Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

/*-
 * SPDX-License-Identifier: ISC
 *
 * Copyright (c) 2008-2009 Sam Leffler, Errno Consulting
 * Copyright (c) 2008 Atheros Communications, Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 * $FreeBSD$
 */
#include "opt_ah.h"

/*
 * NB: Merlin and later have a simpler RF backend.
 */
#include "ah.h"
#include "ah_internal.h"

#include "ah_eeprom_v14.h"

#include "ar9002/ar9287.h"
#include "ar5416/ar5416reg.h"
#include "ar5416/ar5416phy.h"

#define N(a)    (sizeof(a)/sizeof(a[0]))

struct ar9287State {
	RF_HAL_FUNCS	base;		/* public state, must be first */
	uint16_t	pcdacTable[1];	/* XXX */
};
#define	AR9287(ah)	((struct ar9287State *) AH5212(ah)->ah_rfHal)

static HAL_BOOL ar9287GetChannelMaxMinPower(struct ath_hal *,
	const struct ieee80211_channel *, int16_t *maxPow,int16_t *minPow);
int16_t ar9287GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c);

static void
ar9287WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
	int writes)
{
	(void) ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_bb_rfgain,
		freqIndex, writes);
}

/*
 * Take the MHz channel value and set the Channel value
 *
 * ASSUMES: Writes enabled to analog bus
 *
 * Actual Expression,
 *
 * For 2GHz channel, 
 * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17) 
 * (freq_ref = 40MHz)
 *
 * For 5GHz channel,
 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
 * (freq_ref = 40MHz/(24>>amodeRefSel))
 *
 * For 5GHz channels which are 5MHz spaced,
 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
 * (freq_ref = 40MHz)
 */
static HAL_BOOL
ar9287SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
	uint16_t bMode, fracMode, aModeRefSel = 0;
	uint32_t freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
	CHAN_CENTERS centers;
	uint32_t refDivA = 24;

	OS_MARK(ah, AH_MARK_SETCHANNEL, chan->ic_freq);

	ar5416GetChannelCenters(ah, chan, &centers);
	freq = centers.synth_center;

	reg32 = OS_REG_READ(ah, AR_PHY_SYNTH_CONTROL);
	reg32 &= 0xc0000000;

	if (freq < 4800) {     /* 2 GHz, fractional mode */
		uint32_t txctl;
		int regWrites = 0;

		bMode = 1;
		fracMode = 1;
		aModeRefSel = 0;       
		channelSel = (freq * 0x10000)/15;

		if (AR_SREV_KIWI_11_OR_LATER(ah)) {
			if (freq == 2484) {
				ath_hal_ini_write(ah,
				    &AH9287(ah)->ah_ini_cckFirJapan2484, 1,
				    regWrites);
			} else {
				ath_hal_ini_write(ah,
				    &AH9287(ah)->ah_ini_cckFirNormal, 1,
				    regWrites);
			}
		}

		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
		if (freq == 2484) {
			/* Enable channel spreading for channel 14 */
			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
			    txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
		} else {
			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
			    txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
		}     
	} else {
		bMode = 0;
		fracMode = 0;

		if ((freq % 20) == 0) {
			aModeRefSel = 3;
		} else if ((freq % 10) == 0) {
			aModeRefSel = 2;
		} else {
			aModeRefSel = 0;
			/*
			 * Enable 2G (fractional) mode for channels which
			 * are 5MHz spaced
			 */
			fracMode = 1;
			refDivA = 1;
			channelSel = (freq * 0x8000)/15;

			/* RefDivA setting */
			OS_A_REG_RMW_FIELD(ah, AR_AN_SYNTH9,
			    AR_AN_SYNTH9_REFDIVA, refDivA);
		}
		if (!fracMode) {
			ndiv = (freq * (refDivA >> aModeRefSel))/60;
			channelSel =  ndiv & 0x1ff;         
			channelFrac = (ndiv & 0xfffffe00) * 2;
			channelSel = (channelSel << 17) | channelFrac;
		}
	}

	reg32 = reg32 | (bMode << 29) | (fracMode << 28) |
	    (aModeRefSel << 26) | (channelSel);

	OS_REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);

	AH_PRIVATE(ah)->ah_curchan = chan;

	return AH_TRUE;
}

/*
 * Return a reference to the requested RF Bank.
 */
static uint32_t *
ar9287GetRfBank(struct ath_hal *ah, int bank)
{
	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
	    __func__, bank);
	return AH_NULL;
}

