Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
/* Vector API for GNU compiler.
   Copyright (C) 2004, 2005 Free Software Foundation, Inc.
   Contributed by Nathan Sidwell <nathan@codesourcery.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.  */

#ifndef GCC_VEC_H
#define GCC_VEC_H

/* The macros here implement a set of templated vector types and
   associated interfaces.  These templates are implemented with
   macros, as we're not in C++ land.  The interface functions are
   typesafe and use static inline functions, sometimes backed by
   out-of-line generic functions.  The vectors are designed to
   interoperate with the GTY machinery.

   Because of the different behavior of structure objects, scalar
   objects and of pointers, there are three flavors, one for each of
   these variants.  Both the structure object and pointer variants
   pass pointers to objects around -- in the former case the pointers
   are stored into the vector and in the latter case the pointers are
   dereferenced and the objects copied into the vector.  The scalar
   object variant is suitable for int-like objects, and the vector
   elements are returned by value.

   There are both 'index' and 'iterate' accessors.  The iterator
   returns a boolean iteration condition and updates the iteration
   variable passed by reference.  Because the iterator will be
   inlined, the address-of can be optimized away.

   The vectors are implemented using the trailing array idiom, thus
   they are not resizeable without changing the address of the vector
   object itself.  This means you cannot have variables or fields of
   vector type -- always use a pointer to a vector.  The one exception
   is the final field of a structure, which could be a vector type.
   You will have to use the embedded_size & embedded_init calls to
   create such objects, and they will probably not be resizeable (so
   don't use the 'safe' allocation variants).  The trailing array
   idiom is used (rather than a pointer to an array of data), because,
   if we allow NULL to also represent an empty vector, empty vectors
   occupy minimal space in the structure containing them.

   Each operation that increases the number of active elements is
   available in 'quick' and 'safe' variants.  The former presumes that
   there is sufficient allocated space for the operation to succeed
   (it dies if there is not).  The latter will reallocate the
   vector, if needed.  Reallocation causes an exponential increase in
   vector size.  If you know you will be adding N elements, it would
   be more efficient to use the reserve operation before adding the
   elements with the 'quick' operation.  This will ensure there are at
   least as many elements as you ask for, it will exponentially
   increase if there are too few spare slots.  If you want reserve a
   specific number of slots, but do not want the exponential increase
   (for instance, you know this is the last allocation), use the
   reserve_exact operation.  You can also create a vector of a
   specific size from the get go.

   You should prefer the push and pop operations, as they append and
   remove from the end of the vector. If you need to remove several
   items in one go, use the truncate operation.  The insert and remove
   operations allow you to change elements in the middle of the
   vector.  There are two remove operations, one which preserves the
   element ordering 'ordered_remove', and one which does not
   'unordered_remove'.  The latter function copies the end element
   into the removed slot, rather than invoke a memmove operation.  The
   'lower_bound' function will determine where to place an item in the
   array using insert that will maintain sorted order.

   When a vector type is defined, first a non-memory managed version
   is created.  You can then define either or both garbage collected
   and heap allocated versions.  The allocation mechanism is specified
   when the type is defined, and is therefore part of the type.  If
   you need both gc'd and heap allocated versions, you still must have
   *exactly* one definition of the common non-memory managed base vector.
   
   If you need to directly manipulate a vector, then the 'address'
   accessor will return the address of the start of the vector.  Also
   the 'space' predicate will tell you whether there is spare capacity
   in the vector.  You will not normally need to use these two functions.
   
   Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro, to
   get the non-memory allocation version, and then a
   DEF_VEC_ALLOC_{O,P,I}(TYPEDEF,ALLOC) macro to get memory managed
   vectors.  Variables of vector type are declared using a
   VEC(TYPEDEF,ALLOC) macro.  The ALLOC argument specifies the
   allocation strategy, and can be either 'gc' or 'heap' for garbage
   collected and heap allocated respectively.  It can be 'none' to get
   a vector that must be explicitly allocated (for instance as a
   trailing array of another structure).  The characters O, P and I
   indicate whether TYPEDEF is a pointer (P), object (O) or integral
   (I) type.  Be careful to pick the correct one, as you'll get an
   awkward and inefficient API if you use the wrong one.  There is a
   check, which results in a compile-time warning, for the P and I
   versions, but there is no check for the O versions, as that is not
   possible in plain C.  Due to the way GTY works, you must annotate
   any structures you wish to insert or reference from a vector with a
   GTY(()) tag.  You need to do this even if you never declare the GC
   allocated variants.

