/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2006 Stephane E. Potvin <sepotvin@videotron.ca>
* Copyright (c) 2006 Ariff Abdullah <ariff@FreeBSD.org>
* Copyright (c) 2008-2012 Alexander Motin <mav@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Intel High Definition Audio (Controller) driver for FreeBSD.
*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_snd.h"
#endif
#include <dev/sound/pcm/sound.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <sys/ctype.h>
#include <sys/endian.h>
#include <sys/taskqueue.h>
#include <dev/sound/pci/hda/hdac_private.h>
#include <dev/sound/pci/hda/hdac_reg.h>
#include <dev/sound/pci/hda/hda_reg.h>
#include <dev/sound/pci/hda/hdac.h>
#define HDA_DRV_TEST_REV "20120126_0002"
SND_DECLARE_FILE("$FreeBSD$");
#define hdac_lock(sc) snd_mtxlock((sc)->lock)
#define hdac_unlock(sc) snd_mtxunlock((sc)->lock)
#define hdac_lockassert(sc) snd_mtxassert((sc)->lock)
#define hdac_lockowned(sc) mtx_owned((sc)->lock)
#define HDAC_QUIRK_64BIT (1 << 0)
#define HDAC_QUIRK_DMAPOS (1 << 1)
#define HDAC_QUIRK_MSI (1 << 2)
static const struct {
const char *key;
uint32_t value;
} hdac_quirks_tab[] = {
{ "64bit", HDAC_QUIRK_DMAPOS },
{ "dmapos", HDAC_QUIRK_DMAPOS },
{ "msi", HDAC_QUIRK_MSI },
};
MALLOC_DEFINE(M_HDAC, "hdac", "HDA Controller");
static const struct {
uint32_t model;
const char *desc;
char quirks_on;
char quirks_off;
} hdac_devices[] = {
{ HDA_INTEL_OAK, "Intel Oaktrail", 0, 0 },
{ HDA_INTEL_BAY, "Intel BayTrail", 0, 0 },
{ HDA_INTEL_HSW1, "Intel Haswell", 0, 0 },
{ HDA_INTEL_HSW2, "Intel Haswell", 0, 0 },
{ HDA_INTEL_HSW3, "Intel Haswell", 0, 0 },
{ HDA_INTEL_BDW1, "Intel Broadwell", 0, 0 },
{ HDA_INTEL_BDW2, "Intel Broadwell", 0, 0 },
{ HDA_INTEL_CPT, "Intel Cougar Point", 0, 0 },
{ HDA_INTEL_PATSBURG,"Intel Patsburg", 0, 0 },
{ HDA_INTEL_PPT1, "Intel Panther Point", 0, 0 },
{ HDA_INTEL_LPT1, "Intel Lynx Point", 0, 0 },
{ HDA_INTEL_LPT2, "Intel Lynx Point", 0, 0 },
{ HDA_INTEL_WCPT, "Intel Wildcat Point", 0, 0 },
{ HDA_INTEL_WELLS1, "Intel Wellsburg", 0, 0 },
{ HDA_INTEL_WELLS2, "Intel Wellsburg", 0, 0 },
{ HDA_INTEL_LPTLP1, "Intel Lynx Point-LP", 0, 0 },
{ HDA_INTEL_LPTLP2, "Intel Lynx Point-LP", 0, 0 },
{ HDA_INTEL_SRPTLP, "Intel Sunrise Point-LP", 0, 0 },
{ HDA_INTEL_KBLKLP, "Intel Kabylake-LP", 0, 0 },
{ HDA_INTEL_SRPT, "Intel Sunrise Point", 0, 0 },
{ HDA_INTEL_KBLK, "Intel Kabylake", 0, 0 },
{ HDA_INTEL_KBLKH, "Intel Kabylake-H", 0, 0 },
{ HDA_INTEL_CFLK, "Intel Coffelake", 0, 0 },
{ HDA_INTEL_82801F, "Intel 82801F", 0, 0 },
{ HDA_INTEL_63XXESB, "Intel 631x/632xESB", 0, 0 },
{ HDA_INTEL_82801G, "Intel 82801G", 0, 0 },
{ HDA_INTEL_82801H, "Intel 82801H", 0, 0 },
{ HDA_INTEL_82801I, "Intel 82801I", 0, 0 },
{ HDA_INTEL_82801JI, "Intel 82801JI", 0, 0 },
{ HDA_INTEL_82801JD, "Intel 82801JD", 0, 0 },
{ HDA_INTEL_PCH, "Intel Ibex Peak", 0, 0 },
{ HDA_INTEL_PCH2, "Intel Ibex Peak", 0, 0 },
{ HDA_INTEL_SCH, "Intel SCH", 0, 0 },
{ HDA_NVIDIA_MCP51, "NVIDIA MCP51", 0, HDAC_QUIRK_MSI },
{ HDA_NVIDIA_MCP55, "NVIDIA MCP55", 0, HDAC_QUIRK_MSI },
{ HDA_NVIDIA_MCP61_1, "NVIDIA MCP61", 0, 0 },
{ HDA_NVIDIA_MCP61_2, "NVIDIA MCP61", 0, 0 },
{ HDA_NVIDIA_MCP65_1, "NVIDIA MCP65", 0, 0 },
{ HDA_NVIDIA_MCP65_2, "NVIDIA MCP65", 0, 0 },
{ HDA_NVIDIA_MCP67_1, "NVIDIA MCP67", 0, 0 },
{ HDA_NVIDIA_MCP67_2, "NVIDIA MCP67", 0, 0 },
{ HDA_NVIDIA_MCP73_1, "NVIDIA MCP73", 0, 0 },
{ HDA_NVIDIA_MCP73_2, "NVIDIA MCP73", 0, 0 },
{ HDA_NVIDIA_MCP78_1, "NVIDIA MCP78", 0, HDAC_QUIRK_64BIT },
{ HDA_NVIDIA_MCP78_2, "NVIDIA MCP78", 0, HDAC_QUIRK_64BIT },
{ HDA_NVIDIA_MCP78_3, "NVIDIA MCP78", 0, HDAC_QUIRK_64BIT },
{ HDA_NVIDIA_MCP78_4, "NVIDIA MCP78", 0, HDAC_QUIRK_64BIT },
{ HDA_NVIDIA_MCP79_1, "NVIDIA MCP79", 0, 0 },
{ HDA_NVIDIA_MCP79_2, "NVIDIA MCP79", 0, 0 },
{ HDA_NVIDIA_MCP79_3, "NVIDIA MCP79", 0, 0 },
{ HDA_NVIDIA_MCP79_4, "NVIDIA MCP79", 0, 0 },
{ HDA_NVIDIA_MCP89_1, "NVIDIA MCP89", 0, 0 },
{ HDA_NVIDIA_MCP89_2, "NVIDIA MCP89", 0, 0 },
{ HDA_NVIDIA_MCP89_3, "NVIDIA MCP89", 0, 0 },
{ HDA_NVIDIA_MCP89_4, "NVIDIA MCP89", 0, 0 },
{ HDA_NVIDIA_0BE2, "NVIDIA (0x0be2)", 0, HDAC_QUIRK_MSI },
{ HDA_NVIDIA_0BE3, "NVIDIA (0x0be3)", 0, HDAC_QUIRK_MSI },
{ HDA_NVIDIA_0BE4, "NVIDIA (0x0be4)", 0, HDAC_QUIRK_MSI },
{ HDA_NVIDIA_GT100, "NVIDIA GT100", 0, HDAC_QUIRK_MSI },
{ HDA_NVIDIA_GT104, "NVIDIA GT104", 0, HDAC_QUIRK_MSI },
{ HDA_NVIDIA_GT106, "NVIDIA GT106", 0, HDAC_QUIRK_MSI },
{ HDA_NVIDIA_GT108, "NVIDIA GT108", 0, HDAC_QUIRK_MSI },
{ HDA_NVIDIA_GT116, "NVIDIA GT116", 0, HDAC_QUIRK_MSI },
{ HDA_NVIDIA_GF119, "NVIDIA GF119", 0, 0 },
{ HDA_NVIDIA_GF110_1, "NVIDIA GF110", 0, HDAC_QUIRK_MSI },
{ HDA_NVIDIA_GF110_2, "NVIDIA GF110", 0, HDAC_QUIRK_MSI },
{ HDA_ATI_SB450, "ATI SB450", 0, 0 },
{ HDA_ATI_SB600, "ATI SB600", 0, 0 },
{ HDA_ATI_RS600, "ATI RS600", 0, 0 },
{ HDA_ATI_RS690, "ATI RS690", 0, 0 },
{ HDA_ATI_RS780, "ATI RS780", 0, 0 },
{ HDA_ATI_R600, "ATI R600", 0, 0 },
{ HDA_ATI_RV610, "ATI RV610", 0, 0 },
{ HDA_ATI_RV620, "ATI RV620", 0, 0 },
{ HDA_ATI_RV630, "ATI RV630", 0, 0 },
{ HDA_ATI_RV635, "ATI RV635", 0, 0 },
{ HDA_ATI_RV710, "ATI RV710", 0, 0 },
{ HDA_ATI_RV730, "ATI RV730", 0, 0 },
{ HDA_ATI_RV740, "ATI RV740", 0, 0 },
{ HDA_ATI_RV770, "ATI RV770", 0, 0 },
{ HDA_ATI_RV810, "ATI RV810", 0, 0 },
{ HDA_ATI_RV830, "ATI RV830", 0, 0 },
{ HDA_ATI_RV840, "ATI RV840", 0, 0 },
{ HDA_ATI_RV870, "ATI RV870", 0, 0 },
{ HDA_ATI_RV910, "ATI RV910", 0, 0 },
{ HDA_ATI_RV930, "ATI RV930", 0, 0 },
{ HDA_ATI_RV940, "ATI RV940", 0, 0 },
{ HDA_ATI_RV970, "ATI RV970", 0, 0 },
{ HDA_ATI_R1000, "ATI R1000", 0, 0 },
{ HDA_AMD_HUDSON2, "AMD Hudson-2", 0, 0 },
{ HDA_RDC_M3010, "RDC M3010", 0, 0 },
{ HDA_VIA_VT82XX, "VIA VT8251/8237A",0, 0 },
{ HDA_SIS_966, "SiS 966", 0, 0 },
{ HDA_ULI_M5461, "ULI M5461", 0, 0 },
/* Unknown */
{ HDA_INTEL_ALL, "Intel", 0, 0 },