/*
 * Reads EEPROM header info from device structure and programs
 * all rf registers
 */
static HAL_BOOL
ar9287SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan,
                uint16_t modesIndex, uint16_t *rfXpdGain)
{
	return AH_TRUE;		/* nothing to do */
}

/*
 * Read the transmit power levels from the structures taken from EEPROM
 * Interpolate read transmit power values for this channel
 * Organize the transmit power values into a table for writing into the hardware
 */

static HAL_BOOL
ar9287SetPowerTable(struct ath_hal *ah, int16_t *pPowerMin, int16_t *pPowerMax, 
	const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
{
	return AH_TRUE;
}

#if 0
static int16_t
ar9287GetMinPower(struct ath_hal *ah, EXPN_DATA_PER_CHANNEL_5112 *data)
{
    int i, minIndex;
    int16_t minGain,minPwr,minPcdac,retVal;

    /* Assume NUM_POINTS_XPD0 > 0 */
    minGain = data->pDataPerXPD[0].xpd_gain;
    for (minIndex=0,i=1; i<NUM_XPD_PER_CHANNEL; i++) {
        if (data->pDataPerXPD[i].xpd_gain < minGain) {
            minIndex = i;
            minGain = data->pDataPerXPD[i].xpd_gain;
        }
    }
    minPwr = data->pDataPerXPD[minIndex].pwr_t4[0];
    minPcdac = data->pDataPerXPD[minIndex].pcdac[0];
    for (i=1; i<NUM_POINTS_XPD0; i++) {
        if (data->pDataPerXPD[minIndex].pwr_t4[i] < minPwr) {
            minPwr = data->pDataPerXPD[minIndex].pwr_t4[i];
            minPcdac = data->pDataPerXPD[minIndex].pcdac[i];
        }
    }
    retVal = minPwr - (minPcdac*2);
    return(retVal);
}
#endif

static HAL_BOOL
ar9287GetChannelMaxMinPower(struct ath_hal *ah,
	const struct ieee80211_channel *chan,
	int16_t *maxPow, int16_t *minPow)
{
#if 0
    struct ath_hal_5212 *ahp = AH5212(ah);
    int numChannels=0,i,last;
    int totalD, totalF,totalMin;
    EXPN_DATA_PER_CHANNEL_5112 *data=AH_NULL;
    EEPROM_POWER_EXPN_5112 *powerArray=AH_NULL;

    *maxPow = 0;
    if (IS_CHAN_A(chan)) {
        powerArray = ahp->ah_modePowerArray5112;
        data = powerArray[headerInfo11A].pDataPerChannel;
        numChannels = powerArray[headerInfo11A].numChannels;
    } else if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) {
        /* XXX - is this correct? Should we also use the same power for turbo G? */
        powerArray = ahp->ah_modePowerArray5112;
        data = powerArray[headerInfo11G].pDataPerChannel;
        numChannels = powerArray[headerInfo11G].numChannels;
    } else if (IS_CHAN_B(chan)) {
        powerArray = ahp->ah_modePowerArray5112;
        data = powerArray[headerInfo11B].pDataPerChannel;
        numChannels = powerArray[headerInfo11B].numChannels;
    } else {
        return (AH_TRUE);
    }
    /* Make sure the channel is in the range of the TP values
     *  (freq piers)
     */
    if ((numChannels < 1) ||
        (chan->channel < data[0].channelValue) ||
        (chan->channel > data[numChannels-1].channelValue))
        return(AH_FALSE);

    /* Linearly interpolate the power value now */
    for (last=0,i=0;
         (i<numChannels) && (chan->channel > data[i].channelValue);
         last=i++);
    totalD = data[i].channelValue - data[last].channelValue;
    if (totalD > 0) {
        totalF = data[i].maxPower_t4 - data[last].maxPower_t4;
        *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + data[last].maxPower_t4*totalD)/totalD);

        totalMin = ar9287GetMinPower(ah,&data[i]) - ar9287GetMinPower(ah, &data[last]);
        *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) + ar9287GetMinPower(ah, &data[last])*totalD)/totalD);
        return (AH_TRUE);
    } else {
        if (chan->channel == data[i].channelValue) {
            *maxPow = data[i].maxPower_t4;
            *minPow = ar9287GetMinPower(ah, &data[i]);
            return(AH_TRUE);
        } else
            return(AH_FALSE);
    }
#else
	*maxPow = *minPow = 0;
	return AH_FALSE;
#endif
}

