Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
/*-
 * Copyright (c) 2017 W. Dean Freeman
 * Copyright (c) 2013-2015 Mark R V Murray
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer
 *    in this position and unchanged.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 */

/*
 * This implementation of Fortuna is based on the descriptions found in
 * ISBN 978-0-470-47424-2 "Cryptography Engineering" by Ferguson, Schneier
 * and Kohno ("FS&K").
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/limits.h>

#ifdef _KERNEL
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/random.h>
#include <sys/sdt.h>
#include <sys/sysctl.h>
#include <sys/systm.h>

#include <machine/cpu.h>

#include <crypto/rijndael/rijndael-api-fst.h>
#include <crypto/sha2/sha256.h>

#include <dev/random/hash.h>
#include <dev/random/randomdev.h>
#include <dev/random/random_harvestq.h>
#include <dev/random/uint128.h>
#include <dev/random/fortuna.h>
#else /* !_KERNEL */
#include <sys/param.h>
#include <inttypes.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <threads.h>

#include "unit_test.h"

#include <crypto/rijndael/rijndael-api-fst.h>
#include <crypto/sha2/sha256.h>

#include <dev/random/hash.h>
#include <dev/random/randomdev.h>
#include <dev/random/uint128.h>
#include <dev/random/fortuna.h>
#endif /* _KERNEL */

/* Defined in FS&K */
#define	RANDOM_FORTUNA_NPOOLS 32		/* The number of accumulation pools */
#define	RANDOM_FORTUNA_DEFPOOLSIZE 64		/* The default pool size/length for a (re)seed */
#define	RANDOM_FORTUNA_MAX_READ (1 << 20)	/* Max bytes in a single read */

/*
 * The allowable range of RANDOM_FORTUNA_DEFPOOLSIZE. The default value is above.
 * Making RANDOM_FORTUNA_DEFPOOLSIZE too large will mean a long time between reseeds,
 * and too small may compromise initial security but get faster reseeds.
 */
#define	RANDOM_FORTUNA_MINPOOLSIZE 16
#define	RANDOM_FORTUNA_MAXPOOLSIZE INT_MAX 
CTASSERT(RANDOM_FORTUNA_MINPOOLSIZE <= RANDOM_FORTUNA_DEFPOOLSIZE);
CTASSERT(RANDOM_FORTUNA_DEFPOOLSIZE <= RANDOM_FORTUNA_MAXPOOLSIZE);

/* This algorithm (and code) presumes that RANDOM_KEYSIZE is twice as large as RANDOM_BLOCKSIZE */
CTASSERT(RANDOM_BLOCKSIZE == sizeof(uint128_t));
CTASSERT(RANDOM_KEYSIZE == 2*RANDOM_BLOCKSIZE);

/* Probes for dtrace(1) */
#ifdef _KERNEL
SDT_PROVIDER_DECLARE(random);
SDT_PROVIDER_DEFINE(random);
SDT_PROBE_DEFINE2(random, fortuna, event_processor, debug, "u_int", "struct fs_pool *");
#endif /* _KERNEL */

/*
 * This is the beastie that needs protecting. It contains all of the
 * state that we are excited about. Exactly one is instantiated.
 */
static struct fortuna_state {
	struct fs_pool {		/* P_i */
		u_int fsp_length;	/* Only the first one is used by Fortuna */
		struct randomdev_hash fsp_hash;
	} fs_pool[RANDOM_FORTUNA_NPOOLS];
	u_int fs_reseedcount;		/* ReseedCnt */
	uint128_t fs_counter;		/* C */
	struct randomdev_key fs_key;	/* K */
	u_int fs_minpoolsize;		/* Extras */
	/* Extras for the OS */
#ifdef _KERNEL
	/* For use when 'pacing' the reseeds */
	sbintime_t fs_lasttime;
#endif
	/* Reseed lock */
	mtx_t fs_mtx;
} fortuna_state;