{ HDA_NVIDIA_ALL, "NVIDIA", 0, 0 },
{ HDA_ATI_ALL, "ATI", 0, 0 },
{ HDA_AMD_ALL, "AMD", 0, 0 },
{ HDA_CREATIVE_ALL, "Creative", 0, 0 },
{ HDA_VIA_ALL, "VIA", 0, 0 },
{ HDA_SIS_ALL, "SiS", 0, 0 },
{ HDA_ULI_ALL, "ULI", 0, 0 },
};
static const struct {
uint16_t vendor;
uint8_t reg;
uint8_t mask;
uint8_t enable;
} hdac_pcie_snoop[] = {
{ INTEL_VENDORID, 0x00, 0x00, 0x00 },
{ ATI_VENDORID, 0x42, 0xf8, 0x02 },
{ NVIDIA_VENDORID, 0x4e, 0xf0, 0x0f },
};
/****************************************************************************
* Function prototypes
****************************************************************************/
static void hdac_intr_handler(void *);
static int hdac_reset(struct hdac_softc *, int);
static int hdac_get_capabilities(struct hdac_softc *);
static void hdac_dma_cb(void *, bus_dma_segment_t *, int, int);
static int hdac_dma_alloc(struct hdac_softc *,
struct hdac_dma *, bus_size_t);
static void hdac_dma_free(struct hdac_softc *, struct hdac_dma *);
static int hdac_mem_alloc(struct hdac_softc *);
static void hdac_mem_free(struct hdac_softc *);
static int hdac_irq_alloc(struct hdac_softc *);
static void hdac_irq_free(struct hdac_softc *);
static void hdac_corb_init(struct hdac_softc *);
static void hdac_rirb_init(struct hdac_softc *);
static void hdac_corb_start(struct hdac_softc *);
static void hdac_rirb_start(struct hdac_softc *);
static void hdac_attach2(void *);
static uint32_t hdac_send_command(struct hdac_softc *, nid_t, uint32_t);
static int hdac_probe(device_t);
static int hdac_attach(device_t);
static int hdac_detach(device_t);
static int hdac_suspend(device_t);
static int hdac_resume(device_t);
static int hdac_rirb_flush(struct hdac_softc *sc);
static int hdac_unsolq_flush(struct hdac_softc *sc);
#define hdac_command(a1, a2, a3) \
hdac_send_command(a1, a3, a2)
/* This function surely going to make its way into upper level someday. */
static void
hdac_config_fetch(struct hdac_softc *sc, uint32_t *on, uint32_t *off)
{
const char *res = NULL;
int i = 0, j, k, len, inv;
if (resource_string_value(device_get_name(sc->dev),
device_get_unit(sc->dev), "config", &res) != 0)
return;
if (!(res != NULL && strlen(res) > 0))
return;
HDA_BOOTVERBOSE(
device_printf(sc->dev, "Config options:");
);
for (;;) {
while (res[i] != '\0' &&
(res[i] == ',' || isspace(res[i]) != 0))
i++;
if (res[i] == '\0') {
HDA_BOOTVERBOSE(
printf("\n");
);
return;
}
j = i;
while (res[j] != '\0' &&
!(res[j] == ',' || isspace(res[j]) != 0))
j++;
len = j - i;
if (len > 2 && strncmp(res + i, "no", 2) == 0)
inv = 2;
else
inv = 0;
for (k = 0; len > inv && k < nitems(hdac_quirks_tab); k++) {
if (strncmp(res + i + inv,
hdac_quirks_tab[k].key, len - inv) != 0)
continue;
if (len - inv != strlen(hdac_quirks_tab[k].key))
continue;
HDA_BOOTVERBOSE(
printf(" %s%s", (inv != 0) ? "no" : "",
hdac_quirks_tab[k].key);
);
if (inv == 0) {
*on |= hdac_quirks_tab[k].value;
*on &= ~hdac_quirks_tab[k].value;
} else if (inv != 0) {
*off |= hdac_quirks_tab[k].value;
*off &= ~hdac_quirks_tab[k].value;
}
break;
}
i = j;
}
}
/****************************************************************************
* void hdac_intr_handler(void *)
*
* Interrupt handler. Processes interrupts received from the hdac.
****************************************************************************/
static void
hdac_intr_handler(void *context)
{
struct hdac_softc *sc;
device_t dev;
uint32_t intsts;
uint8_t rirbsts;
int i;
sc = (struct hdac_softc *)context;
hdac_lock(sc);
/* Do we have anything to do? */
intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
if ((intsts & HDAC_INTSTS_GIS) == 0) {
hdac_unlock(sc);
return;
}
/* Was this a controller interrupt? */
if (intsts & HDAC_INTSTS_CIS) {
rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
/* Get as many responses that we can */
while (rirbsts & HDAC_RIRBSTS_RINTFL) {
HDAC_WRITE_1(&sc->mem,
HDAC_RIRBSTS, HDAC_RIRBSTS_RINTFL);
hdac_rirb_flush(sc);
rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
}
if (sc->unsolq_rp != sc->unsolq_wp)
taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
}
if (intsts & HDAC_INTSTS_SIS_MASK) {
for (i = 0; i < sc->num_ss; i++) {
if ((intsts & (1 << i)) == 0)
continue;
HDAC_WRITE_1(&sc->mem, (i << 5) + HDAC_SDSTS,
HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS );
if ((dev = sc->streams[i].dev) != NULL) {
HDAC_STREAM_INTR(dev,
sc->streams[i].dir, sc->streams[i].stream);
}
}
}
HDAC_WRITE_4(&sc->mem, HDAC_INTSTS, intsts);
hdac_unlock(sc);
}
static void
hdac_poll_callback(void *arg)
{
struct hdac_softc *sc = arg;
if (sc == NULL)
return;
hdac_lock(sc);
if (sc->polling == 0) {
hdac_unlock(sc);
return;
}
callout_reset(&sc->poll_callout, sc->poll_ival,
hdac_poll_callback, sc);
hdac_unlock(sc);
hdac_intr_handler(sc);
}
/****************************************************************************
* int hdac_reset(hdac_softc *, int)
*
* Reset the hdac to a quiescent and known state.
****************************************************************************/
static int
hdac_reset(struct hdac_softc *sc, int wakeup)
{
uint32_t gctl;
int count, i;
/*
* Stop all Streams DMA engine
*/
for (i = 0; i < sc->num_iss; i++)
HDAC_WRITE_4(&sc->mem, HDAC_ISDCTL(sc, i), 0x0);
for (i = 0; i < sc->num_oss; i++)
HDAC_WRITE_4(&sc->mem, HDAC_OSDCTL(sc, i), 0x0);
for (i = 0; i < sc->num_bss; i++)
HDAC_WRITE_4(&sc->mem, HDAC_BSDCTL(sc, i), 0x0);
/*
* Stop Control DMA engines.
*/
HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, 0x0);
HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, 0x0);
/*
* Reset DMA position buffer.
*/
HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, 0x0);
HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, 0x0);
/*
* Reset the controller. The reset must remain asserted for
* a minimum of 100us.