/*
 * The ordering of nfarray is thus:
 *
 * nfarray[0]: Chain 0 ctl
 * nfarray[1]: Chain 1 ctl
 * nfarray[2]: Chain 2 ctl
 * nfarray[3]: Chain 0 ext
 * nfarray[4]: Chain 1 ext
 * nfarray[5]: Chain 2 ext
 */
static void
ar9287GetNoiseFloor(struct ath_hal *ah, int16_t nfarray[])
{
	int16_t nf;

	nf = MS(OS_REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
	if (nf & 0x100)
		nf = 0 - ((nf ^ 0x1ff) + 1);
	HALDEBUG(ah, HAL_DEBUG_NFCAL,
	    "NF calibrated [ctl] [chain 0] is %d\n", nf);
	nfarray[0] = nf;

	nf = MS(OS_REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
	if (nf & 0x100)
		nf = 0 - ((nf ^ 0x1ff) + 1);
	HALDEBUG(ah, HAL_DEBUG_NFCAL,
	    "NF calibrated [ctl] [chain 1] is %d\n", nf);
	nfarray[1] = nf;

	nf = MS(OS_REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
	if (nf & 0x100)
		nf = 0 - ((nf ^ 0x1ff) + 1);
	HALDEBUG(ah, HAL_DEBUG_NFCAL,
	    "NF calibrated [ext] [chain 0] is %d\n", nf);
	nfarray[3] = nf;

	nf = MS(OS_REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
	if (nf & 0x100)
		nf = 0 - ((nf ^ 0x1ff) + 1);
	HALDEBUG(ah, HAL_DEBUG_NFCAL,
	    "NF calibrated [ext] [chain 1] is %d\n", nf);
	nfarray[4] = nf;

        /* Chain 2 - invalid */
        nfarray[2] = 0;
        nfarray[5] = 0;

}

/*
 * Adjust NF based on statistical values for 5GHz frequencies.
 * Stubbed:Not used by Fowl
 */
int16_t
ar9287GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
{
	return 0;
}

/*
 * Free memory for analog bank scratch buffers
 */
static void
ar9287RfDetach(struct ath_hal *ah)
{
	struct ath_hal_5212 *ahp = AH5212(ah);

	HALASSERT(ahp->ah_rfHal != AH_NULL);
	ath_hal_free(ahp->ah_rfHal);
	ahp->ah_rfHal = AH_NULL;
}

HAL_BOOL
ar9287RfAttach(struct ath_hal *ah, HAL_STATUS *status)
{
	struct ath_hal_5212 *ahp = AH5212(ah);
	struct ar9287State *priv;

	HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: attach AR9280 radio\n", __func__);

	HALASSERT(ahp->ah_rfHal == AH_NULL);
	priv = ath_hal_malloc(sizeof(struct ar9287State));
	if (priv == AH_NULL) {
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: cannot allocate private state\n", __func__);
		*status = HAL_ENOMEM;		/* XXX */
		return AH_FALSE;
	}
	priv->base.rfDetach		= ar9287RfDetach;
	priv->base.writeRegs		= ar9287WriteRegs;
	priv->base.getRfBank		= ar9287GetRfBank;
	priv->base.setChannel		= ar9287SetChannel;
	priv->base.setRfRegs		= ar9287SetRfRegs;
	priv->base.setPowerTable	= ar9287SetPowerTable;
	priv->base.getChannelMaxMinPower = ar9287GetChannelMaxMinPower;
	priv->base.getNfAdjust		= ar9287GetNfAdjust;

	ahp->ah_pcdacTable = priv->pcdacTable;
	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
	ahp->ah_rfHal = &priv->base;
	/*
	 * Set noise floor adjust method; we arrange a
	 * direct call instead of thunking.
	 */
	AH_PRIVATE(ah)->ah_getNfAdjust = priv->base.getNfAdjust;
	AH_PRIVATE(ah)->ah_getNoiseFloor = ar9287GetNoiseFloor;

	return AH_TRUE;
}

static HAL_BOOL
ar9287RfProbe(struct ath_hal *ah)
{
	return (AR_SREV_KIWI(ah));
}

AH_RF(RF9287, ar9287RfProbe, ar9287RfAttach);