/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* **************************************
* Tuning parameters
****************************************/
#ifndef BMK_TIMETEST_DEFAULT_S /* default minimum time per test */
#define BMK_TIMETEST_DEFAULT_S 3
#endif
/* **************************************
* Compiler Warnings
****************************************/
#ifdef _MSC_VER
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
#endif
/* *************************************
* Includes
***************************************/
#include "platform.h" /* Large Files support */
#include "util.h" /* UTIL_getFileSize, UTIL_sleep */
#include <stdlib.h> /* malloc, free */
#include <string.h> /* memset */
#include <stdio.h> /* fprintf, fopen */
#include <assert.h> /* assert */
#include "mem.h"
#define ZSTD_STATIC_LINKING_ONLY
#include "zstd.h"
#include "datagen.h" /* RDG_genBuffer */
#include "xxhash.h"
/* *************************************
* Constants
***************************************/
#ifndef ZSTD_GIT_COMMIT
# define ZSTD_GIT_COMMIT_STRING ""
#else
# define ZSTD_GIT_COMMIT_STRING ZSTD_EXPAND_AND_QUOTE(ZSTD_GIT_COMMIT)
#endif
#define TIMELOOP_MICROSEC (1*1000000ULL) /* 1 second */
#define TIMELOOP_NANOSEC (1*1000000000ULL) /* 1 second */
#define ACTIVEPERIOD_MICROSEC (70*TIMELOOP_MICROSEC) /* 70 seconds */
#define COOLPERIOD_SEC 10
#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)
static const size_t maxMemory = (sizeof(size_t)==4) ? (2 GB - 64 MB) : (size_t)(1ULL << ((sizeof(size_t)*8)-31));
static U32 g_compressibilityDefault = 50;
/* *************************************
* console display
***************************************/
#define DISPLAY(...) fprintf(stderr, __VA_ARGS__)
#define DISPLAYLEVEL(l, ...) if (g_displayLevel>=l) { DISPLAY(__VA_ARGS__); }
static int g_displayLevel = 2; /* 0 : no display; 1: errors; 2 : + result + interaction + warnings; 3 : + progression; 4 : + information */
static const U64 g_refreshRate = SEC_TO_MICRO / 6;
static UTIL_time_t g_displayClock = UTIL_TIME_INITIALIZER;
#define DISPLAYUPDATE(l, ...) { if (g_displayLevel>=l) { \
if ((UTIL_clockSpanMicro(g_displayClock) > g_refreshRate) || (g_displayLevel>=4)) \
{ g_displayClock = UTIL_getTime(); DISPLAY(__VA_ARGS__); \
if (g_displayLevel>=4) fflush(stderr); } } }
/* *************************************
* Exceptions
***************************************/
#ifndef DEBUG
# define DEBUG 0
#endif
#define DEBUGOUTPUT(...) { if (DEBUG) DISPLAY(__VA_ARGS__); }
#define EXM_THROW(error, ...) { \
DEBUGOUTPUT("%s: %i: \n", __FILE__, __LINE__); \
DISPLAYLEVEL(1, "Error %i : ", error); \
DISPLAYLEVEL(1, __VA_ARGS__); \
DISPLAYLEVEL(1, " \n"); \
exit(error); \
}
/* *************************************
* Benchmark Parameters
***************************************/
static int g_additionalParam = 0;
static U32 g_decodeOnly = 0;