   An example of their use would be,

   DEF_VEC_P(tree);   // non-managed tree vector.
   DEF_VEC_ALLOC_P(tree,gc);	// gc'd vector of tree pointers.  This must
   			        // appear at file scope.

   struct my_struct {
     VEC(tree,gc) *v;      // A (pointer to) a vector of tree pointers.
   };

   struct my_struct *s;

   if (VEC_length(tree,s->v)) { we have some contents }
   VEC_safe_push(tree,gc,s->v,decl); // append some decl onto the end
   for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++)
     { do something with elt }

*/

/* Macros to invoke API calls.  A single macro works for both pointer
   and object vectors, but the argument and return types might well be
   different.  In each macro, T is the typedef of the vector elements,
   and A is the allocation strategy.  The allocation strategy is only
   present when it is required.  Some of these macros pass the vector,
   V, by reference (by taking its address), this is noted in the
   descriptions.  */

/* Length of vector
   unsigned VEC_T_length(const VEC(T) *v);

   Return the number of active elements in V.  V can be NULL, in which
   case zero is returned.  */

#define VEC_length(T,V)	(VEC_OP(T,base,length)(VEC_BASE(V)))


/* Check if vector is empty
   int VEC_T_empty(const VEC(T) *v);

   Return nonzero if V is an empty vector (or V is NULL), zero otherwise.  */

#define VEC_empty(T,V)	(VEC_length (T,V) == 0)


/* Get the final element of the vector.
   T VEC_T_last(VEC(T) *v); // Integer
   T VEC_T_last(VEC(T) *v); // Pointer
   T *VEC_T_last(VEC(T) *v); // Object

   Return the final element.  V must not be empty.  */

#define VEC_last(T,V)	(VEC_OP(T,base,last)(VEC_BASE(V) VEC_CHECK_INFO))

/* Index into vector
   T VEC_T_index(VEC(T) *v, unsigned ix); // Integer
   T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
   T *VEC_T_index(VEC(T) *v, unsigned ix); // Object

   Return the IX'th element.  If IX must be in the domain of V.  */

#define VEC_index(T,V,I) (VEC_OP(T,base,index)(VEC_BASE(V),I VEC_CHECK_INFO))

/* Iterate over vector
   int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
   int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
   int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object

   Return iteration condition and update PTR to point to the IX'th
   element.  At the end of iteration, sets PTR to NULL.  Use this to
   iterate over the elements of a vector as follows,

     for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
       continue;  */

#define VEC_iterate(T,V,I,P)	(VEC_OP(T,base,iterate)(VEC_BASE(V),I,&(P)))

/* Allocate new vector.
   VEC(T,A) *VEC_T_A_alloc(int reserve);

   Allocate a new vector with space for RESERVE objects.  If RESERVE
   is zero, NO vector is created.  */

#define VEC_alloc(T,A,N)	(VEC_OP(T,A,alloc)(N MEM_STAT_INFO))

/* Free a vector.
   void VEC_T_A_free(VEC(T,A) *&);

   Free a vector and set it to NULL.  */

#define VEC_free(T,A,V)	(VEC_OP(T,A,free)(&V))

/* Use these to determine the required size and initialization of a
   vector embedded within another structure (as the final member).
   
   size_t VEC_T_embedded_size(int reserve);
   void VEC_T_embedded_init(VEC(T) *v, int reserve);
   
   These allow the caller to perform the memory allocation.  */

#define VEC_embedded_size(T,N)	 (VEC_OP(T,base,embedded_size)(N))
#define VEC_embedded_init(T,O,N) (VEC_OP(T,base,embedded_init)(VEC_BASE(O),N))

/* Copy a vector.
   VEC(T,A) *VEC_T_A_copy(VEC(T) *);

   Copy the live elements of a vector into a new vector.  The new and
   old vectors need not be allocated by the same mechanism.  */

#define VEC_copy(T,A,V) (VEC_OP(T,A,copy)(VEC_BASE(V) MEM_STAT_INFO))

/* Determine if a vector has additional capacity.
   
   int VEC_T_space (VEC(T) *v,int reserve)

   If V has space for RESERVE additional entries, return nonzero.  You
   usually only need to use this if you are doing your own vector
   reallocation, for instance on an embedded vector.  This returns
   nonzero in exactly the same circumstances that VEC_T_reserve
   will.  */

#define VEC_space(T,V,R) \
	(VEC_OP(T,base,space)(VEC_BASE(V),R VEC_CHECK_INFO))

/* Reserve space.
   int VEC_T_A_reserve(VEC(T,A) *&v, int reserve);

   Ensure that V has at least RESERVE slots available.  This will
   create additional headroom.  Note this can cause V to be
   reallocated.  Returns nonzero iff reallocation actually
   occurred.  */

#define VEC_reserve(T,A,V,R)	\
	(VEC_OP(T,A,reserve)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))

/* Reserve space exactly.
   int VEC_T_A_reserve_exact(VEC(T,A) *&v, int reserve);

   Ensure that V has at least RESERVE slots available.  This will not
   create additional headroom.  Note this can cause V to be
   reallocated.  Returns nonzero iff reallocation actually
   occurred.  */

#define VEC_reserve_exact(T,A,V,R)	\
	(VEC_OP(T,A,reserve_exact)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))

