Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
/*-
 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
 *
 * Copyright (C) 2012-2016 Intel Corporation
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_cam.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/ioccom.h>
#include <sys/proc.h>
#include <sys/smp.h>
#include <sys/uio.h>
#include <sys/endian.h>

#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>

#include "nvme_private.h"

#define B4_CHK_RDY_DELAY_MS	2300		/* work around controller bug */

static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
						struct nvme_async_event_request *aer);
static void nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr);

static int
nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
{

	ctrlr->resource_id = PCIR_BAR(0);

	ctrlr->resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY,
	    &ctrlr->resource_id, RF_ACTIVE);

	if(ctrlr->resource == NULL) {
		nvme_printf(ctrlr, "unable to allocate pci resource\n");
		return (ENOMEM);
	}

	ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
	ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
	ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;

	/*
	 * The NVMe spec allows for the MSI-X table to be placed behind
	 *  BAR 4/5, separate from the control/doorbell registers.  Always
	 *  try to map this bar, because it must be mapped prior to calling
	 *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
	 *  bus_alloc_resource() will just return NULL which is OK.
	 */
	ctrlr->bar4_resource_id = PCIR_BAR(4);
	ctrlr->bar4_resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY,
	    &ctrlr->bar4_resource_id, RF_ACTIVE);

	return (0);
}

static int
nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
{
	struct nvme_qpair	*qpair;
	uint32_t		num_entries;
	int			error;

	qpair = &ctrlr->adminq;

	num_entries = NVME_ADMIN_ENTRIES;
	TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
	/*
	 * If admin_entries was overridden to an invalid value, revert it
	 *  back to our default value.
	 */
	if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
	    num_entries > NVME_MAX_ADMIN_ENTRIES) {
		nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
		    "specified\n", num_entries);
		num_entries = NVME_ADMIN_ENTRIES;
	}

	/*
	 * The admin queue's max xfer size is treated differently than the
	 *  max I/O xfer size.  16KB is sufficient here - maybe even less?
	 */
	error = nvme_qpair_construct(qpair, 
				     0, /* qpair ID */
				     0, /* vector */
				     num_entries,
				     NVME_ADMIN_TRACKERS,
				     ctrlr);
	return (error);
}

static int
nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
{
	struct nvme_qpair	*qpair;
	uint32_t		cap_lo;
	uint16_t		mqes;
	int			i, error, num_entries, num_trackers;

	num_entries = NVME_IO_ENTRIES;
	TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);

	/*
	 * NVMe spec sets a hard limit of 64K max entries, but
	 *  devices may specify a smaller limit, so we need to check
	 *  the MQES field in the capabilities register.
	 */
	cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
	mqes = (cap_lo >> NVME_CAP_LO_REG_MQES_SHIFT) & NVME_CAP_LO_REG_MQES_MASK;
	num_entries = min(num_entries, mqes + 1);

	num_trackers = NVME_IO_TRACKERS;
	TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);

	num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
	num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
	/*
	 * No need to have more trackers than entries in the submit queue.
	 *  Note also that for a queue size of N, we can only have (N-1)
	 *  commands outstanding, hence the "-1" here.
	 */
	num_trackers = min(num_trackers, (num_entries-1));

	/*
	 * Our best estimate for the maximum number of I/Os that we should
	 * noramlly have in flight at one time. This should be viewed as a hint,
	 * not a hard limit and will need to be revisitted when the upper layers
	 * of the storage system grows multi-queue support.
	 */
	ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4;

	/*
	 * This was calculated previously when setting up interrupts, but
	 *  a controller could theoretically support fewer I/O queues than
	 *  MSI-X vectors.  So calculate again here just to be safe.
	 */
	ctrlr->num_cpus_per_ioq = howmany(mp_ncpus, ctrlr->num_io_queues);

	ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
	    M_NVME, M_ZERO | M_WAITOK);

	for (i = 0; i < ctrlr->num_io_queues; i++) {
		qpair = &ctrlr->ioq[i];

		/*
		 * Admin queue has ID=0. IO queues start at ID=1 -
		 *  hence the 'i+1' here.
		 *
		 * For I/O queues, use the controller-wide max_xfer_size
		 *  calculated in nvme_attach().
		 */
		error = nvme_qpair_construct(qpair,
				     i+1, /* qpair ID */
				     ctrlr->msix_enabled ? i+1 : 0, /* vector */
				     num_entries,
				     num_trackers,
				     ctrlr);
		if (error)
			return (error);