void BMK_setNotificationLevel(unsigned level) { g_displayLevel=level; }
void BMK_setAdditionalParam(int additionalParam) { g_additionalParam=additionalParam; }
static U32 g_nbSeconds = BMK_TIMETEST_DEFAULT_S;
void BMK_setNbSeconds(unsigned nbSeconds)
{
g_nbSeconds = nbSeconds;
DISPLAYLEVEL(3, "- test >= %u seconds per compression / decompression - \n", g_nbSeconds);
}
static size_t g_blockSize = 0;
void BMK_setBlockSize(size_t blockSize)
{
g_blockSize = blockSize;
if (g_blockSize) DISPLAYLEVEL(2, "using blocks of size %u KB \n", (U32)(blockSize>>10));
}
void BMK_setDecodeOnlyMode(unsigned decodeFlag) { g_decodeOnly = (decodeFlag>0); }
static U32 g_nbWorkers = 0;
void BMK_setNbWorkers(unsigned nbWorkers) {
#ifndef ZSTD_MULTITHREAD
if (nbWorkers > 0) DISPLAYLEVEL(2, "Note : multi-threading is disabled \n");
#endif
g_nbWorkers = nbWorkers;
}
static U32 g_realTime = 0;
void BMK_setRealTime(unsigned priority) {
g_realTime = (priority>0);
}
static U32 g_separateFiles = 0;
void BMK_setSeparateFiles(unsigned separate) {
g_separateFiles = (separate>0);
}
static U32 g_ldmFlag = 0;
void BMK_setLdmFlag(unsigned ldmFlag) {
g_ldmFlag = ldmFlag;
}
static U32 g_ldmMinMatch = 0;
void BMK_setLdmMinMatch(unsigned ldmMinMatch) {
g_ldmMinMatch = ldmMinMatch;
}
static U32 g_ldmHashLog = 0;
void BMK_setLdmHashLog(unsigned ldmHashLog) {
g_ldmHashLog = ldmHashLog;
}
#define BMK_LDM_PARAM_NOTSET 9999
static U32 g_ldmBucketSizeLog = BMK_LDM_PARAM_NOTSET;
void BMK_setLdmBucketSizeLog(unsigned ldmBucketSizeLog) {
g_ldmBucketSizeLog = ldmBucketSizeLog;
}
static U32 g_ldmHashEveryLog = BMK_LDM_PARAM_NOTSET;
void BMK_setLdmHashEveryLog(unsigned ldmHashEveryLog) {
g_ldmHashEveryLog = ldmHashEveryLog;
}
/* ********************************************************
* Bench functions
**********************************************************/
typedef struct {
const void* srcPtr;
size_t srcSize;
void* cPtr;
size_t cRoom;
size_t cSize;
void* resPtr;
size_t resSize;
} blockParam_t;
#undef MIN
#undef MAX
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define MAX(a,b) ((a) > (b) ? (a) : (b))
static int BMK_benchMem(const void* srcBuffer, size_t srcSize,
const char* displayName, int cLevel,
const size_t* fileSizes, U32 nbFiles,
const void* dictBuffer, size_t dictBufferSize,
const ZSTD_compressionParameters* const comprParams)
{
size_t const blockSize = ((g_blockSize>=32 && !g_decodeOnly) ? g_blockSize : srcSize) + (!srcSize) /* avoid div by 0 */ ;
U32 const maxNbBlocks = (U32) ((srcSize + (blockSize-1)) / blockSize) + nbFiles;
blockParam_t* const blockTable = (blockParam_t*) malloc(maxNbBlocks * sizeof(blockParam_t));
size_t const maxCompressedSize = ZSTD_compressBound(srcSize) + (maxNbBlocks * 1024); /* add some room for safety */
void* const compressedBuffer = malloc(maxCompressedSize);
void* resultBuffer = malloc(srcSize);
ZSTD_CCtx* const ctx = ZSTD_createCCtx();