/* Push object with no reallocation
   T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
   T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
   T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
   
   Push a new element onto the end, returns a pointer to the slot
   filled in. For object vectors, the new value can be NULL, in which
   case NO initialization is performed.  There must
   be sufficient space in the vector.  */

#define VEC_quick_push(T,V,O)	\
	(VEC_OP(T,base,quick_push)(VEC_BASE(V),O VEC_CHECK_INFO))

/* Push object with reallocation
   T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Integer
   T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Pointer
   T *VEC_T_A_safe_push (VEC(T,A) *&v, T *obj); // Object
   
   Push a new element onto the end, returns a pointer to the slot
   filled in. For object vectors, the new value can be NULL, in which
   case NO initialization is performed.  Reallocates V, if needed.  */

#define VEC_safe_push(T,A,V,O)		\
	(VEC_OP(T,A,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO))

/* Pop element off end
   T VEC_T_pop (VEC(T) *v);		// Integer
   T VEC_T_pop (VEC(T) *v);		// Pointer
   void VEC_T_pop (VEC(T) *v);		// Object

   Pop the last element off the end. Returns the element popped, for
   pointer vectors.  */

#define VEC_pop(T,V)	(VEC_OP(T,base,pop)(VEC_BASE(V) VEC_CHECK_INFO))

/* Truncate to specific length
   void VEC_T_truncate (VEC(T) *v, unsigned len);
   
   Set the length as specified.  The new length must be less than or
   equal to the current length.  This is an O(1) operation.  */

#define VEC_truncate(T,V,I)		\
	(VEC_OP(T,base,truncate)(VEC_BASE(V),I VEC_CHECK_INFO))

/* Grow to a specific length.
   void VEC_T_A_safe_grow (VEC(T,A) *&v, int len);

   Grow the vector to a specific length.  The LEN must be as
   long or longer than the current length.  The new elements are
   uninitialized.  */

#define VEC_safe_grow(T,A,V,I)		\
	(VEC_OP(T,A,safe_grow)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))

/* Replace element
   T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
   T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
   T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val);  // Object
   
   Replace the IXth element of V with a new value, VAL.  For pointer
   vectors returns the original value. For object vectors returns a
   pointer to the new value.  For object vectors the new value can be
   NULL, in which case no overwriting of the slot is actually
   performed.  */

#define VEC_replace(T,V,I,O)		\
	(VEC_OP(T,base,replace)(VEC_BASE(V),I,O VEC_CHECK_INFO))

/* Insert object with no reallocation
   T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
   T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
   T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
   
   Insert an element, VAL, at the IXth position of V. Return a pointer
   to the slot created.  For vectors of object, the new value can be
   NULL, in which case no initialization of the inserted slot takes
   place. There must be sufficient space.  */

#define VEC_quick_insert(T,V,I,O)	\
	(VEC_OP(T,base,quick_insert)(VEC_BASE(V),I,O VEC_CHECK_INFO))

/* Insert object with reallocation
   T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
   T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
   T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
   
   Insert an element, VAL, at the IXth position of V. Return a pointer
   to the slot created.  For vectors of object, the new value can be
   NULL, in which case no initialization of the inserted slot takes
   place. Reallocate V, if necessary.  */

#define VEC_safe_insert(T,A,V,I,O)	\
	(VEC_OP(T,A,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO))
     
/* Remove element retaining order
   T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
   T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
   void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
   
   Remove an element from the IXth position of V. Ordering of
   remaining elements is preserved.  For pointer vectors returns the
   removed object.  This is an O(N) operation due to a memmove.  */

#define VEC_ordered_remove(T,V,I)	\
	(VEC_OP(T,base,ordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))

/* Remove element destroying order
   T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
   T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
   void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
   
   Remove an element from the IXth position of V. Ordering of
   remaining elements is destroyed.  For pointer vectors returns the
   removed object.  This is an O(1) operation.  */

#define VEC_unordered_remove(T,V,I)	\
	(VEC_OP(T,base,unordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))

/* Remove a block of elements
   void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len);
   
   Remove LEN elements starting at the IXth.  Ordering is retained.
   This is an O(1) operation.  */

#define VEC_block_remove(T,V,I,L)	\
	(VEC_OP(T,base,block_remove)(VEC_BASE(V),I,L VEC_CHECK_INFO))

/* Get the address of the array of elements
   T *VEC_T_address (VEC(T) v)

   If you need to directly manipulate the array (for instance, you
   want to feed it to qsort), use this accessor.  */

#define VEC_address(T,V)		(VEC_OP(T,base,address)(VEC_BASE(V)))

/* Find the first index in the vector not less than the object.
   unsigned VEC_T_lower_bound (VEC(T) *v, const T val, 
                               bool (*lessthan) (const T, const T)); // Integer
   unsigned VEC_T_lower_bound (VEC(T) *v, const T val, 
                               bool (*lessthan) (const T, const T)); // Pointer
   unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
                               bool (*lessthan) (const T*, const T*)); // Object
   