		/*
		 * Do not bother binding interrupts if we only have one I/O
		 *  interrupt thread for this controller.
		 */
		if (ctrlr->num_io_queues > 1)
			bus_bind_intr(ctrlr->dev, qpair->res,
			    i * ctrlr->num_cpus_per_ioq);
	}

	return (0);
}

static void
nvme_ctrlr_fail(struct nvme_controller *ctrlr)
{
	int i;

	ctrlr->is_failed = TRUE;
	nvme_qpair_fail(&ctrlr->adminq);
	if (ctrlr->ioq != NULL) {
		for (i = 0; i < ctrlr->num_io_queues; i++)
			nvme_qpair_fail(&ctrlr->ioq[i]);
	}
	nvme_notify_fail_consumers(ctrlr);
}

void
nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
    struct nvme_request *req)
{

	mtx_lock(&ctrlr->lock);
	STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
	mtx_unlock(&ctrlr->lock);
	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
}

static void
nvme_ctrlr_fail_req_task(void *arg, int pending)
{
	struct nvme_controller	*ctrlr = arg;
	struct nvme_request	*req;

	mtx_lock(&ctrlr->lock);
	while ((req = STAILQ_FIRST(&ctrlr->fail_req)) != NULL) {
		STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
		mtx_unlock(&ctrlr->lock);
		nvme_qpair_manual_complete_request(req->qpair, req,
		    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE);
		mtx_lock(&ctrlr->lock);
	}
	mtx_unlock(&ctrlr->lock);
}

static int
nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
{
	int ms_waited;
	uint32_t csts;

	csts = nvme_mmio_read_4(ctrlr, csts);

	ms_waited = 0;
	while (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK) != desired_val) {
		if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
			nvme_printf(ctrlr, "controller ready did not become %d "
			    "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
			return (ENXIO);
		}
		DELAY(1000);
		csts = nvme_mmio_read_4(ctrlr, csts);
	}

	return (0);
}

static int
nvme_ctrlr_disable(struct nvme_controller *ctrlr)
{
	uint32_t cc;
	uint32_t csts;
	uint8_t  en, rdy;
	int err;

	cc = nvme_mmio_read_4(ctrlr, cc);
	csts = nvme_mmio_read_4(ctrlr, csts);

	en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
	rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;

	/*
	 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
	 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
	 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
	 * isn't the desired value. Short circuit if we're already disabled.
	 */
	if (en == 1) {
		if (rdy == 0) {
			/* EN == 1, wait for  RDY == 1 or fail */
			err = nvme_ctrlr_wait_for_ready(ctrlr, 1);
			if (err != 0)
				return (err);
		}
	} else {
		/* EN == 0 already wait for RDY == 0 */
		if (rdy == 0)
			return (0);
		else
			return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
	}

	cc &= ~NVME_CC_REG_EN_MASK;
	nvme_mmio_write_4(ctrlr, cc, cc);
	/*
	 * Some drives have issues with accessing the mmio after we
	 * disable, so delay for a bit after we write the bit to
	 * cope with these issues.
	 */
	if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY)
		pause("nvmeR", B4_CHK_RDY_DELAY_MS * hz / 1000);
	return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
}

static int
nvme_ctrlr_enable(struct nvme_controller *ctrlr)
{
	uint32_t	cc;
	uint32_t	csts;
	uint32_t	aqa;
	uint32_t	qsize;
	uint8_t		en, rdy;
	int		err;

	cc = nvme_mmio_read_4(ctrlr, cc);
	csts = nvme_mmio_read_4(ctrlr, csts);

	en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
	rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;

	/*
	 * See note in nvme_ctrlr_disable. Short circuit if we're already enabled.
	 */
	if (en == 1) {
		if (rdy == 1)
			return (0);
		else
			return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
	} else {
		/* EN == 0 already wait for RDY == 0 or fail */
		err = nvme_ctrlr_wait_for_ready(ctrlr, 0);
		if (err != 0)
			return (err);
	}

	nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
	DELAY(5000);
	nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
	DELAY(5000);

	/* acqs and asqs are 0-based. */
	qsize = ctrlr->adminq.num_entries - 1;

	aqa = 0;
	aqa = (qsize & NVME_AQA_REG_ACQS_MASK) << NVME_AQA_REG_ACQS_SHIFT;
	aqa |= (qsize & NVME_AQA_REG_ASQS_MASK) << NVME_AQA_REG_ASQS_SHIFT;
	nvme_mmio_write_4(ctrlr, aqa, aqa);
	DELAY(5000);

	/* Initialization values for CC */
	cc = 0;
	cc |= 1 << NVME_CC_REG_EN_SHIFT;
	cc |= 0 << NVME_CC_REG_CSS_SHIFT;
	cc |= 0 << NVME_CC_REG_AMS_SHIFT;
	cc |= 0 << NVME_CC_REG_SHN_SHIFT;
	cc |= 6 << NVME_CC_REG_IOSQES_SHIFT; /* SQ entry size == 64 == 2^6 */
	cc |= 4 << NVME_CC_REG_IOCQES_SHIFT; /* CQ entry size == 16 == 2^4 */