ZSTD_DCtx* const dctx = ZSTD_createDCtx();
size_t const loadedCompressedSize = srcSize;
size_t cSize = 0;
double ratio = 0.;
U32 nbBlocks;
/* checks */
if (!compressedBuffer || !resultBuffer || !blockTable || !ctx || !dctx)
EXM_THROW(31, "allocation error : not enough memory");
/* init */
if (strlen(displayName)>17) displayName += strlen(displayName)-17; /* display last 17 characters */
if (g_nbWorkers==1) g_nbWorkers=0; /* prefer synchronous mode */
if (g_decodeOnly) { /* benchmark only decompression : source must be already compressed */
const char* srcPtr = (const char*)srcBuffer;
U64 totalDSize64 = 0;
U32 fileNb;
for (fileNb=0; fileNb<nbFiles; fileNb++) {
U64 const fSize64 = ZSTD_findDecompressedSize(srcPtr, fileSizes[fileNb]);
if (fSize64==0) EXM_THROW(32, "Impossible to determine original size ");
totalDSize64 += fSize64;
srcPtr += fileSizes[fileNb];
}
{ size_t const decodedSize = (size_t)totalDSize64;
if (totalDSize64 > decodedSize) EXM_THROW(32, "original size is too large"); /* size_t overflow */
free(resultBuffer);
resultBuffer = malloc(decodedSize);
if (!resultBuffer) EXM_THROW(33, "not enough memory");
cSize = srcSize;
srcSize = decodedSize;
ratio = (double)srcSize / (double)cSize;
} }
/* Init blockTable data */
{ const char* srcPtr = (const char*)srcBuffer;
char* cPtr = (char*)compressedBuffer;
char* resPtr = (char*)resultBuffer;
U32 fileNb;
for (nbBlocks=0, fileNb=0; fileNb<nbFiles; fileNb++) {
size_t remaining = fileSizes[fileNb];
U32 const nbBlocksforThisFile = g_decodeOnly ? 1 : (U32)((remaining + (blockSize-1)) / blockSize);
U32 const blockEnd = nbBlocks + nbBlocksforThisFile;
for ( ; nbBlocks<blockEnd; nbBlocks++) {
size_t const thisBlockSize = MIN(remaining, blockSize);
blockTable[nbBlocks].srcPtr = (const void*)srcPtr;
blockTable[nbBlocks].srcSize = thisBlockSize;
blockTable[nbBlocks].cPtr = (void*)cPtr;
blockTable[nbBlocks].cRoom = g_decodeOnly ? thisBlockSize : ZSTD_compressBound(thisBlockSize);
blockTable[nbBlocks].cSize = blockTable[nbBlocks].cRoom;
blockTable[nbBlocks].resPtr = (void*)resPtr;
blockTable[nbBlocks].resSize = g_decodeOnly ? (size_t) ZSTD_findDecompressedSize(srcPtr, thisBlockSize) : thisBlockSize;
srcPtr += thisBlockSize;
cPtr += blockTable[nbBlocks].cRoom;
resPtr += thisBlockSize;
remaining -= thisBlockSize;
} } }
/* warmimg up memory */
if (g_decodeOnly) {
memcpy(compressedBuffer, srcBuffer, loadedCompressedSize);
} else {
RDG_genBuffer(compressedBuffer, maxCompressedSize, 0.10, 0.50, 1);
}
/* Bench */
{ U64 fastestC = (U64)(-1LL), fastestD = (U64)(-1LL);
U64 const crcOrig = g_decodeOnly ? 0 : XXH64(srcBuffer, srcSize, 0);
UTIL_time_t coolTime;
U64 const maxTime = (g_nbSeconds * TIMELOOP_NANOSEC) + 1;
U32 nbDecodeLoops = (U32)((100 MB) / (srcSize+1)) + 1; /* initial conservative speed estimate */
U32 nbCompressionLoops = (U32)((2 MB) / (srcSize+1)) + 1; /* initial conservative speed estimate */