*/
gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl & ~HDAC_GCTL_CRST);
count = 10000;
do {
gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
if (!(gctl & HDAC_GCTL_CRST))
break;
DELAY(10);
} while (--count);
if (gctl & HDAC_GCTL_CRST) {
device_printf(sc->dev, "Unable to put hdac in reset\n");
return (ENXIO);
}
/* If wakeup is not requested - leave the controller in reset state. */
if (!wakeup)
return (0);
DELAY(100);
gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl | HDAC_GCTL_CRST);
count = 10000;
do {
gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
if (gctl & HDAC_GCTL_CRST)
break;
DELAY(10);
} while (--count);
if (!(gctl & HDAC_GCTL_CRST)) {
device_printf(sc->dev, "Device stuck in reset\n");
return (ENXIO);
}
/*
* Wait for codecs to finish their own reset sequence. The delay here
* should be of 250us but for some reasons, it's not enough on my
* computer. Let's use twice as much as necessary to make sure that
* it's reset properly.
*/
DELAY(1000);
return (0);
}
/****************************************************************************
* int hdac_get_capabilities(struct hdac_softc *);
*
* Retreive the general capabilities of the hdac;
* Number of Input Streams
* Number of Output Streams
* Number of bidirectional Streams
* 64bit ready
* CORB and RIRB sizes
****************************************************************************/
static int
hdac_get_capabilities(struct hdac_softc *sc)
{
uint16_t gcap;
uint8_t corbsize, rirbsize;
gcap = HDAC_READ_2(&sc->mem, HDAC_GCAP);
sc->num_iss = HDAC_GCAP_ISS(gcap);
sc->num_oss = HDAC_GCAP_OSS(gcap);
sc->num_bss = HDAC_GCAP_BSS(gcap);
sc->num_ss = sc->num_iss + sc->num_oss + sc->num_bss;
sc->num_sdo = HDAC_GCAP_NSDO(gcap);
sc->support_64bit = (gcap & HDAC_GCAP_64OK) != 0;
if (sc->quirks_on & HDAC_QUIRK_64BIT)
sc->support_64bit = 1;
else if (sc->quirks_off & HDAC_QUIRK_64BIT)
sc->support_64bit = 0;
corbsize = HDAC_READ_1(&sc->mem, HDAC_CORBSIZE);
if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_256) ==
HDAC_CORBSIZE_CORBSZCAP_256)
sc->corb_size = 256;
else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_16) ==
HDAC_CORBSIZE_CORBSZCAP_16)
sc->corb_size = 16;
else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_2) ==
HDAC_CORBSIZE_CORBSZCAP_2)
sc->corb_size = 2;
else {
device_printf(sc->dev, "%s: Invalid corb size (%x)\n",
__func__, corbsize);
return (ENXIO);
}
rirbsize = HDAC_READ_1(&sc->mem, HDAC_RIRBSIZE);
if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_256) ==
HDAC_RIRBSIZE_RIRBSZCAP_256)
sc->rirb_size = 256;
else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_16) ==
HDAC_RIRBSIZE_RIRBSZCAP_16)
sc->rirb_size = 16;
else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_2) ==
HDAC_RIRBSIZE_RIRBSZCAP_2)
sc->rirb_size = 2;
else {
device_printf(sc->dev, "%s: Invalid rirb size (%x)\n",
__func__, rirbsize);
return (ENXIO);
}
HDA_BOOTVERBOSE(
device_printf(sc->dev, "Caps: OSS %d, ISS %d, BSS %d, "
"NSDO %d%s, CORB %d, RIRB %d\n",
sc->num_oss, sc->num_iss, sc->num_bss, 1 << sc->num_sdo,
sc->support_64bit ? ", 64bit" : "",
sc->corb_size, sc->rirb_size);
);
return (0);
}
/****************************************************************************
* void hdac_dma_cb
*
* This function is called by bus_dmamap_load when the mapping has been
* established. We just record the physical address of the mapping into
* the struct hdac_dma passed in.
****************************************************************************/
static void
hdac_dma_cb(void *callback_arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct hdac_dma *dma;
if (error == 0) {
dma = (struct hdac_dma *)callback_arg;
dma->dma_paddr = segs[0].ds_addr;
}
}
/****************************************************************************
* int hdac_dma_alloc
*
* This function allocate and setup a dma region (struct hdac_dma).
* It must be freed by a corresponding hdac_dma_free.
****************************************************************************/
static int
hdac_dma_alloc(struct hdac_softc *sc, struct hdac_dma *dma, bus_size_t size)
{
bus_size_t roundsz;
int result;
roundsz = roundup2(size, HDA_DMA_ALIGNMENT);
bzero(dma, sizeof(*dma));
/*
* Create a DMA tag
*/
result = bus_dma_tag_create(
bus_get_dma_tag(sc->dev), /* parent */
HDA_DMA_ALIGNMENT, /* alignment */
0, /* boundary */
(sc->support_64bit) ? BUS_SPACE_MAXADDR :
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, /* filtfunc */
NULL, /* fistfuncarg */
roundsz, /* maxsize */
1, /* nsegments */
roundsz, /* maxsegsz */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&dma->dma_tag); /* dmat */
if (result != 0) {
device_printf(sc->dev, "%s: bus_dma_tag_create failed (%d)\n",
__func__, result);
goto hdac_dma_alloc_fail;
}
/*
* Allocate DMA memory
*/
result = bus_dmamem_alloc(dma->dma_tag, (void **)&dma->dma_vaddr,
BUS_DMA_NOWAIT | BUS_DMA_ZERO |
((sc->flags & HDAC_F_DMA_NOCACHE) ? BUS_DMA_NOCACHE :
BUS_DMA_COHERENT),
&dma->dma_map);
if (result != 0) {
device_printf(sc->dev, "%s: bus_dmamem_alloc failed (%d)\n",
__func__, result);
goto hdac_dma_alloc_fail;
}
dma->dma_size = roundsz;
/*
* Map the memory
*/
result = bus_dmamap_load(dma->dma_tag, dma->dma_map,
(void *)dma->dma_vaddr, roundsz, hdac_dma_cb, (void *)dma, 0);
if (result != 0 || dma->dma_paddr == 0) {
if (result == 0)
result = ENOMEM;
device_printf(sc->dev, "%s: bus_dmamem_load failed (%d)\n",
__func__, result);
goto hdac_dma_alloc_fail;
}
HDA_BOOTHVERBOSE(
device_printf(sc->dev, "%s: size=%ju -> roundsz=%ju\n",
__func__, (uintmax_t)size, (uintmax_t)roundsz);
);
return (0);
hdac_dma_alloc_fail:
hdac_dma_free(sc, dma);
return (result);
}
/****************************************************************************
* void hdac_dma_free(struct hdac_softc *, struct hdac_dma *)
*
* Free a struct dhac_dma that has been previously allocated via the
* hdac_dma_alloc function.
****************************************************************************/
static void
hdac_dma_free(struct hdac_softc *sc, struct hdac_dma *dma)
{
if (dma->dma_paddr != 0) {
/* Flush caches */
bus_dmamap_sync(dma->dma_tag, dma->dma_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(dma->dma_tag, dma->dma_map);
dma->dma_paddr = 0;
}
if (dma->dma_vaddr != NULL) {
bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
dma->dma_vaddr = NULL;
}
if (dma->dma_tag != NULL) {
bus_dma_tag_destroy(dma->dma_tag);
dma->dma_tag = NULL;
}
dma->dma_size = 0;
}
/****************************************************************************
* int hdac_mem_alloc(struct hdac_softc *)
*
* Allocate all the bus resources necessary to speak with the physical
* controller.
****************************************************************************/
static int
hdac_mem_alloc(struct hdac_softc *sc)
{
struct hdac_mem *mem;
mem = &sc->mem;
mem->mem_rid = PCIR_BAR(0);
mem->mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
&mem->mem_rid, RF_ACTIVE);
if (mem->mem_res == NULL) {
device_printf(sc->dev,
"%s: Unable to allocate memory resource\n", __func__);
return (ENOMEM);
}
mem->mem_tag = rman_get_bustag(mem->mem_res);
mem->mem_handle = rman_get_bushandle(mem->mem_res);
return (0);
}
/****************************************************************************
* void hdac_mem_free(struct hdac_softc *)
*
* Free up resources previously allocated by hdac_mem_alloc.
****************************************************************************/
static void
hdac_mem_free(struct hdac_softc *sc)
{
struct hdac_mem *mem;
mem = &sc->mem;
if (mem->mem_res != NULL)
bus_release_resource(sc->dev, SYS_RES_MEMORY, mem->mem_rid,
mem->mem_res);
mem->mem_res = NULL;
}
/****************************************************************************
* int hdac_irq_alloc(struct hdac_softc *)
*
* Allocate and setup the resources necessary for interrupt handling.