	/* This evaluates to 0, which is according to spec. */
	cc |= (PAGE_SIZE >> 13) << NVME_CC_REG_MPS_SHIFT;

	nvme_mmio_write_4(ctrlr, cc, cc);

	return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
}

int
nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
{
	int i, err;

	nvme_admin_qpair_disable(&ctrlr->adminq);
	/*
	 * I/O queues are not allocated before the initial HW
	 *  reset, so do not try to disable them.  Use is_initialized
	 *  to determine if this is the initial HW reset.
	 */
	if (ctrlr->is_initialized) {
		for (i = 0; i < ctrlr->num_io_queues; i++)
			nvme_io_qpair_disable(&ctrlr->ioq[i]);
	}

	DELAY(100*1000);

	err = nvme_ctrlr_disable(ctrlr);
	if (err != 0)
		return err;
	return (nvme_ctrlr_enable(ctrlr));
}

void
nvme_ctrlr_reset(struct nvme_controller *ctrlr)
{
	int cmpset;

	cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);

	if (cmpset == 0 || ctrlr->is_failed)
		/*
		 * Controller is already resetting or has failed.  Return
		 *  immediately since there is no need to kick off another
		 *  reset in these cases.
		 */
		return;

	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
}

static int
nvme_ctrlr_identify(struct nvme_controller *ctrlr)
{
	struct nvme_completion_poll_status	status;

	status.done = 0;
	nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
	    nvme_completion_poll_cb, &status);
	while (!atomic_load_acq_int(&status.done))
		pause("nvme", 1);
	if (nvme_completion_is_error(&status.cpl)) {
		nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
		return (ENXIO);
	}

	/* Convert data to host endian */
	nvme_controller_data_swapbytes(&ctrlr->cdata);

	/*
	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
	 *  controller supports.
	 */
	if (ctrlr->cdata.mdts > 0)
		ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
		    ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));

	return (0);
}

static int
nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
{
	struct nvme_completion_poll_status	status;
	int					cq_allocated, sq_allocated;

	status.done = 0;
	nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
	    nvme_completion_poll_cb, &status);
	while (!atomic_load_acq_int(&status.done))
		pause("nvme", 1);
	if (nvme_completion_is_error(&status.cpl)) {
		nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
		return (ENXIO);
	}

	/*
	 * Data in cdw0 is 0-based.
	 * Lower 16-bits indicate number of submission queues allocated.
	 * Upper 16-bits indicate number of completion queues allocated.
	 */
	sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
	cq_allocated = (status.cpl.cdw0 >> 16) + 1;

	/*
	 * Controller may allocate more queues than we requested,
	 *  so use the minimum of the number requested and what was
	 *  actually allocated.
	 */
	ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
	ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);

	return (0);
}

static int
nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
{
	struct nvme_completion_poll_status	status;
	struct nvme_qpair			*qpair;
	int					i;

	for (i = 0; i < ctrlr->num_io_queues; i++) {
		qpair = &ctrlr->ioq[i];

		status.done = 0;
		nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
		    nvme_completion_poll_cb, &status);
		while (!atomic_load_acq_int(&status.done))
			pause("nvme", 1);
		if (nvme_completion_is_error(&status.cpl)) {
			nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
			return (ENXIO);
		}

		status.done = 0;
		nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
		    nvme_completion_poll_cb, &status);
		while (!atomic_load_acq_int(&status.done))
			pause("nvme", 1);
		if (nvme_completion_is_error(&status.cpl)) {
			nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
			return (ENXIO);
		}
	}

	return (0);
}

static int
nvme_ctrlr_destroy_qpair(struct nvme_controller *ctrlr, struct nvme_qpair *qpair)
{
	struct nvme_completion_poll_status	status;

	status.done = 0;
	nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair,
	    nvme_completion_poll_cb, &status);
	while (!atomic_load_acq_int(&status.done))
		pause("nvme", 1);
	if (nvme_completion_is_error(&status.cpl)) {
		nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n");
		return (ENXIO);
	}

	status.done = 0;
	nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair,
	    nvme_completion_poll_cb, &status);
	while (!atomic_load_acq_int(&status.done))
		pause("nvme", 1);
	if (nvme_completion_is_error(&status.cpl)) {
		nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n");
		return (ENXIO);
	}

	return (0);
}

static int
nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
{
	struct nvme_namespace	*ns;
	uint32_t 		i;

	for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
		ns = &ctrlr->ns[i];
		nvme_ns_construct(ns, i+1, ctrlr);
	}

	return (0);
}

static boolean_t
is_log_page_id_valid(uint8_t page_id)
{

	switch (page_id) {
	case NVME_LOG_ERROR:
	case NVME_LOG_HEALTH_INFORMATION:
	case NVME_LOG_FIRMWARE_SLOT:
	case NVME_LOG_CHANGED_NAMESPACE:
		return (TRUE);
	}

	return (FALSE);
}

static uint32_t
nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
{
	uint32_t	log_page_size;