U64 totalCTime=0, totalDTime=0;
U32 cCompleted=g_decodeOnly, dCompleted=0;
# define NB_MARKS 4
const char* const marks[NB_MARKS] = { " |", " /", " =", "\\" };
U32 markNb = 0;
coolTime = UTIL_getTime();
DISPLAYLEVEL(2, "\r%79s\r", "");
while (!cCompleted || !dCompleted) {
/* overheat protection */
if (UTIL_clockSpanMicro(coolTime) > ACTIVEPERIOD_MICROSEC) {
DISPLAYLEVEL(2, "\rcooling down ... \r");
UTIL_sleep(COOLPERIOD_SEC);
coolTime = UTIL_getTime();
}
if (!g_decodeOnly) {
/* Compression */
DISPLAYLEVEL(2, "%2s-%-17.17s :%10u ->\r", marks[markNb], displayName, (U32)srcSize);
if (!cCompleted) memset(compressedBuffer, 0xE5, maxCompressedSize); /* warm up and erase result buffer */
UTIL_sleepMilli(5); /* give processor time to other processes */
UTIL_waitForNextTick();
if (!cCompleted) { /* still some time to do compression tests */
U32 nbLoops = 0;
UTIL_time_t const clockStart = UTIL_getTime();
ZSTD_CCtx_setParameter(ctx, ZSTD_p_nbWorkers, g_nbWorkers);
ZSTD_CCtx_setParameter(ctx, ZSTD_p_compressionLevel, cLevel);
ZSTD_CCtx_setParameter(ctx, ZSTD_p_enableLongDistanceMatching, g_ldmFlag);
ZSTD_CCtx_setParameter(ctx, ZSTD_p_ldmMinMatch, g_ldmMinMatch);
ZSTD_CCtx_setParameter(ctx, ZSTD_p_ldmHashLog, g_ldmHashLog);
if (g_ldmBucketSizeLog != BMK_LDM_PARAM_NOTSET) {
ZSTD_CCtx_setParameter(ctx, ZSTD_p_ldmBucketSizeLog, g_ldmBucketSizeLog);
}
if (g_ldmHashEveryLog != BMK_LDM_PARAM_NOTSET) {
ZSTD_CCtx_setParameter(ctx, ZSTD_p_ldmHashEveryLog, g_ldmHashEveryLog);
}
ZSTD_CCtx_setParameter(ctx, ZSTD_p_windowLog, comprParams->windowLog);
ZSTD_CCtx_setParameter(ctx, ZSTD_p_hashLog, comprParams->hashLog);
ZSTD_CCtx_setParameter(ctx, ZSTD_p_chainLog, comprParams->chainLog);
ZSTD_CCtx_setParameter(ctx, ZSTD_p_searchLog, comprParams->searchLog);
ZSTD_CCtx_setParameter(ctx, ZSTD_p_minMatch, comprParams->searchLength);
ZSTD_CCtx_setParameter(ctx, ZSTD_p_targetLength, comprParams->targetLength);
ZSTD_CCtx_setParameter(ctx, ZSTD_p_compressionStrategy, comprParams->strategy);
ZSTD_CCtx_loadDictionary(ctx, dictBuffer, dictBufferSize);
if (!g_nbSeconds) nbCompressionLoops=1;
for (nbLoops=0; nbLoops<nbCompressionLoops; nbLoops++) {
U32 blockNb;
for (blockNb=0; blockNb<nbBlocks; blockNb++) {
#if 0 /* direct compression function, for occasional comparison */
ZSTD_parameters const params = ZSTD_getParams(cLevel, blockTable[blockNb].srcSize, dictBufferSize);
blockTable[blockNb].cSize = ZSTD_compress_advanced(ctx,
blockTable[blockNb].cPtr, blockTable[blockNb].cRoom,
blockTable[blockNb].srcPtr, blockTable[blockNb].srcSize,
dictBuffer, dictBufferSize,
params);
#else
size_t moreToFlush = 1;
ZSTD_outBuffer out;
ZSTD_inBuffer in;
in.src = blockTable[blockNb].srcPtr;
in.size = blockTable[blockNb].srcSize;
in.pos = 0;
out.dst = blockTable[blockNb].cPtr;
out.size = blockTable[blockNb].cRoom;
out.pos = 0;