#ifdef _KERNEL
static struct sysctl_ctx_list random_clist;
RANDOM_CHECK_UINT(fs_minpoolsize, RANDOM_FORTUNA_MINPOOLSIZE, RANDOM_FORTUNA_MAXPOOLSIZE);
#else
static uint8_t zero_region[RANDOM_ZERO_BLOCKSIZE];
#endif

static void random_fortuna_pre_read(void);
static void random_fortuna_read(uint8_t *, u_int);
static bool random_fortuna_seeded(void);
static void random_fortuna_process_event(struct harvest_event *);
static void random_fortuna_init_alg(void *);
static void random_fortuna_deinit_alg(void *);

static void random_fortuna_reseed_internal(uint32_t *entropy_data, u_int blockcount);

struct random_algorithm random_alg_context = {
	.ra_ident = "Fortuna",
	.ra_init_alg = random_fortuna_init_alg,
	.ra_deinit_alg = random_fortuna_deinit_alg,
	.ra_pre_read = random_fortuna_pre_read,
	.ra_read = random_fortuna_read,
	.ra_seeded = random_fortuna_seeded,
	.ra_event_processor = random_fortuna_process_event,
	.ra_poolcount = RANDOM_FORTUNA_NPOOLS,
};

/* ARGSUSED */
static void
random_fortuna_init_alg(void *unused __unused)
{
	int i;
#ifdef _KERNEL
	struct sysctl_oid *random_fortuna_o;
#endif

	RANDOM_RESEED_INIT_LOCK();
	/*
	 * Fortuna parameters. Do not adjust these unless you have
	 * have a very good clue about what they do!
	 */
	fortuna_state.fs_minpoolsize = RANDOM_FORTUNA_DEFPOOLSIZE;
#ifdef _KERNEL
	fortuna_state.fs_lasttime = 0;
	random_fortuna_o = SYSCTL_ADD_NODE(&random_clist,
		SYSCTL_STATIC_CHILDREN(_kern_random),
		OID_AUTO, "fortuna", CTLFLAG_RW, 0,
		"Fortuna Parameters");
	SYSCTL_ADD_PROC(&random_clist,
		SYSCTL_CHILDREN(random_fortuna_o), OID_AUTO,
		"minpoolsize", CTLTYPE_UINT | CTLFLAG_RWTUN,
		&fortuna_state.fs_minpoolsize, RANDOM_FORTUNA_DEFPOOLSIZE,
		random_check_uint_fs_minpoolsize, "IU",
		"Minimum pool size necessary to cause a reseed");
	KASSERT(fortuna_state.fs_minpoolsize > 0, ("random: Fortuna threshold must be > 0 at startup"));
#endif

	/*-
	 * FS&K - InitializePRNG()
	 *      - P_i = \epsilon
	 *      - ReseedCNT = 0
	 */
	for (i = 0; i < RANDOM_FORTUNA_NPOOLS; i++) {
		randomdev_hash_init(&fortuna_state.fs_pool[i].fsp_hash);
		fortuna_state.fs_pool[i].fsp_length = 0;
	}
	fortuna_state.fs_reseedcount = 0;
	/*-
	 * FS&K - InitializeGenerator()
	 *      - C = 0
	 *      - K = 0
	 */
	fortuna_state.fs_counter = UINT128_ZERO;
	explicit_bzero(&fortuna_state.fs_key, sizeof(fortuna_state.fs_key));
}

/* ARGSUSED */
static void
random_fortuna_deinit_alg(void *unused __unused)
{

	RANDOM_RESEED_DEINIT_LOCK();
	explicit_bzero(&fortuna_state, sizeof(fortuna_state));
#ifdef _KERNEL
	sysctl_ctx_free(&random_clist);
#endif
}

/*-
 * FS&K - AddRandomEvent()
 * Process a single stochastic event off the harvest queue
 */
static void
random_fortuna_process_event(struct harvest_event *event)
{
	u_int pl;

	RANDOM_RESEED_LOCK();
	/*-
	 * FS&K - P_i = P_i|<harvested stuff>
	 * Accumulate the event into the appropriate pool
	 * where each event carries the destination information.
	 *
	 * The hash_init() and hash_finish() calls are done in
	 * random_fortuna_pre_read().
	 *
	 * We must be locked against pool state modification which can happen
	 * during accumulation/reseeding and reading/regating.
	 */
	pl = event->he_destination % RANDOM_FORTUNA_NPOOLS;
	/*
	 * We ignore low entropy static/counter fields towards the end of the
	 * he_event structure in order to increase measurable entropy when
	 * conducting SP800-90B entropy analysis measurements of seed material
	 * fed into PRNG.
	 * -- wdf
	 */
	KASSERT(event->he_size <= sizeof(event->he_entropy),
	    ("%s: event->he_size: %hhu > sizeof(event->he_entropy): %zu\n",
	    __func__, event->he_size, sizeof(event->he_entropy)));
	randomdev_hash_iterate(&fortuna_state.fs_pool[pl].fsp_hash,
	    &event->he_somecounter, sizeof(event->he_somecounter));
	randomdev_hash_iterate(&fortuna_state.fs_pool[pl].fsp_hash,
	    event->he_entropy, event->he_size);