	switch (page_id) {
	case NVME_LOG_ERROR:
		log_page_size = min(
		    sizeof(struct nvme_error_information_entry) *
		    (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE);
		break;
	case NVME_LOG_HEALTH_INFORMATION:
		log_page_size = sizeof(struct nvme_health_information_page);
		break;
	case NVME_LOG_FIRMWARE_SLOT:
		log_page_size = sizeof(struct nvme_firmware_page);
		break;
	case NVME_LOG_CHANGED_NAMESPACE:
		log_page_size = sizeof(struct nvme_ns_list);
		break;
	default:
		log_page_size = 0;
		break;
	}

	return (log_page_size);
}

static void
nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
    uint8_t state)
{

	if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE)
		nvme_printf(ctrlr, "available spare space below threshold\n");

	if (state & NVME_CRIT_WARN_ST_TEMPERATURE)
		nvme_printf(ctrlr, "temperature above threshold\n");

	if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY)
		nvme_printf(ctrlr, "device reliability degraded\n");

	if (state & NVME_CRIT_WARN_ST_READ_ONLY)
		nvme_printf(ctrlr, "media placed in read only mode\n");

	if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP)
		nvme_printf(ctrlr, "volatile memory backup device failed\n");

	if (state & NVME_CRIT_WARN_ST_RESERVED_MASK)
		nvme_printf(ctrlr,
		    "unknown critical warning(s): state = 0x%02x\n", state);
}

static void
nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
{
	struct nvme_async_event_request		*aer = arg;
	struct nvme_health_information_page	*health_info;
	struct nvme_ns_list			*nsl;
	struct nvme_error_information_entry	*err;
	int i;

	/*
	 * If the log page fetch for some reason completed with an error,
	 *  don't pass log page data to the consumers.  In practice, this case
	 *  should never happen.
	 */
	if (nvme_completion_is_error(cpl))
		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
		    aer->log_page_id, NULL, 0);
	else {
		/* Convert data to host endian */
		switch (aer->log_page_id) {
		case NVME_LOG_ERROR:
			err = (struct nvme_error_information_entry *)aer->log_page_buffer;
			for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++)
				nvme_error_information_entry_swapbytes(err++);
			break;
		case NVME_LOG_HEALTH_INFORMATION:
			nvme_health_information_page_swapbytes(
			    (struct nvme_health_information_page *)aer->log_page_buffer);
			break;
		case NVME_LOG_FIRMWARE_SLOT:
			nvme_firmware_page_swapbytes(
			    (struct nvme_firmware_page *)aer->log_page_buffer);
			break;
		case NVME_LOG_CHANGED_NAMESPACE:
			nvme_ns_list_swapbytes(
			    (struct nvme_ns_list *)aer->log_page_buffer);
			break;
		case INTEL_LOG_TEMP_STATS:
			intel_log_temp_stats_swapbytes(
			    (struct intel_log_temp_stats *)aer->log_page_buffer);
			break;
		default:
			break;
		}

		if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
			health_info = (struct nvme_health_information_page *)
			    aer->log_page_buffer;
			nvme_ctrlr_log_critical_warnings(aer->ctrlr,
			    health_info->critical_warning);
			/*
			 * Critical warnings reported through the
			 *  SMART/health log page are persistent, so
			 *  clear the associated bits in the async event
			 *  config so that we do not receive repeated
			 *  notifications for the same event.
			 */
			aer->ctrlr->async_event_config &=
			    ~health_info->critical_warning;
			nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
			    aer->ctrlr->async_event_config, NULL, NULL);
		} else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE &&
		    !nvme_use_nvd) {
			nsl = (struct nvme_ns_list *)aer->log_page_buffer;
			for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) {
				if (nsl->ns[i] > NVME_MAX_NAMESPACES)
					break;
				nvme_notify_ns(aer->ctrlr, nsl->ns[i]);
			}
		}


		/*
		 * Pass the cpl data from the original async event completion,
		 *  not the log page fetch.
		 */
		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
		    aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
	}

	/*
	 * Repost another asynchronous event request to replace the one
	 *  that just completed.
	 */
	nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
}

static void
nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
{
	struct nvme_async_event_request	*aer = arg;

	if (nvme_completion_is_error(cpl)) {
		/*
		 *  Do not retry failed async event requests.  This avoids
		 *  infinite loops where a new async event request is submitted
		 *  to replace the one just failed, only to fail again and
		 *  perpetuate the loop.
		 */
		return;
	}

	/* Associated log page is in bits 23:16 of completion entry dw0. */
	aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;

	nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x,"
	    " page 0x%02x)\n", (cpl->cdw0 & 0x03), (cpl->cdw0 & 0xFF00) >> 8,
	    aer->log_page_id);

	if (is_log_page_id_valid(aer->log_page_id)) {
		aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
		    aer->log_page_id);
		memcpy(&aer->cpl, cpl, sizeof(*cpl));
		nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
		    NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
		    aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
		    aer);
		/* Wait to notify consumers until after log page is fetched. */
	} else {
		nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
		    NULL, 0);