while (moreToFlush) {
moreToFlush = ZSTD_compress_generic(ctx,
&out, &in, ZSTD_e_end);
if (ZSTD_isError(moreToFlush))
EXM_THROW(1, "ZSTD_compress_generic() error : %s",
ZSTD_getErrorName(moreToFlush));
}
blockTable[blockNb].cSize = out.pos;
#endif
} }
{ U64 const loopDuration = UTIL_clockSpanNano(clockStart);
if (loopDuration > 0) {
if (loopDuration < fastestC * nbCompressionLoops)
fastestC = loopDuration / nbCompressionLoops;
nbCompressionLoops = (U32)(TIMELOOP_NANOSEC / fastestC) + 1;
} else {
assert(nbCompressionLoops < 40000000); /* avoid overflow */
nbCompressionLoops *= 100;
}
totalCTime += loopDuration;
cCompleted = (totalCTime >= maxTime); /* end compression tests */
} }
cSize = 0;
{ U32 blockNb; for (blockNb=0; blockNb<nbBlocks; blockNb++) cSize += blockTable[blockNb].cSize; }
ratio = (double)srcSize / (double)cSize;
markNb = (markNb+1) % NB_MARKS;
{ int const ratioAccuracy = (ratio < 10.) ? 3 : 2;
double const compressionSpeed = ((double)srcSize / fastestC) * 1000;
int const cSpeedAccuracy = (compressionSpeed < 10.) ? 2 : 1;
DISPLAYLEVEL(2, "%2s-%-17.17s :%10u ->%10u (%5.*f),%6.*f MB/s\r",
marks[markNb], displayName, (U32)srcSize, (U32)cSize,
ratioAccuracy, ratio,
cSpeedAccuracy, compressionSpeed );
}
} /* if (!g_decodeOnly) */
#if 0 /* disable decompression test */
dCompleted=1;
(void)totalDTime; (void)fastestD; (void)crcOrig; /* unused when decompression disabled */
#else
/* Decompression */
if (!dCompleted) memset(resultBuffer, 0xD6, srcSize); /* warm result buffer */
UTIL_sleepMilli(5); /* give processor time to other processes */
UTIL_waitForNextTick();
if (!dCompleted) {
U32 nbLoops = 0;
ZSTD_DDict* const ddict = ZSTD_createDDict(dictBuffer, dictBufferSize);
UTIL_time_t const clockStart = UTIL_getTime();
if (!ddict) EXM_THROW(2, "ZSTD_createDDict() allocation failure");
if (!g_nbSeconds) nbDecodeLoops = 1;
for (nbLoops=0; nbLoops < nbDecodeLoops; nbLoops++) {
U32 blockNb;
for (blockNb=0; blockNb<nbBlocks; blockNb++) {
size_t const regenSize = ZSTD_decompress_usingDDict(dctx,
blockTable[blockNb].resPtr, blockTable[blockNb].resSize,
blockTable[blockNb].cPtr, blockTable[blockNb].cSize,
ddict);
if (ZSTD_isError(regenSize)) {
EXM_THROW(2, "ZSTD_decompress_usingDDict() failed on block %u of size %u : %s \n",
blockNb, (U32)blockTable[blockNb].cSize, ZSTD_getErrorName(regenSize));
}
blockTable[blockNb].resSize = regenSize;
} }
ZSTD_freeDDict(ddict);
{ U64 const loopDuration = UTIL_clockSpanNano(clockStart);
if (loopDuration > 0) {
if (loopDuration < fastestD * nbDecodeLoops)
fastestD = loopDuration / nbDecodeLoops;
nbDecodeLoops = (U32)(TIMELOOP_NANOSEC / fastestD) + 1;
} else {
assert(nbDecodeLoops < 40000000); /* avoid overflow */
nbDecodeLoops *= 100;
}
totalDTime += loopDuration;
dCompleted = (totalDTime >= maxTime);
} }
markNb = (markNb+1) % NB_MARKS;
{ int const ratioAccuracy = (ratio < 10.) ? 3 : 2;