	/*-
	 * Don't wrap the length.  This is a "saturating" add.
	 * XXX: FIX!!: We don't actually need lengths for anything but fs_pool[0],
	 * but it's been useful debugging to see them all.
	 */
	fortuna_state.fs_pool[pl].fsp_length = MIN(RANDOM_FORTUNA_MAXPOOLSIZE,
	    fortuna_state.fs_pool[pl].fsp_length +
	    sizeof(event->he_somecounter) + event->he_size);
	explicit_bzero(event, sizeof(*event));
	RANDOM_RESEED_UNLOCK();
}

/*-
 * FS&K - Reseed()
 * This introduces new key material into the output generator.
 * Additionally it increments the output generator's counter
 * variable C. When C > 0, the output generator is seeded and
 * will deliver output.
 * The entropy_data buffer passed is a very specific size; the
 * product of RANDOM_FORTUNA_NPOOLS and RANDOM_KEYSIZE.
 */
static void
random_fortuna_reseed_internal(uint32_t *entropy_data, u_int blockcount)
{
	struct randomdev_hash context;
	uint8_t hash[RANDOM_KEYSIZE];

	RANDOM_RESEED_ASSERT_LOCK_OWNED();
	/*-
	 * FS&K - K = Hd(K|s) where Hd(m) is H(H(0^512|m))
	 *      - C = C + 1
	 */
	randomdev_hash_init(&context);
	randomdev_hash_iterate(&context, zero_region, RANDOM_ZERO_BLOCKSIZE);
	randomdev_hash_iterate(&context, &fortuna_state.fs_key, sizeof(fortuna_state.fs_key));
	randomdev_hash_iterate(&context, entropy_data, RANDOM_KEYSIZE*blockcount);
	randomdev_hash_finish(&context, hash);
	randomdev_hash_init(&context);
	randomdev_hash_iterate(&context, hash, RANDOM_KEYSIZE);
	randomdev_hash_finish(&context, hash);
	randomdev_encrypt_init(&fortuna_state.fs_key, hash);
	explicit_bzero(hash, sizeof(hash));
	/* Unblock the device if this is the first time we are reseeding. */
	if (uint128_is_zero(fortuna_state.fs_counter))
		randomdev_unblock();
	uint128_increment(&fortuna_state.fs_counter);
}

/*-
 * FS&K - GenerateBlocks()
 * Generate a number of complete blocks of random output.
 */
static __inline void
random_fortuna_genblocks(uint8_t *buf, u_int blockcount)
{
	u_int i;

	RANDOM_RESEED_ASSERT_LOCK_OWNED();
	for (i = 0; i < blockcount; i++) {
		/*-
		 * FS&K - r = r|E(K,C)
		 *      - C = C + 1
		 */
		randomdev_encrypt(&fortuna_state.fs_key, &fortuna_state.fs_counter, buf, RANDOM_BLOCKSIZE);
		buf += RANDOM_BLOCKSIZE;
		uint128_increment(&fortuna_state.fs_counter);
	}
}

/*-
 * FS&K - PseudoRandomData()
 * This generates no more than 2^20 bytes of data, and cleans up its
 * internal state when finished. It is assumed that a whole number of
 * blocks are available for writing; any excess generated will be
 * ignored.
 */
static __inline void
random_fortuna_genrandom(uint8_t *buf, u_int bytecount)
{
	static uint8_t temp[RANDOM_BLOCKSIZE*(RANDOM_KEYS_PER_BLOCK)];
	u_int blockcount;