   Find the first position in which VAL could be inserted without
   changing the ordering of V.  LESSTHAN is a function that returns
   true if the first argument is strictly less than the second.  */
   
#define VEC_lower_bound(T,V,O,LT)    \
       (VEC_OP(T,base,lower_bound)(VEC_BASE(V),O,LT VEC_CHECK_INFO))

#if !IN_GENGTYPE
/* Reallocate an array of elements with prefix.  */
extern void *vec_gc_p_reserve (void *, int MEM_STAT_DECL);
extern void *vec_gc_p_reserve_exact (void *, int MEM_STAT_DECL);
extern void *vec_gc_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
extern void *vec_gc_o_reserve_exact (void *, int, size_t, size_t
				     MEM_STAT_DECL);
extern void ggc_free (void *);
#define vec_gc_free(V) ggc_free (V)
extern void *vec_heap_p_reserve (void *, int MEM_STAT_DECL);
extern void *vec_heap_p_reserve_exact (void *, int MEM_STAT_DECL);
extern void *vec_heap_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
extern void *vec_heap_o_reserve_exact (void *, int, size_t, size_t
				       MEM_STAT_DECL);
#define vec_heap_free(V) free (V)

#if ENABLE_CHECKING
#define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__
#define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_
#define VEC_CHECK_PASS ,file_,line_,function_
     
#define VEC_ASSERT(EXPR,OP,T,A) \
  (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(T,A)), 0))

extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL)
     ATTRIBUTE_NORETURN;
#define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS)
#else
#define VEC_CHECK_INFO
#define VEC_CHECK_DECL
#define VEC_CHECK_PASS
#define VEC_ASSERT(EXPR,OP,T,A) (void)(EXPR)
#endif

#define VEC(T,A) VEC_##T##_##A
#define VEC_OP(T,A,OP) VEC_##T##_##A##_##OP
#else  /* IN_GENGTYPE */
#define VEC(T,A) VEC_ T _ A
#define VEC_STRINGIFY(X) VEC_STRINGIFY_(X)
#define VEC_STRINGIFY_(X) #X
#undef GTY
#endif /* IN_GENGTYPE */

/* Base of vector type, not user visible.  */     
#define VEC_T(T,B)							  \
typedef struct VEC(T,B) 				 		  \
{									  \
  unsigned num;								  \
  unsigned alloc;							  \
  T vec[1];								  \
} VEC(T,B)

#define VEC_T_GTY(T,B)							  \
typedef struct VEC(T,B) GTY(())				 		  \
{									  \
  unsigned num;								  \
  unsigned alloc;							  \
  T GTY ((length ("%h.num"))) vec[1];					  \
} VEC(T,B)

/* Derived vector type, user visible.  */
#define VEC_TA_GTY(T,B,A,GTY)						  \
typedef struct VEC(T,A) GTY						  \
{									  \
  VEC(T,B) base;							  \
} VEC(T,A)

/* Convert to base type.  */
#define VEC_BASE(P)  ((P) ? &(P)->base : 0)

/* Vector of integer-like object.  */
#if IN_GENGTYPE
{"DEF_VEC_I", VEC_STRINGIFY (VEC_T(#0,#1)) ";", "none"},
{"DEF_VEC_ALLOC_I", VEC_STRINGIFY (VEC_TA (#0,#1,#2,#3)) ";", NULL},
#else
#define DEF_VEC_I(T)							  \
static inline void VEC_OP (T,must_be,integral_type) (void) 		  \
{									  \
  (void)~(T)0;								  \
}									  \
									  \
VEC_T(T,base);								  \
VEC_TA_GTY(T,base,none,);						  \
DEF_VEC_FUNC_P(T)							  \
struct vec_swallow_trailing_semi
#define DEF_VEC_ALLOC_I(T,A)						  \
VEC_TA_GTY(T,base,A,);							  \
DEF_VEC_ALLOC_FUNC_I(T,A)						  \
struct vec_swallow_trailing_semi
#endif

/* Vector of pointer to object.  */
#if IN_GENGTYPE
{"DEF_VEC_P", VEC_STRINGIFY (VEC_T_GTY(#0,#1)) ";", "none"},
{"DEF_VEC_ALLOC_P", VEC_STRINGIFY (VEC_TA_GTY (#0,#1,#2,#3)) ";", NULL},
#else
#define DEF_VEC_P(T) 							  \
static inline void VEC_OP (T,must_be,pointer_type) (void) 		  \
{									  \
  (void)((T)1 == (void *)1);						  \
}									  \
									  \
VEC_T_GTY(T,base);							  \
VEC_TA_GTY(T,base,none,);						  \
DEF_VEC_FUNC_P(T)							  \
struct vec_swallow_trailing_semi
#define DEF_VEC_ALLOC_P(T,A)						  \
VEC_TA_GTY(T,base,A,);							  \
DEF_VEC_ALLOC_FUNC_P(T,A)						  \
struct vec_swallow_trailing_semi
#endif