double const compressionSpeed = ((double)srcSize / fastestC) * 1000;
int const cSpeedAccuracy = (compressionSpeed < 10.) ? 2 : 1;
double const decompressionSpeed = ((double)srcSize / fastestD) * 1000;
DISPLAYLEVEL(2, "%2s-%-17.17s :%10u ->%10u (%5.*f),%6.*f MB/s ,%6.1f MB/s \r",
marks[markNb], displayName, (U32)srcSize, (U32)cSize,
ratioAccuracy, ratio,
cSpeedAccuracy, compressionSpeed,
decompressionSpeed);
}
/* CRC Checking */
{ U64 const crcCheck = XXH64(resultBuffer, srcSize, 0);
if (!g_decodeOnly && (crcOrig!=crcCheck)) {
size_t u;
DISPLAY("!!! WARNING !!! %14s : Invalid Checksum : %x != %x \n", displayName, (unsigned)crcOrig, (unsigned)crcCheck);
for (u=0; u<srcSize; u++) {
if (((const BYTE*)srcBuffer)[u] != ((const BYTE*)resultBuffer)[u]) {
U32 segNb, bNb, pos;
size_t bacc = 0;
DISPLAY("Decoding error at pos %u ", (U32)u);
for (segNb = 0; segNb < nbBlocks; segNb++) {
if (bacc + blockTable[segNb].srcSize > u) break;
bacc += blockTable[segNb].srcSize;
}
pos = (U32)(u - bacc);
bNb = pos / (128 KB);
DISPLAY("(sample %u, block %u, pos %u) \n", segNb, bNb, pos);
if (u>5) {
int n;
DISPLAY("origin: ");
for (n=-5; n<0; n++) DISPLAY("%02X ", ((const BYTE*)srcBuffer)[u+n]);
DISPLAY(" :%02X: ", ((const BYTE*)srcBuffer)[u]);
for (n=1; n<3; n++) DISPLAY("%02X ", ((const BYTE*)srcBuffer)[u+n]);
DISPLAY(" \n");
DISPLAY("decode: ");
for (n=-5; n<0; n++) DISPLAY("%02X ", ((const BYTE*)resultBuffer)[u+n]);
DISPLAY(" :%02X: ", ((const BYTE*)resultBuffer)[u]);
for (n=1; n<3; n++) DISPLAY("%02X ", ((const BYTE*)resultBuffer)[u+n]);
DISPLAY(" \n");
}
break;
}
if (u==srcSize-1) { /* should never happen */
DISPLAY("no difference detected\n");
} }
break;
} } /* CRC Checking */
#endif
} /* for (testNb = 1; testNb <= (g_nbSeconds + !g_nbSeconds); testNb++) */
if (g_displayLevel == 1) { /* hidden display mode -q, used by python speed benchmark */
double const cSpeed = ((double)srcSize / fastestC) * 1000;
double const dSpeed = ((double)srcSize / fastestD) * 1000;
if (g_additionalParam)
DISPLAY("-%-3i%11i (%5.3f) %6.2f MB/s %6.1f MB/s %s (param=%d)\n", cLevel, (int)cSize, ratio, cSpeed, dSpeed, displayName, g_additionalParam);
else
DISPLAY("-%-3i%11i (%5.3f) %6.2f MB/s %6.1f MB/s %s\n", cLevel, (int)cSize, ratio, cSpeed, dSpeed, displayName);
}
DISPLAYLEVEL(2, "%2i#\n", cLevel);
} /* Bench */
/* clean up */
free(blockTable);
free(compressedBuffer);
free(resultBuffer);
ZSTD_freeCCtx(ctx);
ZSTD_freeDCtx(dctx);
return 0;
}
static size_t BMK_findMaxMem(U64 requiredMem)
{
size_t const step = 64 MB;
BYTE* testmem = NULL;
requiredMem = (((requiredMem >> 26) + 1) << 26);
requiredMem += step;
if (requiredMem > maxMemory) requiredMem = maxMemory;
do {
testmem = (BYTE*)malloc((size_t)requiredMem);
requiredMem -= step;
} while (!testmem);
free(testmem);
return (size_t)(requiredMem);
}
static void BMK_benchCLevel(const void* srcBuffer, size_t benchedSize,