		/*
		 * Repost another asynchronous event request to replace the one
		 *  that just completed.
		 */
		nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
	}
}

static void
nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
    struct nvme_async_event_request *aer)
{
	struct nvme_request *req;

	aer->ctrlr = ctrlr;
	req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
	aer->req = req;

	/*
	 * Disable timeout here, since asynchronous event requests should by
	 *  nature never be timed out.
	 */
	req->timeout = FALSE;
	req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
	nvme_ctrlr_submit_admin_request(ctrlr, req);
}

static void
nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
{
	struct nvme_completion_poll_status	status;
	struct nvme_async_event_request		*aer;
	uint32_t				i;

	ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE |
	    NVME_CRIT_WARN_ST_DEVICE_RELIABILITY |
	    NVME_CRIT_WARN_ST_READ_ONLY |
	    NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP;
	if (ctrlr->cdata.ver >= NVME_REV(1, 2))
		ctrlr->async_event_config |= 0x300;

	status.done = 0;
	nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
	    0, NULL, 0, nvme_completion_poll_cb, &status);
	while (!atomic_load_acq_int(&status.done))
		pause("nvme", 1);
	if (nvme_completion_is_error(&status.cpl) ||
	    (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
	    (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
		nvme_printf(ctrlr, "temperature threshold not supported\n");
	} else
		ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE;

	nvme_ctrlr_cmd_set_async_event_config(ctrlr,
	    ctrlr->async_event_config, NULL, NULL);

	/* aerl is a zero-based value, so we need to add 1 here. */
	ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));

	for (i = 0; i < ctrlr->num_aers; i++) {
		aer = &ctrlr->aer[i];
		nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
	}
}

static void
nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
{

	ctrlr->int_coal_time = 0;
	TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
	    &ctrlr->int_coal_time);

	ctrlr->int_coal_threshold = 0;
	TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
	    &ctrlr->int_coal_threshold);

	nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
	    ctrlr->int_coal_threshold, NULL, NULL);
}

static void
nvme_ctrlr_start(void *ctrlr_arg)
{
	struct nvme_controller *ctrlr = ctrlr_arg;
	uint32_t old_num_io_queues;
	int i;

	/*
	 * Only reset adminq here when we are restarting the
	 *  controller after a reset.  During initialization,
	 *  we have already submitted admin commands to get
	 *  the number of I/O queues supported, so cannot reset
	 *  the adminq again here.
	 */
	if (ctrlr->is_resetting) {
		nvme_qpair_reset(&ctrlr->adminq);
	}

	for (i = 0; i < ctrlr->num_io_queues; i++)
		nvme_qpair_reset(&ctrlr->ioq[i]);

	nvme_admin_qpair_enable(&ctrlr->adminq);

	if (nvme_ctrlr_identify(ctrlr) != 0) {
		nvme_ctrlr_fail(ctrlr);
		return;
	}

	/*
	 * The number of qpairs are determined during controller initialization,
	 *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
	 *  HW limit.  We call SET_FEATURES again here so that it gets called
	 *  after any reset for controllers that depend on the driver to
	 *  explicit specify how many queues it will use.  This value should
	 *  never change between resets, so panic if somehow that does happen.
	 */
	if (ctrlr->is_resetting) {
		old_num_io_queues = ctrlr->num_io_queues;
		if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
			nvme_ctrlr_fail(ctrlr);
			return;
		}

		if (old_num_io_queues != ctrlr->num_io_queues) {
			panic("num_io_queues changed from %u to %u",
			      old_num_io_queues, ctrlr->num_io_queues);
		}
	}

	if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
		nvme_ctrlr_fail(ctrlr);
		return;
	}

	if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
		nvme_ctrlr_fail(ctrlr);
		return;
	}

	nvme_ctrlr_configure_aer(ctrlr);
	nvme_ctrlr_configure_int_coalescing(ctrlr);

	for (i = 0; i < ctrlr->num_io_queues; i++)
		nvme_io_qpair_enable(&ctrlr->ioq[i]);
}

void
nvme_ctrlr_start_config_hook(void *arg)
{
	struct nvme_controller *ctrlr = arg;

	nvme_qpair_reset(&ctrlr->adminq);
	nvme_admin_qpair_enable(&ctrlr->adminq);

	if (nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
	    nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
		nvme_ctrlr_start(ctrlr);
	else
		nvme_ctrlr_fail(ctrlr);

	nvme_sysctl_initialize_ctrlr(ctrlr);
	config_intrhook_disestablish(&ctrlr->config_hook);

	ctrlr->is_initialized = 1;
	nvme_notify_new_controller(ctrlr);
}

static void
nvme_ctrlr_reset_task(void *arg, int pending)
{
	struct nvme_controller	*ctrlr = arg;
	int			status;