#define DEF_VEC_FUNC_P(T)						  \
static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_)   \
{									  \
  return vec_ ? vec_->num : 0;						  \
}									  \
									  \
static inline T VEC_OP (T,base,last)					  \
     (const VEC(T,base) *vec_ VEC_CHECK_DECL)				  \
{									  \
  VEC_ASSERT (vec_ && vec_->num, "last", T, base);			  \
  									  \
  return vec_->vec[vec_->num - 1];					  \
}									  \
									  \
static inline T VEC_OP (T,base,index)					  \
     (const VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)		  \
{									  \
  VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base);		  \
  									  \
  return vec_->vec[ix_];						  \
}									  \
									  \
static inline int VEC_OP (T,base,iterate)			  	  \
     (const VEC(T,base) *vec_, unsigned ix_, T *ptr)			  \
{									  \
  if (vec_ && ix_ < vec_->num)						  \
    {									  \
      *ptr = vec_->vec[ix_];						  \
      return 1;								  \
    }									  \
  else									  \
    {									  \
      *ptr = 0;								  \
      return 0;								  \
    }									  \
}									  \
									  \
static inline size_t VEC_OP (T,base,embedded_size)			  \
     (int alloc_)							  \
{									  \
  return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T);		  \
}									  \
									  \
static inline void VEC_OP (T,base,embedded_init)			  \
     (VEC(T,base) *vec_, int alloc_)					  \
{									  \
  vec_->num = 0;							  \
  vec_->alloc = alloc_;							  \
}									  \
									  \
static inline int VEC_OP (T,base,space)	       				  \
     (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL)			  \
{									  \
  VEC_ASSERT (alloc_ >= 0, "space", T, base);				  \
  return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_;	  \
}									  \
									  \
static inline T *VEC_OP (T,base,quick_push)				  \
     (VEC(T,base) *vec_, T obj_ VEC_CHECK_DECL)				  \
{									  \
  T *slot_;								  \
  									  \
  VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base);		  \
  slot_ = &vec_->vec[vec_->num++];					  \
  *slot_ = obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
static inline T VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL)	  \
{									  \
  T obj_;								  \
									  \
  VEC_ASSERT (vec_->num, "pop", T, base);				  \
  obj_ = vec_->vec[--vec_->num];					  \
									  \
  return obj_;								  \
}									  \
									  \
static inline void VEC_OP (T,base,truncate)				  \
     (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL)			  \
{									  \
  VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base);	  \
  if (vec_)								  \
    vec_->num = size_;							  \
}									  \
									  \
static inline T VEC_OP (T,base,replace)		  	     		  \
     (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL)		  \
{									  \
  T old_obj_;								  \
									  \
  VEC_ASSERT (ix_ < vec_->num, "replace", T, base);			  \
  old_obj_ = vec_->vec[ix_];						  \
  vec_->vec[ix_] = obj_;						  \
									  \
  return old_obj_;							  \
}									  \
									  \
static inline T *VEC_OP (T,base,quick_insert)				  \
     (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL)		  \
{									  \
  T *slot_;								  \
									  \
  VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base);		  \
  VEC_ASSERT (ix_ <= vec_->num, "insert", T, base);			  \
  slot_ = &vec_->vec[ix_];						  \
  memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T));		  \
  *slot_ = obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
static inline T VEC_OP (T,base,ordered_remove)				  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
{									  \
  T *slot_;								  \
  T obj_;								  \
									  \
  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
  slot_ = &vec_->vec[ix_];						  \
  obj_ = *slot_;							  \
  memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T));     	  \
									  \
  return obj_;								  \
}									  \
									  \
static inline T VEC_OP (T,base,unordered_remove)			  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
{									  \
  T *slot_;								  \
  T obj_;								  \
									  \
  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
  slot_ = &vec_->vec[ix_];						  \
  obj_ = *slot_;							  \
  *slot_ = vec_->vec[--vec_->num];					  \
									  \
  return obj_;								  \
}									  \
									  \
static inline void VEC_OP (T,base,block_remove)				  \
     (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL)	  \
{									  \
  T *slot_;								  \
									  \
  VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base);	  \
  slot_ = &vec_->vec[ix_];						  \
  vec_->num -= len_;							  \
  memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T));	  \
}									  \
									  \
static inline T *VEC_OP (T,base,address)				  \
     (VEC(T,base) *vec_)						  \
{									  \
  return vec_ ? vec_->vec : 0;						  \
}									  \
									  \
static inline unsigned VEC_OP (T,base,lower_bound)			  \
     (VEC(T,base) *vec_, const T obj_,					  \
      bool (*lessthan_)(const T, const T) VEC_CHECK_DECL)		  \
{									  \
   unsigned int len_ = VEC_OP (T,base, length) (vec_);			  \
   unsigned int half_, middle_;						  \
   unsigned int first_ = 0;						  \
   while (len_ > 0)							  \
     {									  \
        T middle_elem_;							  \
        half_ = len_ >> 1;						  \
        middle_ = first_;						  \
        middle_ += half_;						  \
        middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
        if (lessthan_ (middle_elem_, obj_))				  \
          {								  \
             first_ = middle_;						  \
             ++first_;							  \
             len_ = len_ - half_ - 1;					  \
          }								  \
        else								  \
          len_ = half_;							  \
     }									  \
   return first_;							  \
}

