Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
/*-
 * SPDX-License-Identifier: ISC
 *
 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
 * Copyright (c) 2002-2008 Atheros Communications, Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 * $FreeBSD$
 */

#include "opt_ah.h"

#include "ah.h"
#include "ah_internal.h"
#include "ah_devid.h"

#include "ah_eeprom_v14.h"
#include "ah_eeprom_9287.h"

#include "ar5416/ar5416.h"
#include "ar5416/ar5416reg.h"
#include "ar5416/ar5416phy.h"

#include "ar9002/ar9287phy.h"
#include "ar9002/ar9287an.h"

#include "ar9002/ar9287_olc.h"
#include "ar9002/ar9287_reset.h"

/*
 * Set the TX power calibration table per-chain.
 *
 * This only supports open-loop TX power control for the AR9287.
 */
static void
ar9287SetPowerCalTable(struct ath_hal *ah,
    const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
{
	struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
	uint8_t *pCalBChans = NULL;
	uint16_t pdGainOverlap_t2;
	uint16_t numPiers = 0, i;
	uint16_t numXpdGain, xpdMask;
	uint16_t xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
	uint32_t regChainOffset;
	HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
	struct ar9287_eeprom *pEepData = &ee->ee_base;

	xpdMask = pEepData->modalHeader.xpdGain;

	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
	    AR9287_EEP_MINOR_VER_2)
		pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
	else
		pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5),
					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));

	/* Note: Kiwi should only be 2ghz.. */
	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
		pCalBChans = pEepData->calFreqPier2G;
		numPiers = AR9287_NUM_2G_CAL_PIERS;
		pRawDatasetOpenLoop = (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
		AH5416(ah)->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
	}
	numXpdGain = 0;

	/* Calculate the value of xpdgains from the xpdGain Mask */
	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
			if (numXpdGain >= AR5416_NUM_PD_GAINS)
				break;
			xpdGainValues[numXpdGain] =
				(uint16_t)(AR5416_PD_GAINS_IN_MASK-i);
			numXpdGain++;
		}
	}

	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
		      (numXpdGain - 1) & 0x3);
	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
		      xpdGainValues[0]);
	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
		      xpdGainValues[1]);
	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
		      xpdGainValues[2]);

	for (i = 0; i < AR9287_MAX_CHAINS; i++) {
		regChainOffset = i * 0x1000;

		if (pEepData->baseEepHeader.txMask & (1 << i)) {
			int8_t txPower;
			pRawDatasetOpenLoop =
			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
				ar9287olcGetTxGainIndex(ah, chan,
				    pRawDatasetOpenLoop,
				    pCalBChans, numPiers,
				    &txPower);
				ar9287olcSetPDADCs(ah, txPower, i);
		}
	}

	*pTxPowerIndexOffset = 0;
}


/* XXX hard-coded values? */
#define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6

/*
 * ar9287SetPowerPerRateTable
 *
 * Sets the transmit power in the baseband for the given
 * operating channel and mode.
 *
 * This is like the v14 EEPROM table except the 5GHz code.
 */
static HAL_BOOL
ar9287SetPowerPerRateTable(struct ath_hal *ah,
    struct ar9287_eeprom *pEepData,
    const struct ieee80211_channel *chan,
    int16_t *ratesArray, uint16_t cfgCtl,
    uint16_t AntennaReduction, 
    uint16_t twiceMaxRegulatoryPower,
    uint16_t powerLimit)
{
#define	N(a)	(sizeof(a)/sizeof(a[0]))
/* Local defines to distinguish between extension and control CTL's */
#define EXT_ADDITIVE (0x8000)
#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)

	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
	int i;
	int16_t  twiceLargestAntenna;
	struct cal_ctl_data_ar9287 *rep;
	CAL_TARGET_POWER_LEG targetPowerOfdm;
	CAL_TARGET_POWER_LEG targetPowerCck = {0, {0, 0, 0, 0}};
	CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}};
	CAL_TARGET_POWER_LEG targetPowerCckExt = {0, {0, 0, 0, 0}};
	CAL_TARGET_POWER_HT  targetPowerHt20;
	CAL_TARGET_POWER_HT  targetPowerHt40 = {0, {0, 0, 0, 0}};
	int16_t scaledPower, minCtlPower;