	nvme_printf(ctrlr, "resetting controller\n");
	status = nvme_ctrlr_hw_reset(ctrlr);
	/*
	 * Use pause instead of DELAY, so that we yield to any nvme interrupt
	 *  handlers on this CPU that were blocked on a qpair lock. We want
	 *  all nvme interrupts completed before proceeding with restarting the
	 *  controller.
	 *
	 * XXX - any way to guarantee the interrupt handlers have quiesced?
	 */
	pause("nvmereset", hz / 10);
	if (status == 0)
		nvme_ctrlr_start(ctrlr);
	else
		nvme_ctrlr_fail(ctrlr);

	atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
}

/*
 * Poll all the queues enabled on the device for completion.
 */
void
nvme_ctrlr_poll(struct nvme_controller *ctrlr)
{
	int i;

	nvme_qpair_process_completions(&ctrlr->adminq);

	for (i = 0; i < ctrlr->num_io_queues; i++)
		if (ctrlr->ioq && ctrlr->ioq[i].cpl)
			nvme_qpair_process_completions(&ctrlr->ioq[i]);
}

/*
 * Poll the single-vector intertrupt case: num_io_queues will be 1 and
 * there's only a single vector. While we're polling, we mask further
 * interrupts in the controller.
 */
void
nvme_ctrlr_intx_handler(void *arg)
{
	struct nvme_controller *ctrlr = arg;

	nvme_mmio_write_4(ctrlr, intms, 1);
	nvme_ctrlr_poll(ctrlr);
	nvme_mmio_write_4(ctrlr, intmc, 1);
}

static int
nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
{

	ctrlr->msix_enabled = 0;
	ctrlr->num_io_queues = 1;
	ctrlr->num_cpus_per_ioq = mp_ncpus;
	ctrlr->rid = 0;
	ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
	    &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);

	if (ctrlr->res == NULL) {
		nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
		return (ENOMEM);
	}

	bus_setup_intr(ctrlr->dev, ctrlr->res,
	    INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
	    ctrlr, &ctrlr->tag);

	if (ctrlr->tag == NULL) {
		nvme_printf(ctrlr, "unable to setup intx handler\n");
		return (ENOMEM);
	}

	return (0);
}

static void
nvme_pt_done(void *arg, const struct nvme_completion *cpl)
{
	struct nvme_pt_command *pt = arg;
	struct mtx *mtx = pt->driver_lock;
	uint16_t status;

	bzero(&pt->cpl, sizeof(pt->cpl));
	pt->cpl.cdw0 = cpl->cdw0;

	status = cpl->status;
	status &= ~NVME_STATUS_P_MASK;
	pt->cpl.status = status;

	mtx_lock(mtx);
	pt->driver_lock = NULL;
	wakeup(pt);
	mtx_unlock(mtx);
}

int
nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
    struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
    int is_admin_cmd)
{
	struct nvme_request	*req;
	struct mtx		*mtx;
	struct buf		*buf = NULL;
	int			ret = 0;
	vm_offset_t		addr, end;

	if (pt->len > 0) {
		/*
		 * vmapbuf calls vm_fault_quick_hold_pages which only maps full
		 * pages. Ensure this request has fewer than MAXPHYS bytes when
		 * extended to full pages.
		 */
		addr = (vm_offset_t)pt->buf;
		end = round_page(addr + pt->len);
		addr = trunc_page(addr);
		if (end - addr > MAXPHYS)
			return EIO;

		if (pt->len > ctrlr->max_xfer_size) {
			nvme_printf(ctrlr, "pt->len (%d) "
			    "exceeds max_xfer_size (%d)\n", pt->len,
			    ctrlr->max_xfer_size);
			return EIO;
		}
		if (is_user_buffer) {
			/*
			 * Ensure the user buffer is wired for the duration of
			 *  this passthrough command.
			 */
			PHOLD(curproc);
			buf = getpbuf(NULL);
			buf->b_data = pt->buf;
			buf->b_bufsize = pt->len;
			buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
#ifdef NVME_UNMAPPED_BIO_SUPPORT
			if (vmapbuf(buf, 1) < 0) {
#else
			if (vmapbuf(buf) < 0) {
#endif
				ret = EFAULT;
				goto err;
			}
			req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 
			    nvme_pt_done, pt);
		} else
			req = nvme_allocate_request_vaddr(pt->buf, pt->len,
			    nvme_pt_done, pt);
	} else
		req = nvme_allocate_request_null(nvme_pt_done, pt);