#define DEF_VEC_ALLOC_FUNC_P(T,A)					  \
static inline VEC(T,A) *VEC_OP (T,A,alloc)				  \
     (int alloc_ MEM_STAT_DECL)						  \
{									  \
  return (VEC(T,A) *) vec_##A##_p_reserve_exact (NULL, alloc_		  \
						 PASS_MEM_STAT);	  \
}									  \
									  \
static inline void VEC_OP (T,A,free)					  \
     (VEC(T,A) **vec_)							  \
{									  \
  if (*vec_)								  \
    vec_##A##_free (*vec_);						  \
  *vec_ = NULL;								  \
}									  \
									  \
static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
{									  \
  size_t len_ = vec_ ? vec_->num : 0;					  \
  VEC (T,A) *new_vec_ = NULL;						  \
									  \
  if (len_)								  \
    {									  \
      new_vec_ = (VEC (T,A) *)(vec_##A##_p_reserve_exact		  \
			       (NULL, len_ PASS_MEM_STAT));		  \
									  \
      new_vec_->base.num = len_;					  \
      memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
    }									  \
  return new_vec_;							  \
}									  \
									  \
static inline int VEC_OP (T,A,reserve)	       				  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
				       VEC_CHECK_PASS);			  \
		  							  \
  if (extend)	  							  \
    *vec_ = (VEC(T,A) *) vec_##A##_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \
		  							  \
  return extend;							  \
}									  \
									  \
static inline int VEC_OP (T,A,reserve_exact)  				  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
				       VEC_CHECK_PASS);			  \
		  							  \
  if (extend)	  							  \
    *vec_ = (VEC(T,A) *) vec_##A##_p_reserve_exact (*vec_, alloc_	  \
						    PASS_MEM_STAT);	  \
		  							  \
  return extend;							  \
}									  \
									  \
static inline void VEC_OP (T,A,safe_grow)				  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  VEC_ASSERT (size_ >= 0						  \
	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
						 "grow", T, A);		  \
  VEC_OP (T,A,reserve_exact) (vec_,					  \
			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
  VEC_BASE (*vec_)->num = size_;					  \
}									  \
									  \
static inline T *VEC_OP (T,A,safe_push)					  \
     (VEC(T,A) **vec_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL)       	  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
}									  \
									  \
static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
     (VEC(T,A) **vec_, unsigned ix_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL)  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
 				       VEC_CHECK_PASS);			  \
}

/* Vector of object.  */
#if IN_GENGTYPE
{"DEF_VEC_O", VEC_STRINGIFY (VEC_T_GTY(#0,#1)) ";", "none"},
{"DEF_VEC_ALLOC_O", VEC_STRINGIFY (VEC_TA_GTY(#0,#1,#2,#3)) ";", NULL},
#else
#define DEF_VEC_O(T)							  \
VEC_T_GTY(T,base);							  \
VEC_TA_GTY(T,base,none,);						  \
DEF_VEC_FUNC_O(T)							  \
struct vec_swallow_trailing_semi
#define DEF_VEC_ALLOC_O(T,A)						  \
VEC_TA_GTY(T,base,A,);							  \
DEF_VEC_ALLOC_FUNC_O(T,A)						  \
struct vec_swallow_trailing_semi
#endif