#define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
	static const uint16_t ctlModesFor11g[] = {
	   CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
	};
	const uint16_t *pCtlMode;
	uint16_t numCtlModes, ctlMode, freq;
	CHAN_CENTERS centers;

	ar5416GetChannelCenters(ah,  chan, &centers);

	/* Compute TxPower reduction due to Antenna Gain */

	twiceLargestAntenna = AH_MAX(
	    pEepData->modalHeader.antennaGainCh[0],
	    pEepData->modalHeader.antennaGainCh[1]);

	twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);

	/* XXX setup for 5212 use (really used?) */
	ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);

	/* 
	 * scaledPower is the minimum of the user input power level and
	 * the regulatory allowed power level
	 */
	scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);

	/* Reduce scaled Power by number of chains active to get to per chain tx power level */
	/* TODO: better value than these? */
	switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
	case 1:
		break;
	case 2:
		scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
		break;
	default:
		return AH_FALSE; /* Unsupported number of chains */
	}

	scaledPower = AH_MAX(0, scaledPower);

	/* Get target powers from EEPROM - our baseline for TX Power */
	/* XXX assume channel is 2ghz */
	if (1) {
		/* Setup for CTL modes */
		numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
		pCtlMode = ctlModesFor11g;

		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
				AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
				AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
				AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);

		if (IEEE80211_IS_CHAN_HT40(chan)) {
			numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */

			ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
				AR9287_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
			/* Get target powers for extension channels */
			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
				AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
				AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
		}
	}

	/*
	 * For MIMO, need to apply regulatory caps individually across dynamically
	 * running modes: CCK, OFDM, HT20, HT40
	 *
	 * The outer loop walks through each possible applicable runtime mode.
	 * The inner loop walks through each ctlIndex entry in EEPROM.
	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
	 *
	 */
	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
		HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
		    (pCtlMode[ctlMode] == CTL_2GHT40);
		if (isHt40CtlMode) {
			freq = centers.ctl_center;
		} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
			freq = centers.ext_center;
		} else {
			freq = centers.ctl_center;
		}

		/* walk through each CTL index stored in EEPROM */
		for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
			uint16_t twiceMinEdgePower;

			/* compare test group from regulatory channel list with test mode from pCtlMode list */
			if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
				(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == 
				 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
				rep = &(pEepData->ctlData[i]);
				twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
							rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
							IEEE80211_IS_CHAN_2GHZ(chan));
				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
					/* Find the minimum of all CTL edge powers that apply to this channel */
					twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
				} else {
					/* specific */
					twiceMaxEdgePower = twiceMinEdgePower;
					break;
				}
			}
		}
		minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
		/* Apply ctl mode to correct target power set */
		switch(pCtlMode[ctlMode]) {
		case CTL_11B:
			for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
				targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
			}
			break;
		case CTL_11A:
		case CTL_11G:
			for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
				targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
			}
			break;
		case CTL_5GHT20:
		case CTL_2GHT20:
			for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
				targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
			}
			break;
		case CTL_11B_EXT:
			targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
			break;
		case CTL_11A_EXT:
		case CTL_11G_EXT:
			targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
			break;
		case CTL_5GHT40:
		case CTL_2GHT40:
			for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
				targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
			}
			break;
		default:
			return AH_FALSE;
			break;
		}
	} /* end ctl mode checking */

	/* Set rates Array from collected data */
	ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
	    &targetPowerCck,
	    &targetPowerCckExt,
	    &targetPowerOfdm,
	    &targetPowerOfdmExt,
	    &targetPowerHt20,
	    &targetPowerHt40);
	return AH_TRUE;
#undef EXT_ADDITIVE
#undef CTL_11A_EXT
#undef CTL_11G_EXT
#undef CTL_11B_EXT
#undef SUB_NUM_CTL_MODES_AT_5G_40
#undef SUB_NUM_CTL_MODES_AT_2G_40
#undef N
}

#undef REDUCE_SCALED_POWER_BY_TWO_CHAIN

/*
 * This is based off of the AR5416/AR9285 code and likely could
 * be unified in the future.
 */
HAL_BOOL
ar9287SetTransmitPower(struct ath_hal *ah,
	const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
{
#define	POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
#define	N(a)	    (sizeof (a) / sizeof (a[0]))

	const struct modal_eep_ar9287_header *pModal;
	struct ath_hal_5212 *ahp = AH5212(ah);
	int16_t	     txPowerIndexOffset = 0;
	int		 i;

	uint16_t	    cfgCtl;
	uint16_t	    powerLimit;
	uint16_t	    twiceAntennaReduction;
	uint16_t	    twiceMaxRegulatoryPower;
	int16_t	     maxPower;
	HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
	struct ar9287_eeprom *pEepData = &ee->ee_base;