****************************************************************************/
static int
hdac_irq_alloc(struct hdac_softc *sc)
{
struct hdac_irq *irq;
int result;
irq = &sc->irq;
irq->irq_rid = 0x0;
if ((sc->quirks_off & HDAC_QUIRK_MSI) == 0 &&
(result = pci_msi_count(sc->dev)) == 1 &&
pci_alloc_msi(sc->dev, &result) == 0)
irq->irq_rid = 0x1;
irq->irq_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
&irq->irq_rid, RF_SHAREABLE | RF_ACTIVE);
if (irq->irq_res == NULL) {
device_printf(sc->dev, "%s: Unable to allocate irq\n",
__func__);
goto hdac_irq_alloc_fail;
}
result = bus_setup_intr(sc->dev, irq->irq_res, INTR_MPSAFE | INTR_TYPE_AV,
NULL, hdac_intr_handler, sc, &irq->irq_handle);
if (result != 0) {
device_printf(sc->dev,
"%s: Unable to setup interrupt handler (%d)\n",
__func__, result);
goto hdac_irq_alloc_fail;
}
return (0);
hdac_irq_alloc_fail:
hdac_irq_free(sc);
return (ENXIO);
}
/****************************************************************************
* void hdac_irq_free(struct hdac_softc *)
*
* Free up resources previously allocated by hdac_irq_alloc.
****************************************************************************/
static void
hdac_irq_free(struct hdac_softc *sc)
{
struct hdac_irq *irq;
irq = &sc->irq;
if (irq->irq_res != NULL && irq->irq_handle != NULL)
bus_teardown_intr(sc->dev, irq->irq_res, irq->irq_handle);
if (irq->irq_res != NULL)
bus_release_resource(sc->dev, SYS_RES_IRQ, irq->irq_rid,
irq->irq_res);
if (irq->irq_rid == 0x1)
pci_release_msi(sc->dev);
irq->irq_handle = NULL;
irq->irq_res = NULL;
irq->irq_rid = 0x0;
}
/****************************************************************************
* void hdac_corb_init(struct hdac_softc *)
*
* Initialize the corb registers for operations but do not start it up yet.
* The CORB engine must not be running when this function is called.
****************************************************************************/
static void
hdac_corb_init(struct hdac_softc *sc)
{
uint8_t corbsize;
uint64_t corbpaddr;
/* Setup the CORB size. */
switch (sc->corb_size) {
case 256:
corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_256);
break;
case 16:
corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_16);
break;
case 2:
corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_2);
break;
default:
panic("%s: Invalid CORB size (%x)\n", __func__, sc->corb_size);
}
HDAC_WRITE_1(&sc->mem, HDAC_CORBSIZE, corbsize);
/* Setup the CORB Address in the hdac */
corbpaddr = (uint64_t)sc->corb_dma.dma_paddr;
HDAC_WRITE_4(&sc->mem, HDAC_CORBLBASE, (uint32_t)corbpaddr);
HDAC_WRITE_4(&sc->mem, HDAC_CORBUBASE, (uint32_t)(corbpaddr >> 32));
/* Set the WP and RP */
sc->corb_wp = 0;
HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, HDAC_CORBRP_CORBRPRST);
/*
* The HDA specification indicates that the CORBRPRST bit will always
* read as zero. Unfortunately, it seems that at least the 82801G
* doesn't reset the bit to zero, which stalls the corb engine.
* manually reset the bit to zero before continuing.
*/
HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, 0x0);
/* Enable CORB error reporting */
#if 0
HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, HDAC_CORBCTL_CMEIE);
#endif
}
/****************************************************************************
* void hdac_rirb_init(struct hdac_softc *)
*
* Initialize the rirb registers for operations but do not start it up yet.
* The RIRB engine must not be running when this function is called.
****************************************************************************/
static void
hdac_rirb_init(struct hdac_softc *sc)
{
uint8_t rirbsize;
uint64_t rirbpaddr;
/* Setup the RIRB size. */
switch (sc->rirb_size) {
case 256:
rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_256);
break;
case 16:
rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_16);
break;
case 2:
rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_2);
break;
default:
panic("%s: Invalid RIRB size (%x)\n", __func__, sc->rirb_size);
}
HDAC_WRITE_1(&sc->mem, HDAC_RIRBSIZE, rirbsize);
/* Setup the RIRB Address in the hdac */
rirbpaddr = (uint64_t)sc->rirb_dma.dma_paddr;
HDAC_WRITE_4(&sc->mem, HDAC_RIRBLBASE, (uint32_t)rirbpaddr);
HDAC_WRITE_4(&sc->mem, HDAC_RIRBUBASE, (uint32_t)(rirbpaddr >> 32));
/* Setup the WP and RP */
sc->rirb_rp = 0;
HDAC_WRITE_2(&sc->mem, HDAC_RIRBWP, HDAC_RIRBWP_RIRBWPRST);
/* Setup the interrupt threshold */
HDAC_WRITE_2(&sc->mem, HDAC_RINTCNT, sc->rirb_size / 2);
/* Enable Overrun and response received reporting */
#if 0
HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL,
HDAC_RIRBCTL_RIRBOIC | HDAC_RIRBCTL_RINTCTL);
#else
HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, HDAC_RIRBCTL_RINTCTL);
#endif
/*
* Make sure that the Host CPU cache doesn't contain any dirty
* cache lines that falls in the rirb. If I understood correctly, it
* should be sufficient to do this only once as the rirb is purely
* read-only from now on.
*/
bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
BUS_DMASYNC_PREREAD);
}
/****************************************************************************
* void hdac_corb_start(hdac_softc *)
*
* Startup the corb DMA engine
****************************************************************************/
static void
hdac_corb_start(struct hdac_softc *sc)
{
uint32_t corbctl;
corbctl = HDAC_READ_1(&sc->mem, HDAC_CORBCTL);
corbctl |= HDAC_CORBCTL_CORBRUN;
HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, corbctl);
}
/****************************************************************************
* void hdac_rirb_start(hdac_softc *)
*
* Startup the rirb DMA engine
****************************************************************************/
static void
hdac_rirb_start(struct hdac_softc *sc)
{
uint32_t rirbctl;
rirbctl = HDAC_READ_1(&sc->mem, HDAC_RIRBCTL);
rirbctl |= HDAC_RIRBCTL_RIRBDMAEN;
HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, rirbctl);
}
static int
hdac_rirb_flush(struct hdac_softc *sc)
{
struct hdac_rirb *rirb_base, *rirb;
nid_t cad;
uint32_t resp, resp_ex;
uint8_t rirbwp;
int ret;
rirb_base = (struct hdac_rirb *)sc->rirb_dma.dma_vaddr;
rirbwp = HDAC_READ_1(&sc->mem, HDAC_RIRBWP);
bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
BUS_DMASYNC_POSTREAD);
ret = 0;
while (sc->rirb_rp != rirbwp) {
sc->rirb_rp++;
sc->rirb_rp %= sc->rirb_size;
rirb = &rirb_base[sc->rirb_rp];
resp = le32toh(rirb->response);
resp_ex = le32toh(rirb->response_ex);
cad = HDAC_RIRB_RESPONSE_EX_SDATA_IN(resp_ex);
if (resp_ex & HDAC_RIRB_RESPONSE_EX_UNSOLICITED) {
sc->unsolq[sc->unsolq_wp++] = resp;
sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
sc->unsolq[sc->unsolq_wp++] = cad;
sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
} else if (sc->codecs[cad].pending <= 0) {
device_printf(sc->dev, "Unexpected unsolicited "
"response from address %d: %08x\n", cad, resp);
} else {
sc->codecs[cad].response = resp;
sc->codecs[cad].pending--;
}
ret++;
}
bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
BUS_DMASYNC_PREREAD);
return (ret);
}
static int
hdac_unsolq_flush(struct hdac_softc *sc)
{
device_t child;
nid_t cad;
uint32_t resp;
int ret = 0;
if (sc->unsolq_st == HDAC_UNSOLQ_READY) {
sc->unsolq_st = HDAC_UNSOLQ_BUSY;
while (sc->unsolq_rp != sc->unsolq_wp) {
resp = sc->unsolq[sc->unsolq_rp++];
sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
cad = sc->unsolq[sc->unsolq_rp++];
sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
if ((child = sc->codecs[cad].dev) != NULL)
HDAC_UNSOL_INTR(child, resp);
ret++;
}
sc->unsolq_st = HDAC_UNSOLQ_READY;
}
return (ret);
}
/****************************************************************************
* uint32_t hdac_command_sendone_internal
*
* Wrapper function that sends only one command to a given codec
****************************************************************************/
static uint32_t
hdac_send_command(struct hdac_softc *sc, nid_t cad, uint32_t verb)
{
int timeout;
uint32_t *corb;
if (!hdac_lockowned(sc))
device_printf(sc->dev, "WARNING!!!! mtx not owned!!!!\n");
verb &= ~HDA_CMD_CAD_MASK;
verb |= ((uint32_t)cad) << HDA_CMD_CAD_SHIFT;
sc->codecs[cad].response = HDA_INVALID;
sc->codecs[cad].pending++;
sc->corb_wp++;
sc->corb_wp %= sc->corb_size;
corb = (uint32_t *)sc->corb_dma.dma_vaddr;
bus_dmamap_sync(sc->corb_dma.dma_tag,
sc->corb_dma.dma_map, BUS_DMASYNC_PREWRITE);
corb[sc->corb_wp] = htole32(verb);
bus_dmamap_sync(sc->corb_dma.dma_tag,
sc->corb_dma.dma_map, BUS_DMASYNC_POSTWRITE);
HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
timeout = 10000;
do {
if (hdac_rirb_flush(sc) == 0)
DELAY(10);
} while (sc->codecs[cad].pending != 0 && --timeout);
if (sc->codecs[cad].pending != 0) {
device_printf(sc->dev, "Command timeout on address %d\n", cad);
sc->codecs[cad].pending = 0;
}
if (sc->unsolq_rp != sc->unsolq_wp)
taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
return (sc->codecs[cad].response);
}
/****************************************************************************
* Device Methods
****************************************************************************/
/****************************************************************************
* int hdac_probe(device_t)
*
* Probe for the presence of an hdac. If none is found, check for a generic
* match using the subclass of the device.