	/* Assume userspace already converted to little-endian */
	req->cmd.opc = pt->cmd.opc;
	req->cmd.fuse = pt->cmd.fuse;
	req->cmd.cdw10 = pt->cmd.cdw10;
	req->cmd.cdw11 = pt->cmd.cdw11;
	req->cmd.cdw12 = pt->cmd.cdw12;
	req->cmd.cdw13 = pt->cmd.cdw13;
	req->cmd.cdw14 = pt->cmd.cdw14;
	req->cmd.cdw15 = pt->cmd.cdw15;

	req->cmd.nsid = htole32(nsid);

	mtx = mtx_pool_find(mtxpool_sleep, pt);
	pt->driver_lock = mtx;

	if (is_admin_cmd)
		nvme_ctrlr_submit_admin_request(ctrlr, req);
	else
		nvme_ctrlr_submit_io_request(ctrlr, req);

	mtx_lock(mtx);
	while (pt->driver_lock != NULL)
		mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
	mtx_unlock(mtx);

err:
	if (buf != NULL) {
		relpbuf(buf, NULL);
		PRELE(curproc);
	}

	return (ret);
}

static int
nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
    struct thread *td)
{
	struct nvme_controller			*ctrlr;
	struct nvme_pt_command			*pt;

	ctrlr = cdev->si_drv1;

	switch (cmd) {
	case NVME_RESET_CONTROLLER:
		nvme_ctrlr_reset(ctrlr);
		break;
	case NVME_PASSTHROUGH_CMD:
		pt = (struct nvme_pt_command *)arg;
		return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid),
		    1 /* is_user_buffer */, 1 /* is_admin_cmd */));
	default:
		return (ENOTTY);
	}

	return (0);
}

static struct cdevsw nvme_ctrlr_cdevsw = {
	.d_version =	D_VERSION,
	.d_flags =	0,
	.d_ioctl =	nvme_ctrlr_ioctl
};

static void
nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr)
{
	device_t	dev;
	int		per_cpu_io_queues;
	int		min_cpus_per_ioq;
	int		num_vectors_requested, num_vectors_allocated;
	int		num_vectors_available;

	dev = ctrlr->dev;
	min_cpus_per_ioq = 1;
	TUNABLE_INT_FETCH("hw.nvme.min_cpus_per_ioq", &min_cpus_per_ioq);

	if (min_cpus_per_ioq < 1) {
		min_cpus_per_ioq = 1;
	} else if (min_cpus_per_ioq > mp_ncpus) {
		min_cpus_per_ioq = mp_ncpus;
	}

	per_cpu_io_queues = 1;
	TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);

	if (per_cpu_io_queues == 0) {
		min_cpus_per_ioq = mp_ncpus;
	}

	ctrlr->force_intx = 0;
	TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);

	/*
	 * FreeBSD currently cannot allocate more than about 190 vectors at
	 *  boot, meaning that systems with high core count and many devices
	 *  requesting per-CPU interrupt vectors will not get their full
	 *  allotment.  So first, try to allocate as many as we may need to
	 *  understand what is available, then immediately release them.
	 *  Then figure out how many of those we will actually use, based on
	 *  assigning an equal number of cores to each I/O queue.
	 */

	/* One vector for per core I/O queue, plus one vector for admin queue. */
	num_vectors_available = min(pci_msix_count(dev), mp_ncpus + 1);
	if (pci_alloc_msix(dev, &num_vectors_available) != 0) {
		num_vectors_available = 0;
	}
	pci_release_msi(dev);

	if (ctrlr->force_intx || num_vectors_available < 2) {
		nvme_ctrlr_configure_intx(ctrlr);
		return;
	}

	/*
	 * Do not use all vectors for I/O queues - one must be saved for the
	 *  admin queue.
	 */
	ctrlr->num_cpus_per_ioq = max(min_cpus_per_ioq,
	    howmany(mp_ncpus, num_vectors_available - 1));

	ctrlr->num_io_queues = howmany(mp_ncpus, ctrlr->num_cpus_per_ioq);
	num_vectors_requested = ctrlr->num_io_queues + 1;
	num_vectors_allocated = num_vectors_requested;

	/*
	 * Now just allocate the number of vectors we need.  This should
	 *  succeed, since we previously called pci_alloc_msix()
	 *  successfully returning at least this many vectors, but just to
	 *  be safe, if something goes wrong just revert to INTx.
	 */
	if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) {
		nvme_ctrlr_configure_intx(ctrlr);
		return;
	}

	if (num_vectors_allocated < num_vectors_requested) {
		pci_release_msi(dev);
		nvme_ctrlr_configure_intx(ctrlr);
		return;
	}

	ctrlr->msix_enabled = 1;
}

int
nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
{
	struct make_dev_args	md_args;
	uint32_t	cap_lo;
	uint32_t	cap_hi;
	uint8_t		to;
	uint8_t		dstrd;
	uint8_t		mpsmin;
	int		status, timeout_period;

	ctrlr->dev = dev;

	mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);

	status = nvme_ctrlr_allocate_bar(ctrlr);

	if (status != 0)
		return (status);

	/*
	 * Software emulators may set the doorbell stride to something
	 *  other than zero, but this driver is not set up to handle that.
	 */
	cap_hi = nvme_mmio_read_4(ctrlr, cap_hi);
	dstrd = (cap_hi >> NVME_CAP_HI_REG_DSTRD_SHIFT) & NVME_CAP_HI_REG_DSTRD_MASK;
	if (dstrd != 0)
		return (ENXIO);

	mpsmin = (cap_hi >> NVME_CAP_HI_REG_MPSMIN_SHIFT) & NVME_CAP_HI_REG_MPSMIN_MASK;
	ctrlr->min_page_size = 1 << (12 + mpsmin);