	AH5416(ah)->ah_ht40PowerIncForPdadc = 2;

	/* Setup info for the actual eeprom */
	OS_MEMZERO(AH5416(ah)->ah_ratesArray,
	  sizeof(AH5416(ah)->ah_ratesArray));
	cfgCtl = ath_hal_getctl(ah, chan);
	powerLimit = chan->ic_maxregpower * 2;
	twiceAntennaReduction = chan->ic_maxantgain;
	twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER,
	    AH_PRIVATE(ah)->ah_powerLimit);
	pModal = &pEepData->modalHeader;
	HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
	    __func__,chan->ic_freq, cfgCtl );

	/* XXX Assume Minor is v2 or later */
	AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;

	/* Fetch per-rate power table for the given channel */
	if (! ar9287SetPowerPerRateTable(ah, pEepData,  chan,
	    &AH5416(ah)->ah_ratesArray[0],
	    cfgCtl,
	    twiceAntennaReduction,
	    twiceMaxRegulatoryPower, powerLimit)) {
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: unable to set tx power per rate table\n", __func__);
		return AH_FALSE;
	}

	/* Set TX power control calibration curves for each TX chain */
	ar9287SetPowerCalTable(ah, chan, &txPowerIndexOffset);

	/* Calculate maximum power level */
	maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
	    AH5416(ah)->ah_ratesArray[rateHt20_0]);
	maxPower = AH_MAX(maxPower,
	    AH5416(ah)->ah_ratesArray[rate1l]);

	if (IEEE80211_IS_CHAN_HT40(chan))
		maxPower = AH_MAX(maxPower,
		    AH5416(ah)->ah_ratesArray[rateHt40_0]);

	ahp->ah_tx6PowerInHalfDbm = maxPower;
	AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
	ahp->ah_txPowerIndexOffset = txPowerIndexOffset;

	/*
	 * txPowerIndexOffset is set by the SetPowerTable() call -
	 *  adjust the rate table (0 offset if rates EEPROM not loaded)
	 */
	/* XXX what about the pwrTableOffset? */
	for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
		AH5416(ah)->ah_ratesArray[i] =
		    (int16_t)(txPowerIndexOffset +
		      AH5416(ah)->ah_ratesArray[i]);
		/* -5 dBm offset for Merlin and later; this includes Kiwi */
		AH5416(ah)->ah_ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
		if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
			AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
		if (AH5416(ah)->ah_ratesArray[i] < 0)
			AH5416(ah)->ah_ratesArray[i] = 0;
	}

#ifdef AH_EEPROM_DUMP
	ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
#endif

	/*
	 * Adjust the HT40 power to meet the correct target TX power
	 * for 40MHz mode, based on TX power curves that are established
	 * for 20MHz mode.
	 *
	 * XXX handle overflow/too high power level?
	 */
	if (IEEE80211_IS_CHAN_HT40(chan)) {
		AH5416(ah)->ah_ratesArray[rateHt40_0] +=
		  AH5416(ah)->ah_ht40PowerIncForPdadc;
		AH5416(ah)->ah_ratesArray[rateHt40_1] +=
		  AH5416(ah)->ah_ht40PowerIncForPdadc;
		AH5416(ah)->ah_ratesArray[rateHt40_2] +=
		  AH5416(ah)->ah_ht40PowerIncForPdadc;
		AH5416(ah)->ah_ratesArray[rateHt40_3] +=
		  AH5416(ah)->ah_ht40PowerIncForPdadc;
		AH5416(ah)->ah_ratesArray[rateHt40_4] +=
		  AH5416(ah)->ah_ht40PowerIncForPdadc;
		AH5416(ah)->ah_ratesArray[rateHt40_5] +=
		  AH5416(ah)->ah_ht40PowerIncForPdadc;
		AH5416(ah)->ah_ratesArray[rateHt40_6] +=
		  AH5416(ah)->ah_ht40PowerIncForPdadc;
		AH5416(ah)->ah_ratesArray[rateHt40_7] +=
		  AH5416(ah)->ah_ht40PowerIncForPdadc;
	}