const char* displayName, int cLevel, int cLevelLast,
const size_t* fileSizes, unsigned nbFiles,
const void* dictBuffer, size_t dictBufferSize,
const ZSTD_compressionParameters* const compressionParams)
{
int l;
const char* pch = strrchr(displayName, '\\'); /* Windows */
if (!pch) pch = strrchr(displayName, '/'); /* Linux */
if (pch) displayName = pch+1;
if (g_realTime) {
DISPLAYLEVEL(2, "Note : switching to real-time priority \n");
SET_REALTIME_PRIORITY;
}
if (g_displayLevel == 1 && !g_additionalParam)
DISPLAY("bench %s %s: input %u bytes, %u seconds, %u KB blocks\n", ZSTD_VERSION_STRING, ZSTD_GIT_COMMIT_STRING, (U32)benchedSize, g_nbSeconds, (U32)(g_blockSize>>10));
for (l=cLevel; l <= cLevelLast; l++) {
if (l==0) continue; /* skip level 0 */
BMK_benchMem(srcBuffer, benchedSize,
displayName, l,
fileSizes, nbFiles,
dictBuffer, dictBufferSize, compressionParams);
}
}
/*! BMK_loadFiles() :
* Loads `buffer` with content of files listed within `fileNamesTable`.
* At most, fills `buffer` entirely. */
static void BMK_loadFiles(void* buffer, size_t bufferSize,
size_t* fileSizes,
const char* const * const fileNamesTable, unsigned nbFiles)
{
size_t pos = 0, totalSize = 0;
unsigned n;
for (n=0; n<nbFiles; n++) {
FILE* f;
U64 fileSize = UTIL_getFileSize(fileNamesTable[n]);
if (UTIL_isDirectory(fileNamesTable[n])) {
DISPLAYLEVEL(2, "Ignoring %s directory... \n", fileNamesTable[n]);
fileSizes[n] = 0;
continue;
}
if (fileSize == UTIL_FILESIZE_UNKNOWN) {
DISPLAYLEVEL(2, "Cannot evaluate size of %s, ignoring ... \n", fileNamesTable[n]);
fileSizes[n] = 0;
continue;
}
f = fopen(fileNamesTable[n], "rb");
if (f==NULL) EXM_THROW(10, "impossible to open file %s", fileNamesTable[n]);
DISPLAYUPDATE(2, "Loading %s... \r", fileNamesTable[n]);
if (fileSize > bufferSize-pos) fileSize = bufferSize-pos, nbFiles=n; /* buffer too small - stop after this file */
{ size_t const readSize = fread(((char*)buffer)+pos, 1, (size_t)fileSize, f);
if (readSize != (size_t)fileSize) EXM_THROW(11, "could not read %s", fileNamesTable[n]);
pos += readSize; }
fileSizes[n] = (size_t)fileSize;
totalSize += (size_t)fileSize;
fclose(f);
}
if (totalSize == 0) EXM_THROW(12, "no data to bench");
}
static void BMK_benchFileTable(const char* const * const fileNamesTable, unsigned const nbFiles,
const char* const dictFileName,
int const cLevel, int const cLevelLast,
const ZSTD_compressionParameters* const compressionParams)
{
void* srcBuffer;
size_t benchedSize;
void* dictBuffer = NULL;
size_t dictBufferSize = 0;
size_t* const fileSizes = (size_t*)malloc(nbFiles * sizeof(size_t));
U64 const totalSizeToLoad = UTIL_getTotalFileSize(fileNamesTable, nbFiles);
if (!fileSizes) EXM_THROW(12, "not enough memory for fileSizes");
/* Load dictionary */
if (dictFileName != NULL) {
U64 const dictFileSize = UTIL_getFileSize(dictFileName);
if (dictFileSize > 64 MB)