#define DEF_VEC_FUNC_O(T)						  \
static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_)	  \
{									  \
  return vec_ ? vec_->num : 0;						  \
}									  \
									  \
static inline T *VEC_OP (T,base,last) (VEC(T,base) *vec_ VEC_CHECK_DECL)  \
{									  \
  VEC_ASSERT (vec_ && vec_->num, "last", T, base);			  \
  									  \
  return &vec_->vec[vec_->num - 1];					  \
}									  \
									  \
static inline T *VEC_OP (T,base,index)					  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
{									  \
  VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base);		  \
  									  \
  return &vec_->vec[ix_];						  \
}									  \
									  \
static inline int VEC_OP (T,base,iterate)			     	  \
     (VEC(T,base) *vec_, unsigned ix_, T **ptr)				  \
{									  \
  if (vec_ && ix_ < vec_->num)						  \
    {									  \
      *ptr = &vec_->vec[ix_];						  \
      return 1;								  \
    }									  \
  else									  \
    {									  \
      *ptr = 0;								  \
      return 0;								  \
    }									  \
}									  \
									  \
static inline size_t VEC_OP (T,base,embedded_size)			  \
     (int alloc_)							  \
{									  \
  return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T);		  \
}									  \
									  \
static inline void VEC_OP (T,base,embedded_init)			  \
     (VEC(T,base) *vec_, int alloc_)					  \
{									  \
  vec_->num = 0;							  \
  vec_->alloc = alloc_;							  \
}									  \
									  \
static inline int VEC_OP (T,base,space)	       				  \
     (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL)			  \
{									  \
  VEC_ASSERT (alloc_ >= 0, "space", T, base);				  \
  return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_;	  \
}									  \
									  \
static inline T *VEC_OP (T,base,quick_push)				  \
     (VEC(T,base) *vec_, const T *obj_ VEC_CHECK_DECL)			  \
{									  \
  T *slot_;								  \
  									  \
  VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base);		  \
  slot_ = &vec_->vec[vec_->num++];					  \
  if (obj_)								  \
    *slot_ = *obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
static inline void VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
{									  \
  VEC_ASSERT (vec_->num, "pop", T, base);				  \
  --vec_->num;								  \
}									  \
									  \
static inline void VEC_OP (T,base,truncate)				  \
     (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL)			  \
{									  \
  VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base);	  \
  if (vec_)								  \
    vec_->num = size_;							  \
}									  \
									  \
static inline T *VEC_OP (T,base,replace)				  \
     (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL)	  \
{									  \
  T *slot_;								  \
									  \
  VEC_ASSERT (ix_ < vec_->num, "replace", T, base);			  \
  slot_ = &vec_->vec[ix_];						  \
  if (obj_)								  \
    *slot_ = *obj_;							  \
									  \
  return slot_;								  \
}									  \
									  \
static inline T *VEC_OP (T,base,quick_insert)				  \
     (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL)	  \
{									  \
  T *slot_;								  \
									  \
  VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base);		  \
  VEC_ASSERT (ix_ <= vec_->num, "insert", T, base);			  \
  slot_ = &vec_->vec[ix_];						  \
  memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T));		  \
  if (obj_)								  \
    *slot_ = *obj_;							  \
  									  \
  return slot_;								  \
}									  \
									  \
static inline void VEC_OP (T,base,ordered_remove)			  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
{									  \
  T *slot_;								  \
									  \
  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
  slot_ = &vec_->vec[ix_];						  \
  memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T));		  \
}									  \
									  \
static inline void VEC_OP (T,base,unordered_remove)			  \
     (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
{									  \
  VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
  vec_->vec[ix_] = vec_->vec[--vec_->num];				  \
}									  \
									  \
static inline void VEC_OP (T,base,block_remove)				  \
     (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL)	  \
{									  \
  T *slot_;								  \
									  \
  VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base);	  \
  slot_ = &vec_->vec[ix_];						  \
  vec_->num -= len_;							  \
  memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T));	  \
}									  \
									  \
static inline T *VEC_OP (T,base,address)				  \
     (VEC(T,base) *vec_)						  \
{									  \
  return vec_ ? vec_->vec : 0;						  \
}									  \
									  \
static inline unsigned VEC_OP (T,base,lower_bound)			  \
     (VEC(T,base) *vec_, const T *obj_,					  \
      bool (*lessthan_)(const T *, const T *) VEC_CHECK_DECL)		  \
{									  \
   unsigned int len_ = VEC_OP (T, base, length) (vec_);			  \
   unsigned int half_, middle_;						  \
   unsigned int first_ = 0;						  \
   while (len_ > 0)							  \
     {									  \
        T *middle_elem_;						  \
        half_ = len_ >> 1;						  \
        middle_ = first_;						  \
        middle_ += half_;						  \
        middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
        if (lessthan_ (middle_elem_, obj_))				  \
          {								  \
             first_ = middle_;						  \
             ++first_;							  \
             len_ = len_ - half_ - 1;					  \
          }								  \
        else								  \
          len_ = half_;							  \
     }									  \
   return first_;							  \
}