****************************************************************************/
static int
hdac_probe(device_t dev)
{
int i, result;
uint32_t model;
uint16_t class, subclass;
char desc[64];
model = (uint32_t)pci_get_device(dev) << 16;
model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
class = pci_get_class(dev);
subclass = pci_get_subclass(dev);
bzero(desc, sizeof(desc));
result = ENXIO;
for (i = 0; i < nitems(hdac_devices); i++) {
if (hdac_devices[i].model == model) {
strlcpy(desc, hdac_devices[i].desc, sizeof(desc));
result = BUS_PROBE_DEFAULT;
break;
}
if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
class == PCIC_MULTIMEDIA &&
subclass == PCIS_MULTIMEDIA_HDA) {
snprintf(desc, sizeof(desc),
"%s (0x%04x)",
hdac_devices[i].desc, pci_get_device(dev));
result = BUS_PROBE_GENERIC;
break;
}
}
if (result == ENXIO && class == PCIC_MULTIMEDIA &&
subclass == PCIS_MULTIMEDIA_HDA) {
snprintf(desc, sizeof(desc), "Generic (0x%08x)", model);
result = BUS_PROBE_GENERIC;
}
if (result != ENXIO) {
strlcat(desc, " HDA Controller", sizeof(desc));
device_set_desc_copy(dev, desc);
}
return (result);
}
static void
hdac_unsolq_task(void *context, int pending)
{
struct hdac_softc *sc;
sc = (struct hdac_softc *)context;
hdac_lock(sc);
hdac_unsolq_flush(sc);
hdac_unlock(sc);
}
/****************************************************************************
* int hdac_attach(device_t)
*
* Attach the device into the kernel. Interrupts usually won't be enabled
* when this function is called. Setup everything that doesn't require
* interrupts and defer probing of codecs until interrupts are enabled.
****************************************************************************/
static int
hdac_attach(device_t dev)
{
struct hdac_softc *sc;
int result;
int i, devid = -1;
uint32_t model;
uint16_t class, subclass;
uint16_t vendor;
uint8_t v;
sc = device_get_softc(dev);
HDA_BOOTVERBOSE(
device_printf(dev, "PCI card vendor: 0x%04x, device: 0x%04x\n",
pci_get_subvendor(dev), pci_get_subdevice(dev));
device_printf(dev, "HDA Driver Revision: %s\n",
HDA_DRV_TEST_REV);
);
model = (uint32_t)pci_get_device(dev) << 16;
model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
class = pci_get_class(dev);
subclass = pci_get_subclass(dev);
for (i = 0; i < nitems(hdac_devices); i++) {
if (hdac_devices[i].model == model) {
devid = i;
break;
}
if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
class == PCIC_MULTIMEDIA &&
subclass == PCIS_MULTIMEDIA_HDA) {
devid = i;
break;
}
}
sc->lock = snd_mtxcreate(device_get_nameunit(dev), "HDA driver mutex");
sc->dev = dev;
TASK_INIT(&sc->unsolq_task, 0, hdac_unsolq_task, sc);
callout_init(&sc->poll_callout, 1);
for (i = 0; i < HDAC_CODEC_MAX; i++)
sc->codecs[i].dev = NULL;
if (devid >= 0) {
sc->quirks_on = hdac_devices[devid].quirks_on;
sc->quirks_off = hdac_devices[devid].quirks_off;
} else {
sc->quirks_on = 0;
sc->quirks_off = 0;
}
if (resource_int_value(device_get_name(dev),
device_get_unit(dev), "msi", &i) == 0) {
if (i == 0)
sc->quirks_off |= HDAC_QUIRK_MSI;
else {
sc->quirks_on |= HDAC_QUIRK_MSI;
sc->quirks_off |= ~HDAC_QUIRK_MSI;
}
}
hdac_config_fetch(sc, &sc->quirks_on, &sc->quirks_off);
HDA_BOOTVERBOSE(
device_printf(sc->dev,
"Config options: on=0x%08x off=0x%08x\n",
sc->quirks_on, sc->quirks_off);
);
sc->poll_ival = hz;
if (resource_int_value(device_get_name(dev),
device_get_unit(dev), "polling", &i) == 0 && i != 0)
sc->polling = 1;
else
sc->polling = 0;
pci_enable_busmaster(dev);
vendor = pci_get_vendor(dev);
if (vendor == INTEL_VENDORID) {
/* TCSEL -> TC0 */
v = pci_read_config(dev, 0x44, 1);
pci_write_config(dev, 0x44, v & 0xf8, 1);
HDA_BOOTHVERBOSE(
device_printf(dev, "TCSEL: 0x%02d -> 0x%02d\n", v,
pci_read_config(dev, 0x44, 1));
);
}
#if defined(__i386__) || defined(__amd64__)
sc->flags |= HDAC_F_DMA_NOCACHE;
if (resource_int_value(device_get_name(dev),
device_get_unit(dev), "snoop", &i) == 0 && i != 0) {
#else
sc->flags &= ~HDAC_F_DMA_NOCACHE;
#endif
/*
* Try to enable PCIe snoop to avoid messing around with
* uncacheable DMA attribute. Since PCIe snoop register
* config is pretty much vendor specific, there are no
* general solutions on how to enable it, forcing us (even
* Microsoft) to enable uncacheable or write combined DMA
* by default.
*
* http://msdn2.microsoft.com/en-us/library/ms790324.aspx
*/
for (i = 0; i < nitems(hdac_pcie_snoop); i++) {
if (hdac_pcie_snoop[i].vendor != vendor)
continue;
sc->flags &= ~HDAC_F_DMA_NOCACHE;
if (hdac_pcie_snoop[i].reg == 0x00)
break;
v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
if ((v & hdac_pcie_snoop[i].enable) ==
hdac_pcie_snoop[i].enable)
break;
v &= hdac_pcie_snoop[i].mask;
v |= hdac_pcie_snoop[i].enable;
pci_write_config(dev, hdac_pcie_snoop[i].reg, v, 1);
v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
if ((v & hdac_pcie_snoop[i].enable) !=
hdac_pcie_snoop[i].enable) {
HDA_BOOTVERBOSE(
device_printf(dev,
"WARNING: Failed to enable PCIe "
"snoop!\n");
);
#if defined(__i386__) || defined(__amd64__)
sc->flags |= HDAC_F_DMA_NOCACHE;
#endif
}
break;
}
#if defined(__i386__) || defined(__amd64__)
}
#endif
HDA_BOOTHVERBOSE(
device_printf(dev, "DMA Coherency: %s / vendor=0x%04x\n",
(sc->flags & HDAC_F_DMA_NOCACHE) ?