	/* Write the TX power rate registers */
	ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);

	return AH_TRUE;
#undef POW_SM
#undef N
}

/*
 * Read EEPROM header info and program the device for correct operation
 * given the channel value.
 */
HAL_BOOL
ar9287SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
	const HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
	const struct ar9287_eeprom *eep = &ee->ee_base;
	const struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
	uint16_t antWrites[AR9287_ANT_16S];
	uint32_t regChainOffset, regval;
	uint8_t txRxAttenLocal;
	int i, j, offset_num;

	pModal = &eep->modalHeader;

	antWrites[0] = (uint16_t)((pModal->antCtrlCommon >> 28) & 0xF);
	antWrites[1] = (uint16_t)((pModal->antCtrlCommon >> 24) & 0xF);
	antWrites[2] = (uint16_t)((pModal->antCtrlCommon >> 20) & 0xF);
	antWrites[3] = (uint16_t)((pModal->antCtrlCommon >> 16) & 0xF);
	antWrites[4] = (uint16_t)((pModal->antCtrlCommon >> 12) & 0xF);
	antWrites[5] = (uint16_t)((pModal->antCtrlCommon >> 8) & 0xF);
	antWrites[6] = (uint16_t)((pModal->antCtrlCommon >> 4)  & 0xF);
	antWrites[7] = (uint16_t)(pModal->antCtrlCommon & 0xF);

	offset_num = 8;

	for (i = 0, j = offset_num; i < AR9287_MAX_CHAINS; i++) {
		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 28) & 0xf);
		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 10) & 0x3);
		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 8) & 0x3);
		antWrites[j++] = 0;
		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 6) & 0x3);
		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 4) & 0x3);
		antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 2) & 0x3);
		antWrites[j++] = (uint16_t)(pModal->antCtrlChain[i] & 0x3);
	}

	OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);

	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
		regChainOffset = i * 0x1000;

		OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
			  pModal->antCtrlChain[i]);

		OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0) + regChainOffset,
			  (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0)
			      + regChainOffset)
			   & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
			       AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
			  SM(pModal->iqCalICh[i],
			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
			  SM(pModal->iqCalQCh[i],
			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));

		txRxAttenLocal = pModal->txRxAttenCh[i];

		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
			      pModal->bswMargin[i]);
		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
			      pModal->bswAtten[i]);
		OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
			      AR9280_PHY_RXGAIN_TXRX_ATTEN,
			      txRxAttenLocal);
		OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
			      AR9280_PHY_RXGAIN_TXRX_MARGIN,
			      pModal->rxTxMarginCh[i]);
	}

	if (IEEE80211_IS_CHAN_HT40(chan))
		OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
			      AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
	else
		OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
			      AR_PHY_SETTLING_SWITCH, pModal->switchSettling);

	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
		      AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);

	OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
		  | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));

	OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
		      AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);

	OS_REG_RMW_FIELD(ah, AR_PHY_CCA,
		      AR9280_PHY_CCA_THRESH62, pModal->thresh62);
	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
		      AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);

	regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH0);
	regval &= ~(AR9287_AN_RF2G3_DB1 |
		    AR9287_AN_RF2G3_DB2 |
		    AR9287_AN_RF2G3_OB_CCK |
		    AR9287_AN_RF2G3_OB_PSK |
		    AR9287_AN_RF2G3_OB_QAM |
		    AR9287_AN_RF2G3_OB_PAL_OFF);
	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));

	/* Analog write - requires a 100usec delay */
	OS_A_REG_WRITE(ah, AR9287_AN_RF2G3_CH0, regval);

	regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH1);
	regval &= ~(AR9287_AN_RF2G3_DB1 |
		    AR9287_AN_RF2G3_DB2 |
		    AR9287_AN_RF2G3_OB_CCK |
		    AR9287_AN_RF2G3_OB_PSK |
		    AR9287_AN_RF2G3_OB_QAM |
		    AR9287_AN_RF2G3_OB_PAL_OFF);
	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));

	OS_A_REG_WRITE(ah, AR9287_AN_RF2G3_CH1, regval);

	OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
	    AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart);
	OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
	    AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn);

	OS_A_REG_RMW_FIELD(ah, AR9287_AN_TOP2,
	    AR9287_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl);

	return AH_TRUE;
}