct radix_mask *mm = m->rm_mklist;
					x->rn_mklist = 0;
					if (--(m->rm_refs) < 0)
						MKFree(m);
					m = mm;
				}
			if (m)
				syslog(LOG_ERR, "%s 0x%lx at 0x%lx\n",
				       "rn_delete: Orphaned Mask",
				       (unsigned long)m,
				       (unsigned long)x);
		}
	}
	/*
	 * We may be holding an active internal node in the tree.
	 */
	x = tt + 1;
	if (t != x) {
#ifndef RN_DEBUG
		*t = *x;
#else
		b = t->rn_info; *t = *x; t->rn_info = b;
#endif
		t->rn_l->rn_p = t; t->rn_r->rn_p = t;
		p = x->rn_p;
		if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
	}
out:
	tt->rn_flags &= ~RNF_ACTIVE;
	tt[1].rn_flags &= ~RNF_ACTIVE;
	return (tt);
}

int
rn_walktree(struct radix_node_head *h,
	    int (*f)(struct radix_node *, struct walkarg *),
	    struct walkarg *w)
{
	int error;
	struct radix_node *base, *next;
	struct radix_node *rn = h->rnh_treetop;
	/*
	 * This gets complicated because we may delete the node
	 * while applying the function f to it, so we need to calculate
	 * the successor node in advance.
	 */
	/* First time through node, go left */
	while (rn->rn_b >= 0)
		rn = rn->rn_l;
	for (;;) {
		base = rn;
		/* If at right child go back up, otherwise, go right */
		while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
			rn = rn->rn_p;
		/* Find the next *leaf* since next node might vanish, too */
		for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
			rn = rn->rn_l;
		next = rn;
		/* Process leaves */
		while ((rn = base)) {
			base = rn->rn_dupedkey;
			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
				return (error);
		}
		rn = next;
		if (rn->rn_flags & RNF_ROOT)
			return (0);
	}
	/* NOTREACHED */
}

int
rn_inithead(struct radix_node_head **head, int off)
{
	struct radix_node_head *rnh;
	struct radix_node *t, *tt, *ttt;
	if (*head)
		return (1);
	rnh = (struct radix_node_head *)rtmalloc(sizeof(*rnh), "rn_inithead");
	Bzero(rnh, sizeof (*rnh));
	*head = rnh;
	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
	ttt = rnh->rnh_nodes + 2;
	t->rn_r = ttt;
	t->rn_p = t;
	tt = t->rn_l;
	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
	tt->rn_b = -1 - off;
	*ttt = *tt;
	ttt->rn_key = rn_ones;
	rnh->rnh_addaddr = rn_addroute;
	rnh->rnh_deladdr = rn_delete;
	rnh->rnh_matchaddr = rn_match;
	rnh->rnh_lookup = rn_lookup;
	rnh->rnh_walktree = rn_walktree;
	rnh->rnh_treetop = t;
	return (1);
}

void
rn_init(void)
{
	char *cp, *cplim;
	if (max_keylen == 0) {
		printf("rn_init: radix functions require max_keylen be set\n");
		return;
	}
	rn_zeros = (char *)rtmalloc(3 * max_keylen, "rn_init");
	Bzero(rn_zeros, 3 * max_keylen);
	rn_ones = cp = rn_zeros + max_keylen;
	addmask_key = cplim = rn_ones + max_keylen;
	while (cp < cplim)
		*cp++ = -1;
	if (rn_inithead(&mask_rnhead, 0) == 0)
		panic("rn_init 2");
}