EXM_THROW(10, "dictionary file %s too large", dictFileName);
dictBufferSize = (size_t)dictFileSize;
dictBuffer = malloc(dictBufferSize);
if (dictBuffer==NULL)
EXM_THROW(11, "not enough memory for dictionary (%u bytes)",
(U32)dictBufferSize);
BMK_loadFiles(dictBuffer, dictBufferSize, fileSizes, &dictFileName, 1);
}
/* Memory allocation & restrictions */
benchedSize = BMK_findMaxMem(totalSizeToLoad * 3) / 3;
if ((U64)benchedSize > totalSizeToLoad) benchedSize = (size_t)totalSizeToLoad;
if (benchedSize < totalSizeToLoad)
DISPLAY("Not enough memory; testing %u MB only...\n", (U32)(benchedSize >> 20));
srcBuffer = malloc(benchedSize);
if (!srcBuffer) EXM_THROW(12, "not enough memory");
/* Load input buffer */
BMK_loadFiles(srcBuffer, benchedSize, fileSizes, fileNamesTable, nbFiles);
/* Bench */
if (g_separateFiles) {
const BYTE* srcPtr = (const BYTE*)srcBuffer;
U32 fileNb;
for (fileNb=0; fileNb<nbFiles; fileNb++) {
size_t const fileSize = fileSizes[fileNb];
BMK_benchCLevel(srcPtr, fileSize,
fileNamesTable[fileNb], cLevel, cLevelLast,
fileSizes+fileNb, 1,
dictBuffer, dictBufferSize, compressionParams);
srcPtr += fileSize;
}
} else {
char mfName[20] = {0};
snprintf (mfName, sizeof(mfName), " %u files", nbFiles);
{ const char* const displayName = (nbFiles > 1) ? mfName : fileNamesTable[0];
BMK_benchCLevel(srcBuffer, benchedSize,
displayName, cLevel, cLevelLast,
fileSizes, nbFiles,
dictBuffer, dictBufferSize, compressionParams);
} }
/* clean up */
free(srcBuffer);
free(dictBuffer);
free(fileSizes);
}
static void BMK_syntheticTest(int cLevel, int cLevelLast, double compressibility,
const ZSTD_compressionParameters* compressionParams)
{
char name[20] = {0};
size_t benchedSize = 10000000;
void* const srcBuffer = malloc(benchedSize);
/* Memory allocation */
if (!srcBuffer) EXM_THROW(21, "not enough memory");
/* Fill input buffer */
RDG_genBuffer(srcBuffer, benchedSize, compressibility, 0.0, 0);
/* Bench */
snprintf (name, sizeof(name), "Synthetic %2u%%", (unsigned)(compressibility*100));
BMK_benchCLevel(srcBuffer, benchedSize, name, cLevel, cLevelLast, &benchedSize, 1, NULL, 0, compressionParams);
/* clean up */
free(srcBuffer);
}
int BMK_benchFiles(const char** fileNamesTable, unsigned nbFiles,
const char* dictFileName,
int cLevel, int cLevelLast,
const ZSTD_compressionParameters* compressionParams)
{
double const compressibility = (double)g_compressibilityDefault / 100;
if (cLevel > ZSTD_maxCLevel()) cLevel = ZSTD_maxCLevel();
if (cLevelLast > ZSTD_maxCLevel()) cLevelLast = ZSTD_maxCLevel();
if (cLevelLast < cLevel) cLevelLast = cLevel;
if (cLevelLast > cLevel)
DISPLAYLEVEL(2, "Benchmarking levels from %d to %d\n", cLevel, cLevelLast);
if (nbFiles == 0)
BMK_syntheticTest(cLevel, cLevelLast, compressibility, compressionParams);
else
BMK_benchFileTable(fileNamesTable, nbFiles, dictFileName, cLevel, cLevelLast, compressionParams);
return 0;
}