	/* Get ready timeout value from controller, in units of 500ms. */
	cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
	to = (cap_lo >> NVME_CAP_LO_REG_TO_SHIFT) & NVME_CAP_LO_REG_TO_MASK;
	ctrlr->ready_timeout_in_ms = to * 500;

	timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
	TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
	timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
	timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
	ctrlr->timeout_period = timeout_period;

	nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
	TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);

	ctrlr->enable_aborts = 0;
	TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);

	nvme_ctrlr_setup_interrupts(ctrlr);

	ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
	if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
		return (ENXIO);

	ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
	    taskqueue_thread_enqueue, &ctrlr->taskqueue);
	taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");

	ctrlr->is_resetting = 0;
	ctrlr->is_initialized = 0;
	ctrlr->notification_sent = 0;
	TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
	TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
	STAILQ_INIT(&ctrlr->fail_req);
	ctrlr->is_failed = FALSE;

	make_dev_args_init(&md_args);
	md_args.mda_devsw = &nvme_ctrlr_cdevsw;
	md_args.mda_uid = UID_ROOT;
	md_args.mda_gid = GID_WHEEL;
	md_args.mda_mode = 0600;
	md_args.mda_unit = device_get_unit(dev);
	md_args.mda_si_drv1 = (void *)ctrlr;
	status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d",
	    device_get_unit(dev));
	if (status != 0)
		return (ENXIO);

	return (0);
}

void
nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
{
	int				i;

	if (ctrlr->resource == NULL)
		goto nores;

	nvme_notify_fail_consumers(ctrlr);

	for (i = 0; i < NVME_MAX_NAMESPACES; i++)
		nvme_ns_destruct(&ctrlr->ns[i]);

	if (ctrlr->cdev)
		destroy_dev(ctrlr->cdev);

	for (i = 0; i < ctrlr->num_io_queues; i++) {
		nvme_ctrlr_destroy_qpair(ctrlr, &ctrlr->ioq[i]);
		nvme_io_qpair_destroy(&ctrlr->ioq[i]);
	}
	free(ctrlr->ioq, M_NVME);

	nvme_admin_qpair_destroy(&ctrlr->adminq);

	/*
	 *  Notify the controller of a shutdown, even though this is due to
	 *   a driver unload, not a system shutdown (this path is not invoked
	 *   during shutdown).  This ensures the controller receives a
	 *   shutdown notification in case the system is shutdown before
	 *   reloading the driver.
	 */
	nvme_ctrlr_shutdown(ctrlr);

	nvme_ctrlr_disable(ctrlr);

	if (ctrlr->taskqueue)
		taskqueue_free(ctrlr->taskqueue);

	if (ctrlr->tag)
		bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);

	if (ctrlr->res)
		bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
		    rman_get_rid(ctrlr->res), ctrlr->res);

	if (ctrlr->msix_enabled)
		pci_release_msi(dev);

	if (ctrlr->bar4_resource != NULL) {
		bus_release_resource(dev, SYS_RES_MEMORY,
		    ctrlr->bar4_resource_id, ctrlr->bar4_resource);
	}

	bus_release_resource(dev, SYS_RES_MEMORY,
	    ctrlr->resource_id, ctrlr->resource);

nores:
	mtx_destroy(&ctrlr->lock);
}

void
nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
{
	uint32_t	cc;
	uint32_t	csts;
	int		ticks = 0;

	cc = nvme_mmio_read_4(ctrlr, cc);
	cc &= ~(NVME_CC_REG_SHN_MASK << NVME_CC_REG_SHN_SHIFT);
	cc |= NVME_SHN_NORMAL << NVME_CC_REG_SHN_SHIFT;
	nvme_mmio_write_4(ctrlr, cc, cc);

	csts = nvme_mmio_read_4(ctrlr, csts);
	while ((NVME_CSTS_GET_SHST(csts) != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) {
		pause("nvme shn", 1);
		csts = nvme_mmio_read_4(ctrlr, csts);
	}
	if (NVME_CSTS_GET_SHST(csts) != NVME_SHST_COMPLETE)
		nvme_printf(ctrlr, "did not complete shutdown within 5 seconds "
		    "of notification\n");
}

void
nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
    struct nvme_request *req)
{

	nvme_qpair_submit_request(&ctrlr->adminq, req);
}

void
nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
    struct nvme_request *req)
{
	struct nvme_qpair       *qpair;

	qpair = &ctrlr->ioq[curcpu / ctrlr->num_cpus_per_ioq];
	nvme_qpair_submit_request(qpair, req);
}

device_t
nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
{

	return (ctrlr->dev);
}

const struct nvme_controller_data *
nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
{

	return (&ctrlr->cdata);
}