"Uncacheable" : "PCIe snoop", vendor);
);
/* Allocate resources */
result = hdac_mem_alloc(sc);
if (result != 0)
goto hdac_attach_fail;
result = hdac_irq_alloc(sc);
if (result != 0)
goto hdac_attach_fail;
/* Get Capabilities */
result = hdac_get_capabilities(sc);
if (result != 0)
goto hdac_attach_fail;
/* Allocate CORB, RIRB, POS and BDLs dma memory */
result = hdac_dma_alloc(sc, &sc->corb_dma,
sc->corb_size * sizeof(uint32_t));
if (result != 0)
goto hdac_attach_fail;
result = hdac_dma_alloc(sc, &sc->rirb_dma,
sc->rirb_size * sizeof(struct hdac_rirb));
if (result != 0)
goto hdac_attach_fail;
sc->streams = malloc(sizeof(struct hdac_stream) * sc->num_ss,
M_HDAC, M_ZERO | M_WAITOK);
for (i = 0; i < sc->num_ss; i++) {
result = hdac_dma_alloc(sc, &sc->streams[i].bdl,
sizeof(struct hdac_bdle) * HDA_BDL_MAX);
if (result != 0)
goto hdac_attach_fail;
}
if (sc->quirks_on & HDAC_QUIRK_DMAPOS) {
if (hdac_dma_alloc(sc, &sc->pos_dma, (sc->num_ss) * 8) != 0) {
HDA_BOOTVERBOSE(
device_printf(dev, "Failed to "
"allocate DMA pos buffer "
"(non-fatal)\n");
);
} else {
uint64_t addr = sc->pos_dma.dma_paddr;
HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, addr >> 32);
HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE,
(addr & HDAC_DPLBASE_DPLBASE_MASK) |
HDAC_DPLBASE_DPLBASE_DMAPBE);
}
}
result = bus_dma_tag_create(
bus_get_dma_tag(sc->dev), /* parent */
HDA_DMA_ALIGNMENT, /* alignment */
0, /* boundary */
(sc->support_64bit) ? BUS_SPACE_MAXADDR :
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, /* filtfunc */
NULL, /* fistfuncarg */
HDA_BUFSZ_MAX, /* maxsize */
1, /* nsegments */
HDA_BUFSZ_MAX, /* maxsegsz */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&sc->chan_dmat); /* dmat */
if (result != 0) {
device_printf(dev, "%s: bus_dma_tag_create failed (%d)\n",
__func__, result);
goto hdac_attach_fail;
}
/* Quiesce everything */
HDA_BOOTHVERBOSE(
device_printf(dev, "Reset controller...\n");
);
hdac_reset(sc, 1);
/* Initialize the CORB and RIRB */
hdac_corb_init(sc);
hdac_rirb_init(sc);
/* Defer remaining of initialization until interrupts are enabled */
sc->intrhook.ich_func = hdac_attach2;
sc->intrhook.ich_arg = (void *)sc;
if (cold == 0 || config_intrhook_establish(&sc->intrhook) != 0) {
sc->intrhook.ich_func = NULL;
hdac_attach2((void *)sc);
}
return (0);
hdac_attach_fail:
hdac_irq_free(sc);
if (sc->streams != NULL)
for (i = 0; i < sc->num_ss; i++)
hdac_dma_free(sc, &sc->streams[i].bdl);
free(sc->streams, M_HDAC);
hdac_dma_free(sc, &sc->rirb_dma);
hdac_dma_free(sc, &sc->corb_dma);
hdac_mem_free(sc);
snd_mtxfree(sc->lock);
return (ENXIO);
}
static int
sysctl_hdac_pindump(SYSCTL_HANDLER_ARGS)
{
struct hdac_softc *sc;
device_t *devlist;
device_t dev;
int devcount, i, err, val;
dev = oidp->oid_arg1;
sc = device_get_softc(dev);
if (sc == NULL)
return (EINVAL);
val = 0;
err = sysctl_handle_int(oidp, &val, 0, req);
if (err != 0 || req->newptr == NULL || val == 0)
return (err);
/* XXX: Temporary. For debugging. */
if (val == 100) {
hdac_suspend(dev);
return (0);
} else if (val == 101) {
hdac_resume(dev);
return (0);
}
if ((err = device_get_children(dev, &devlist, &devcount)) != 0)
return (err);
hdac_lock(sc);
for (i = 0; i < devcount; i++)
HDAC_PINDUMP(devlist[i]);
hdac_unlock(sc);
free(devlist, M_TEMP);
return (0);
}
static int
hdac_mdata_rate(uint16_t fmt)
{
static const int mbits[8] = { 8, 16, 32, 32, 32, 32, 32, 32 };
int rate, bits;
if (fmt & (1 << 14))
rate = 44100;
else
rate = 48000;
rate *= ((fmt >> 11) & 0x07) + 1;
rate /= ((fmt >> 8) & 0x07) + 1;
bits = mbits[(fmt >> 4) & 0x03];
bits *= (fmt & 0x0f) + 1;
return (rate * bits);
}
static int
hdac_bdata_rate(uint16_t fmt, int output)
{
static const int bbits[8] = { 8, 16, 20, 24, 32, 32, 32, 32 };
int rate, bits;
rate = 48000;
rate *= ((fmt >> 11) & 0x07) + 1;
bits = bbits[(fmt >> 4) & 0x03];
bits *= (fmt & 0x0f) + 1;
if (!output)
bits = ((bits + 7) & ~0x07) + 10;
return (rate * bits);
}
static void
hdac_poll_reinit(struct hdac_softc *sc)
{
int i, pollticks, min = 1000000;
struct hdac_stream *s;
if (sc->polling == 0)
return;
if (sc->unsol_registered > 0)
min = hz / 2;
for (i = 0; i < sc->num_ss; i++) {
s = &sc->streams[i];
if (s->running == 0)
continue;
pollticks = ((uint64_t)hz * s->blksz) /
(hdac_mdata_rate(s->format) / 8);
pollticks >>= 1;
if (pollticks > hz)
pollticks = hz;
if (pollticks < 1) {
HDA_BOOTVERBOSE(
device_printf(sc->dev,
"poll interval < 1 tick !\n");
);
pollticks = 1;
}
if (min > pollticks)
min = pollticks;
}
HDA_BOOTVERBOSE(
device_printf(sc->dev,
"poll interval %d -> %d ticks\n",
sc->poll_ival, min);
);
sc->poll_ival = min;
if (min == 1000000)
callout_stop(&sc->poll_callout);
else
callout_reset(&sc->poll_callout, 1, hdac_poll_callback, sc);
}
static int
sysctl_hdac_polling(SYSCTL_HANDLER_ARGS)
{
struct hdac_softc *sc;
device_t dev;
uint32_t ctl;
int err, val;
dev = oidp->oid_arg1;
sc = device_get_softc(dev);
if (sc == NULL)
return (EINVAL);
hdac_lock(sc);
val = sc->polling;
hdac_unlock(sc);
err = sysctl_handle_int(oidp, &val, 0, req);
if (err != 0 || req->newptr == NULL)
return (err);
if (val < 0 || val > 1)
return (EINVAL);
hdac_lock(sc);
if (val != sc->polling) {
if (val == 0) {
callout_stop(&sc->poll_callout);
hdac_unlock(sc);
callout_drain(&sc->poll_callout);
hdac_lock(sc);
sc->polling = 0;
ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
ctl |= HDAC_INTCTL_GIE;
HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
} else {
ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
ctl &= ~HDAC_INTCTL_GIE;
HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
sc->polling = 1;
hdac_poll_reinit(sc);
}
}
hdac_unlock(sc);
return (err);
}
static void
hdac_attach2(void *arg)
{
struct hdac_softc *sc;
device_t child;
uint32_t vendorid, revisionid;
int i;
uint16_t statests;
sc = (struct hdac_softc *)arg;
hdac_lock(sc);
/* Remove ourselves from the config hooks */
if (sc->intrhook.ich_func != NULL) {
config_intrhook_disestablish(&sc->intrhook);
sc->intrhook.ich_func = NULL;
}
HDA_BOOTHVERBOSE(
device_printf(sc->dev, "Starting CORB Engine...\n");
);
hdac_corb_start(sc);
HDA_BOOTHVERBOSE(
device_printf(sc->dev, "Starting RIRB Engine...\n");
);
hdac_rirb_start(sc);
HDA_BOOTHVERBOSE(
device_printf(sc->dev,
"Enabling controller interrupt...\n");
);
HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
HDAC_GCTL_UNSOL);
if (sc->polling == 0) {
HDAC_WRITE_4(&sc->mem, HDAC_INTCTL,
HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
}
DELAY(1000);
HDA_BOOTHVERBOSE(
device_printf(sc->dev, "Scanning HDA codecs ...\n");
);
statests = HDAC_READ_2(&sc->mem, HDAC_STATESTS);
hdac_unlock(sc);
for (i = 0; i < HDAC_CODEC_MAX; i++) {
if (HDAC_STATESTS_SDIWAKE(statests, i)) {
HDA_BOOTHVERBOSE(
device_printf(sc->dev,
"Found CODEC at address %d\n", i);
);
hdac_lock(sc);
vendorid = hdac_send_command(sc, i,
HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_VENDOR_ID));
revisionid = hdac_send_command(sc, i,
HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_REVISION_ID));
hdac_unlock(sc);
if (vendorid == HDA_INVALID &&
revisionid == HDA_INVALID) {
device_printf(sc->dev,
"CODEC is not responding!\n");
continue;
}
sc->codecs[i].vendor_id =
HDA_PARAM_VENDOR_ID_VENDOR_ID(vendorid);
sc->codecs[i].device_id =
HDA_PARAM_VENDOR_ID_DEVICE_ID(vendorid);
sc->codecs[i].revision_id =
HDA_PARAM_REVISION_ID_REVISION_ID(revisionid);
sc->codecs[i].stepping_id =
HDA_PARAM_REVISION_ID_STEPPING_ID(revisionid);
child = device_add_child(sc->dev, "hdacc", -1);
if (child == NULL) {
device_printf(sc->dev,
"Failed to add CODEC device\n");
continue;
}
device_set_ivars(child, (void *)(intptr_t)i);
sc->codecs[i].dev = child;
}
}
bus_generic_attach(sc->dev);
SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
"pindump", CTLTYPE_INT | CTLFLAG_RW, sc->dev, sizeof(sc->dev),
sysctl_hdac_pindump, "I", "Dump pin states/data");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
"polling", CTLTYPE_INT | CTLFLAG_RW, sc->dev, sizeof(sc->dev),
sysctl_hdac_polling, "I", "Enable polling mode");
}
/****************************************************************************
* int hdac_suspend(device_t)
*
* Suspend and power down HDA bus and codecs.