	RANDOM_RESEED_ASSERT_LOCK_OWNED();
	/*-
	 * FS&K - assert(n < 2^20 (== 1 MB)
	 *      - r = first-n-bytes(GenerateBlocks(ceil(n/16)))
	 *      - K = GenerateBlocks(2)
	 */
	KASSERT((bytecount <= RANDOM_FORTUNA_MAX_READ), ("invalid single read request to Fortuna of %d bytes", bytecount));
	blockcount = howmany(bytecount, RANDOM_BLOCKSIZE);
	random_fortuna_genblocks(buf, blockcount);
	random_fortuna_genblocks(temp, RANDOM_KEYS_PER_BLOCK);
	randomdev_encrypt_init(&fortuna_state.fs_key, temp);
	explicit_bzero(temp, sizeof(temp));
}

/*-
 * FS&K - RandomData() (Part 1)
 * Used to return processed entropy from the PRNG. There is a pre_read
 * required to be present (but it can be a stub) in order to allow
 * specific actions at the begin of the read.
 */
void
random_fortuna_pre_read(void)
{
#ifdef _KERNEL
	sbintime_t now;
#endif
	struct randomdev_hash context;
	uint32_t s[RANDOM_FORTUNA_NPOOLS*RANDOM_KEYSIZE_WORDS];
	uint8_t temp[RANDOM_KEYSIZE];
	u_int i;

	KASSERT(fortuna_state.fs_minpoolsize > 0, ("random: Fortuna threshold must be > 0"));
#ifdef _KERNEL
	/* FS&K - Use 'getsbinuptime()' to prevent reseed-spamming. */
	now = getsbinuptime();
#endif
	RANDOM_RESEED_LOCK();

	if (fortuna_state.fs_pool[0].fsp_length >= fortuna_state.fs_minpoolsize
#ifdef _KERNEL
	    /* FS&K - Use 'getsbinuptime()' to prevent reseed-spamming. */
	    && (now - fortuna_state.fs_lasttime > SBT_1S/10)
#endif
	) {
#ifdef _KERNEL
		fortuna_state.fs_lasttime = now;
#endif

		/* FS&K - ReseedCNT = ReseedCNT + 1 */
		fortuna_state.fs_reseedcount++;
		/* s = \epsilon at start */
		for (i = 0; i < RANDOM_FORTUNA_NPOOLS; i++) {
			/* FS&K - if Divides(ReseedCnt, 2^i) ... */
			if ((fortuna_state.fs_reseedcount % (1 << i)) == 0) {
				/*-
				 * FS&K - temp = (P_i)
				 *      - P_i = \epsilon
				 *      - s = s|H(temp)
				 */
				randomdev_hash_finish(&fortuna_state.fs_pool[i].fsp_hash, temp);
				randomdev_hash_init(&fortuna_state.fs_pool[i].fsp_hash);
				fortuna_state.fs_pool[i].fsp_length = 0;
				randomdev_hash_init(&context);
				randomdev_hash_iterate(&context, temp, RANDOM_KEYSIZE);
				randomdev_hash_finish(&context, s + i*RANDOM_KEYSIZE_WORDS);
			} else
				break;
		}
#ifdef _KERNEL
		SDT_PROBE2(random, fortuna, event_processor, debug, fortuna_state.fs_reseedcount, fortuna_state.fs_pool);
#endif
		/* FS&K */
		random_fortuna_reseed_internal(s, i < RANDOM_FORTUNA_NPOOLS ? i + 1 : RANDOM_FORTUNA_NPOOLS);
		/* Clean up and secure */
		explicit_bzero(s, sizeof(s));
		explicit_bzero(temp, sizeof(temp));
		explicit_bzero(&context, sizeof(context));
	}
	RANDOM_RESEED_UNLOCK();
}

/*-
 * FS&K - RandomData() (Part 2)
 * Main read from Fortuna, continued. May be called multiple times after
 * the random_fortuna_pre_read() above.
 * The supplied buf MUST be a multiple of RANDOM_BLOCKSIZE in size.
 * Lots of code presumes this for efficiency, both here and in other
 * routines. You are NOT allowed to break this!
 */
void
random_fortuna_read(uint8_t *buf, u_int bytecount)
{

	KASSERT((bytecount % RANDOM_BLOCKSIZE) == 0, ("%s(): bytecount (= %d) must be a multiple of %d", __func__, bytecount, RANDOM_BLOCKSIZE ));
	RANDOM_RESEED_LOCK();
	random_fortuna_genrandom(buf, bytecount);
	RANDOM_RESEED_UNLOCK();
}

bool
random_fortuna_seeded(void)
{

	return (!uint128_is_zero(fortuna_state.fs_counter));
}