#define DEF_VEC_ALLOC_FUNC_O(T,A)					  \
static inline VEC(T,A) *VEC_OP (T,A,alloc)      			  \
     (int alloc_ MEM_STAT_DECL)						  \
{									  \
  return (VEC(T,A) *) vec_##A##_o_reserve_exact (NULL, alloc_,		  \
						 offsetof (VEC(T,A),base.vec), \
						 sizeof (T)		  \
						 PASS_MEM_STAT);	  \
}									  \
									  \
static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
{									  \
  size_t len_ = vec_ ? vec_->num : 0;					  \
  VEC (T,A) *new_vec_ = NULL;						  \
									  \
  if (len_)								  \
    {									  \
      new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact		  \
			       (NULL, len_,				  \
				offsetof (VEC(T,A),base.vec), sizeof (T)  \
				PASS_MEM_STAT));			  \
									  \
      new_vec_->base.num = len_;					  \
      memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
    }									  \
  return new_vec_;							  \
}									  \
									  \
static inline void VEC_OP (T,A,free)					  \
     (VEC(T,A) **vec_)							  \
{									  \
  if (*vec_)								  \
    vec_##A##_free (*vec_);						  \
  *vec_ = NULL;								  \
}									  \
									  \
static inline int VEC_OP (T,A,reserve)	   	    			  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
				       VEC_CHECK_PASS);			  \
									  \
  if (extend)								  \
    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_,		  \
			   		      offsetof (VEC(T,A),base.vec),\
 					      sizeof (T)		  \
			   		      PASS_MEM_STAT);		  \
									  \
  return extend;							  \
}									  \
									  \
static inline int VEC_OP (T,A,reserve_exact)   	    			  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
				       VEC_CHECK_PASS);			  \
									  \
  if (extend)								  \
    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact			  \
			 (*vec_, alloc_,				  \
			  offsetof (VEC(T,A),base.vec),			  \
			  sizeof (T) PASS_MEM_STAT);			  \
									  \
  return extend;							  \
}									  \
									  \
static inline void VEC_OP (T,A,safe_grow)				  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  VEC_ASSERT (size_ >= 0						  \
	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
						 "grow", T, A);		  \
  VEC_OP (T,A,reserve_exact) (vec_,					  \
			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
  VEC_BASE (*vec_)->num = size_;					  \
}									  \
									  \
static inline T *VEC_OP (T,A,safe_push)					  \
     (VEC(T,A) **vec_, const T *obj_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS);  \
}									  \
									  \
static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
     (VEC(T,A) **vec_, unsigned ix_, const T *obj_			  \
 		VEC_CHECK_DECL MEM_STAT_DECL)				  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
				       VEC_CHECK_PASS);			  \
}

#define DEF_VEC_ALLOC_FUNC_I(T,A)					  \
static inline VEC(T,A) *VEC_OP (T,A,alloc)      			  \
     (int alloc_ MEM_STAT_DECL)						  \
{									  \
  return (VEC(T,A) *) vec_##A##_o_reserve_exact				  \
		      (NULL, alloc_, offsetof (VEC(T,A),base.vec),	  \
		       sizeof (T) PASS_MEM_STAT);			  \
}									  \
									  \
static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
{									  \
  size_t len_ = vec_ ? vec_->num : 0;					  \
  VEC (T,A) *new_vec_ = NULL;						  \
									  \
  if (len_)								  \
    {									  \
      new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact		  \
			       (NULL, len_,				  \
				offsetof (VEC(T,A),base.vec), sizeof (T)  \
				PASS_MEM_STAT));			  \
									  \
      new_vec_->base.num = len_;					  \
      memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
    }									  \
  return new_vec_;							  \
}									  \
									  \
static inline void VEC_OP (T,A,free)					  \
     (VEC(T,A) **vec_)							  \
{									  \
  if (*vec_)								  \
    vec_##A##_free (*vec_);						  \
  *vec_ = NULL;								  \
}									  \
									  \
static inline int VEC_OP (T,A,reserve)	   	    			  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
				       VEC_CHECK_PASS);			  \
									  \
  if (extend)								  \
    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_,		  \
			   		      offsetof (VEC(T,A),base.vec),\
 					      sizeof (T)		  \
			   		      PASS_MEM_STAT);		  \
									  \
  return extend;							  \
}									  \
									  \
static inline int VEC_OP (T,A,reserve_exact)   	    			  \
     (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
				       VEC_CHECK_PASS);			  \
									  \
  if (extend)								  \
    *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact			  \
			 (*vec_, alloc_, offsetof (VEC(T,A),base.vec),	  \
			  sizeof (T) PASS_MEM_STAT);			  \
									  \
  return extend;							  \
}									  \
									  \
static inline void VEC_OP (T,A,safe_grow)				  \
     (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
{									  \
  VEC_ASSERT (size_ >= 0						  \
	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
						 "grow", T, A);		  \
  VEC_OP (T,A,reserve_exact) (vec_,					  \
			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
  VEC_BASE (*vec_)->num = size_;					  \
}									  \
									  \
static inline T *VEC_OP (T,A,safe_push)					  \
     (VEC(T,A) **vec_, const T obj_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS);  \
}									  \
									  \
static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
     (VEC(T,A) **vec_, unsigned ix_, const T obj_			  \
 		VEC_CHECK_DECL MEM_STAT_DECL)				  \
{									  \
  VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
									  \
  return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
				       VEC_CHECK_PASS);			  \
}

#endif /* GCC_VEC_H */