****************************************************************************/
static int
hdac_suspend(device_t dev)
{
struct hdac_softc *sc = device_get_softc(dev);
HDA_BOOTHVERBOSE(
device_printf(dev, "Suspend...\n");
);
bus_generic_suspend(dev);
hdac_lock(sc);
HDA_BOOTHVERBOSE(
device_printf(dev, "Reset controller...\n");
);
callout_stop(&sc->poll_callout);
hdac_reset(sc, 0);
hdac_unlock(sc);
callout_drain(&sc->poll_callout);
taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
HDA_BOOTHVERBOSE(
device_printf(dev, "Suspend done\n");
);
return (0);
}
/****************************************************************************
* int hdac_resume(device_t)
*
* Powerup and restore HDA bus and codecs state.
****************************************************************************/
static int
hdac_resume(device_t dev)
{
struct hdac_softc *sc = device_get_softc(dev);
int error;
HDA_BOOTHVERBOSE(
device_printf(dev, "Resume...\n");
);
hdac_lock(sc);
/* Quiesce everything */
HDA_BOOTHVERBOSE(
device_printf(dev, "Reset controller...\n");
);
hdac_reset(sc, 1);
/* Initialize the CORB and RIRB */
hdac_corb_init(sc);
hdac_rirb_init(sc);
HDA_BOOTHVERBOSE(
device_printf(dev, "Starting CORB Engine...\n");
);
hdac_corb_start(sc);
HDA_BOOTHVERBOSE(
device_printf(dev, "Starting RIRB Engine...\n");
);
hdac_rirb_start(sc);
HDA_BOOTHVERBOSE(
device_printf(dev, "Enabling controller interrupt...\n");
);
HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
HDAC_GCTL_UNSOL);
HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
DELAY(1000);
hdac_poll_reinit(sc);
hdac_unlock(sc);
error = bus_generic_resume(dev);
HDA_BOOTHVERBOSE(
device_printf(dev, "Resume done\n");
);
return (error);
}
/****************************************************************************
* int hdac_detach(device_t)
*
* Detach and free up resources utilized by the hdac device.
****************************************************************************/
static int
hdac_detach(device_t dev)
{
struct hdac_softc *sc = device_get_softc(dev);
device_t *devlist;
int cad, i, devcount, error;
if ((error = device_get_children(dev, &devlist, &devcount)) != 0)
return (error);
for (i = 0; i < devcount; i++) {
cad = (intptr_t)device_get_ivars(devlist[i]);
if ((error = device_delete_child(dev, devlist[i])) != 0) {
free(devlist, M_TEMP);
return (error);
}
sc->codecs[cad].dev = NULL;
}
free(devlist, M_TEMP);
hdac_lock(sc);
hdac_reset(sc, 0);
hdac_unlock(sc);
taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
hdac_irq_free(sc);
for (i = 0; i < sc->num_ss; i++)
hdac_dma_free(sc, &sc->streams[i].bdl);
free(sc->streams, M_HDAC);
hdac_dma_free(sc, &sc->pos_dma);
hdac_dma_free(sc, &sc->rirb_dma);
hdac_dma_free(sc, &sc->corb_dma);
if (sc->chan_dmat != NULL) {
bus_dma_tag_destroy(sc->chan_dmat);
sc->chan_dmat = NULL;
}
hdac_mem_free(sc);
snd_mtxfree(sc->lock);
return (0);
}
static bus_dma_tag_t
hdac_get_dma_tag(device_t dev, device_t child)
{
struct hdac_softc *sc = device_get_softc(dev);
return (sc->chan_dmat);
}
static int
hdac_print_child(device_t dev, device_t child)
{
int retval;
retval = bus_print_child_header(dev, child);
retval += printf(" at cad %d",
(int)(intptr_t)device_get_ivars(child));
retval += bus_print_child_footer(dev, child);
return (retval);
}
static int
hdac_child_location_str(device_t dev, device_t child, char *buf,
size_t buflen)
{
snprintf(buf, buflen, "cad=%d",
(int)(intptr_t)device_get_ivars(child));
return (0);
}
static int
hdac_child_pnpinfo_str_method(device_t dev, device_t child, char *buf,
size_t buflen)
{
struct hdac_softc *sc = device_get_softc(dev);
nid_t cad = (uintptr_t)device_get_ivars(child);
snprintf(buf, buflen, "vendor=0x%04x device=0x%04x revision=0x%02x "
"stepping=0x%02x",
sc->codecs[cad].vendor_id, sc->codecs[cad].device_id,
sc->codecs[cad].revision_id, sc->codecs[cad].stepping_id);
return (0);
}
static int
hdac_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
{
struct hdac_softc *sc = device_get_softc(dev);
nid_t cad = (uintptr_t)device_get_ivars(child);
switch (which) {
case HDA_IVAR_CODEC_ID:
*result = cad;
break;
case HDA_IVAR_VENDOR_ID:
*result = sc->codecs[cad].vendor_id;
break;
case HDA_IVAR_DEVICE_ID:
*result = sc->codecs[cad].device_id;
break;
case HDA_IVAR_REVISION_ID:
*result = sc->codecs[cad].revision_id;
break;
case HDA_IVAR_STEPPING_ID:
*result = sc->codecs[cad].stepping_id;
break;
case HDA_IVAR_SUBVENDOR_ID:
*result = pci_get_subvendor(dev);
break;
case HDA_IVAR_SUBDEVICE_ID:
*result = pci_get_subdevice(dev);
break;
case HDA_IVAR_DMA_NOCACHE:
*result = (sc->flags & HDAC_F_DMA_NOCACHE) != 0;
break;
case HDA_IVAR_STRIPES_MASK:
*result = (1 << (1 << sc->num_sdo)) - 1;
break;
default:
return (ENOENT);
}
return (0);
}
static struct mtx *
hdac_get_mtx(device_t dev, device_t child)
{
struct hdac_softc *sc = device_get_softc(dev);
return (sc->lock);
}
static uint32_t
hdac_codec_command(device_t dev, device_t child, uint32_t verb)
{
return (hdac_send_command(device_get_softc(dev),
(intptr_t)device_get_ivars(child), verb));
}
static int
hdac_find_stream(struct hdac_softc *sc, int dir, int stream)
{
int i, ss;
ss = -1;
/* Allocate ISS/OSS first. */
if (dir == 0) {
for (i = 0; i < sc->num_iss; i++) {
if (sc->streams[i].stream == stream) {
ss = i;
break;
}
}
} else {
for (i = 0; i < sc->num_oss; i++) {
if (sc->streams[i + sc->num_iss].stream == stream) {
ss = i + sc->num_iss;
break;
}
}
}
/* Fallback to BSS. */
if (ss == -1) {
for (i = 0; i < sc->num_bss; i++) {
if (sc->streams[i + sc->num_iss + sc->num_oss].stream
== stream) {
ss = i + sc->num_iss + sc->num_oss;
break;
}
}
}
return (ss);
}
static int
hdac_stream_alloc(device_t dev, device_t child, int dir, int format, int stripe,
uint32_t **dmapos)
{
struct hdac_softc *sc = device_get_softc(dev);
nid_t cad = (uintptr_t)device_get_ivars(child);
int stream, ss, bw, maxbw, prevbw;
/* Look for empty stream. */
ss = hdac_find_stream(sc, dir, 0);
/* Return if found nothing. */
if (ss < 0)
return (0);
/* Check bus bandwidth. */
bw = hdac_bdata_rate(format, dir);
if (dir == 1) {
bw *= 1 << (sc->num_sdo - stripe);
prevbw = sc->sdo_bw_used;
maxbw = 48000 * 960 * (1 << sc->num_sdo);
} else {
prevbw = sc->codecs[cad].sdi_bw_used;
maxbw = 48000 * 464;
}
HDA_BOOTHVERBOSE(
device_printf(dev, "%dKbps of %dKbps bandwidth used%s\n",
(bw + prevbw) / 1000, maxbw / 1000,
bw + prevbw > maxbw ? " -- OVERFLOW!" : "");
);
if (bw + prevbw > maxbw)
return (0);
if (dir == 1)
sc->sdo_bw_used += bw;
else
sc->codecs[cad].sdi_bw_used += bw;
/* Allocate stream number */
if (ss >= sc->num_iss + sc->num_oss)
stream = 15 - (ss - sc->num_iss - sc->num_oss);
else if (ss >= sc->num_iss)
stream = ss - sc->num_iss + 1;
else
stream = ss + 1;
sc->streams[ss].dev = child;
sc->streams[ss].dir = dir;
sc->streams[ss].stream = stream;
sc->streams[ss].bw = bw;
sc->streams[ss].format = format;
sc->streams[ss].stripe = stripe;
if (dmapos != NULL) {
if (sc->pos_dma.dma_vaddr != NULL)
*dmapos = (uint32_t *)(sc->pos_dma.dma_vaddr + ss * 8);
else
*dmapos = NULL;
}
return (stream);
}
static void
hdac_stream_free(device_t dev, device_t child, int dir, int stream)
{
struct hdac_softc *sc = device_get_softc(dev);
nid_t cad = (uintptr_t)device_get_ivars(child);
int ss;
ss = hdac_find_stream(sc, dir, stream);
KASSERT(ss >= 0,
("Free for not allocated stream (%d/%d)\n", dir, stream));
if (dir == 1)
sc->sdo_bw_used -= sc->streams[ss].bw;
else
sc->codecs[cad].sdi_bw_used -= sc->streams[ss].bw;
sc->streams[ss].stream = 0;
sc->streams[ss].dev = NULL;
}
static int
hdac_stream_start(device_t dev, device_t child,
int dir, int stream, bus_addr_t buf, int blksz, int blkcnt)
{
struct hdac_softc *sc = device_get_softc(dev);
struct hdac_bdle *bdle;
uint64_t addr;
int i, ss, off;
uint32_t ctl;
ss = hdac_find_stream(sc, dir, stream);
KASSERT(ss >= 0,
("Start for not allocated stream (%d/%d)\n", dir, stream));
addr = (uint64_t)buf;
bdle = (struct hdac_bdle *)sc->streams[ss].bdl.dma_vaddr;
for (i = 0; i < blkcnt; i++, bdle++) {
bdle->addrl = htole32((uint32_t)addr);
bdle->addrh = htole32((uint32_t)(addr >> 32));
bdle->len = htole32(blksz);
bdle->ioc = htole32(1);
addr += blksz;
}
bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
sc->streams[ss].bdl.dma_map, BUS_DMASYNC_PREWRITE);
off = ss << 5;
HDAC_WRITE_4(&sc->mem, off + HDAC_SDCBL, blksz * blkcnt);
HDAC_WRITE_2(&sc->mem, off + HDAC_SDLVI, blkcnt - 1);
addr = sc->streams[ss].bdl.dma_paddr;
HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPL, (uint32_t)addr);
HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPU, (uint32_t)(addr >> 32));
ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL2);
if (dir)
ctl |= HDAC_SDCTL2_DIR;
else
ctl &= ~HDAC_SDCTL2_DIR;
ctl &= ~HDAC_SDCTL2_STRM_MASK;
ctl |= stream << HDAC_SDCTL2_STRM_SHIFT;
ctl &= ~HDAC_SDCTL2_STRIPE_MASK;
ctl |= sc->streams[ss].stripe << HDAC_SDCTL2_STRIPE_SHIFT;
HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL2, ctl);
HDAC_WRITE_2(&sc->mem, off + HDAC_SDFMT, sc->streams[ss].format);
ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
ctl |= 1 << ss;
HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
HDAC_WRITE_1(&sc->mem, off + HDAC_SDSTS,
HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
ctl |= HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
HDAC_SDCTL_RUN;
HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
sc->streams[ss].blksz = blksz;
sc->streams[ss].running = 1;
hdac_poll_reinit(sc);
return (0);
}
static void
hdac_stream_stop(device_t dev, device_t child, int dir, int stream)
{
struct hdac_softc *sc = device_get_softc(dev);
int ss, off;
uint32_t ctl;
ss = hdac_find_stream(sc, dir, stream);
KASSERT(ss >= 0,
("Stop for not allocated stream (%d/%d)\n", dir, stream));
bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
sc->streams[ss].bdl.dma_map, BUS_DMASYNC_POSTWRITE);
off = ss << 5;
ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
ctl &= ~(HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
HDAC_SDCTL_RUN);
HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
ctl &= ~(1 << ss);
HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
sc->streams[ss].running = 0;
hdac_poll_reinit(sc);
}
static void
hdac_stream_reset(device_t dev, device_t child, int dir, int stream)
{
struct hdac_softc *sc = device_get_softc(dev);
int timeout = 1000;
int to = timeout;
int ss, off;
uint32_t ctl;
ss = hdac_find_stream(sc, dir, stream);
KASSERT(ss >= 0,
("Reset for not allocated stream (%d/%d)\n", dir, stream));
off = ss << 5;
ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
ctl |= HDAC_SDCTL_SRST;
HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
do {
ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
if (ctl & HDAC_SDCTL_SRST)
break;
DELAY(10);
} while (--to);
if (!(ctl & HDAC_SDCTL_SRST))
device_printf(dev, "Reset setting timeout\n");
ctl &= ~HDAC_SDCTL_SRST;
HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
to = timeout;
do {
ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
if (!(ctl & HDAC_SDCTL_SRST))
break;
DELAY(10);
} while (--to);
if (ctl & HDAC_SDCTL_SRST)
device_printf(dev, "Reset timeout!\n");
}
static uint32_t
hdac_stream_getptr(device_t dev, device_t child, int dir, int stream)
{
struct hdac_softc *sc = device_get_softc(dev);
int ss, off;
ss = hdac_find_stream(sc, dir, stream);
KASSERT(ss >= 0,
("Reset for not allocated stream (%d/%d)\n", dir, stream));
off = ss << 5;
return (HDAC_READ_4(&sc->mem, off + HDAC_SDLPIB));
}
static int
hdac_unsol_alloc(device_t dev, device_t child, int tag)
{
struct hdac_softc *sc = device_get_softc(dev);
sc->unsol_registered++;
hdac_poll_reinit(sc);
return (tag);
}
static void
hdac_unsol_free(device_t dev, device_t child, int tag)
{
struct hdac_softc *sc = device_get_softc(dev);
sc->unsol_registered--;
hdac_poll_reinit(sc);
}
static device_method_t hdac_methods[] = {
/* device interface */
DEVMETHOD(device_probe, hdac_probe),
DEVMETHOD(device_attach, hdac_attach),
DEVMETHOD(device_detach, hdac_detach),
DEVMETHOD(device_suspend, hdac_suspend),
DEVMETHOD(device_resume, hdac_resume),
/* Bus interface */
DEVMETHOD(bus_get_dma_tag, hdac_get_dma_tag),
DEVMETHOD(bus_print_child, hdac_print_child),
DEVMETHOD(bus_child_location_str, hdac_child_location_str),
DEVMETHOD(bus_child_pnpinfo_str, hdac_child_pnpinfo_str_method),
DEVMETHOD(bus_read_ivar, hdac_read_ivar),
DEVMETHOD(hdac_get_mtx, hdac_get_mtx),
DEVMETHOD(hdac_codec_command, hdac_codec_command),
DEVMETHOD(hdac_stream_alloc, hdac_stream_alloc),
DEVMETHOD(hdac_stream_free, hdac_stream_free),
DEVMETHOD(hdac_stream_start, hdac_stream_start),
DEVMETHOD(hdac_stream_stop, hdac_stream_stop),
DEVMETHOD(hdac_stream_reset, hdac_stream_reset),
DEVMETHOD(hdac_stream_getptr, hdac_stream_getptr),
DEVMETHOD(hdac_unsol_alloc, hdac_unsol_alloc),
DEVMETHOD(hdac_unsol_free, hdac_unsol_free),
DEVMETHOD_END
};
static driver_t hdac_driver = {
"hdac",
hdac_methods,
sizeof(struct hdac_softc),
};
static devclass_t hdac_devclass;
DRIVER_MODULE(snd_hda, pci, hdac_driver, hdac_devclass, NULL, NULL);