Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
// -*- C++ -*-
//===----------------------------------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#ifndef _LIBCPP_FUNCTIONAL_BASE
#define _LIBCPP_FUNCTIONAL_BASE

#include <__config>
#include <type_traits>
#include <typeinfo>
#include <exception>
#include <new>
#include <utility>

#if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER)
#pragma GCC system_header
#endif

_LIBCPP_BEGIN_NAMESPACE_STD

template <class _Arg1, class _Arg2, class _Result>
struct _LIBCPP_TEMPLATE_VIS binary_function
{
    typedef _Arg1   first_argument_type;
    typedef _Arg2   second_argument_type;
    typedef _Result result_type;
};

template <class _Tp>
struct __has_result_type
{
private:
    struct __two {char __lx; char __lxx;};
    template <class _Up> static __two __test(...);
    template <class _Up> static char __test(typename _Up::result_type* = 0);
public:
    static const bool value = sizeof(__test<_Tp>(0)) == 1;
};

#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
template <class _Tp>
#endif
struct _LIBCPP_TEMPLATE_VIS less : binary_function<_Tp, _Tp, bool>
{
    _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
    bool operator()(const _Tp& __x, const _Tp& __y) const
        {return __x < __y;}
};

#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TEMPLATE_VIS less<void>
{
    template <class _T1, class _T2>
    _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
    auto operator()(_T1&& __t, _T2&& __u) const
    _NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) < _VSTD::forward<_T2>(__u)))
    -> decltype        (_VSTD::forward<_T1>(__t) < _VSTD::forward<_T2>(__u))
        { return        _VSTD::forward<_T1>(__t) < _VSTD::forward<_T2>(__u); }
    typedef void is_transparent;
};
#endif

// __weak_result_type

template <class _Tp>
struct __derives_from_unary_function
{
private:
    struct __two {char __lx; char __lxx;};
    static __two __test(...);
    template <class _Ap, class _Rp>
        static unary_function<_Ap, _Rp>
        __test(const volatile unary_function<_Ap, _Rp>*);
public:
    static const bool value = !is_same<decltype(__test((_Tp*)0)), __two>::value;
    typedef decltype(__test((_Tp*)0)) type;
};

template <class _Tp>
struct __derives_from_binary_function
{
private:
    struct __two {char __lx; char __lxx;};
    static __two __test(...);
    template <class _A1, class _A2, class _Rp>
        static binary_function<_A1, _A2, _Rp>
        __test(const volatile binary_function<_A1, _A2, _Rp>*);
public:
    static const bool value = !is_same<decltype(__test((_Tp*)0)), __two>::value;
    typedef decltype(__test((_Tp*)0)) type;
};

template <class _Tp, bool = __derives_from_unary_function<_Tp>::value>
struct __maybe_derive_from_unary_function  // bool is true
    : public __derives_from_unary_function<_Tp>::type
{
};

template <class _Tp>
struct __maybe_derive_from_unary_function<_Tp, false>
{
};

template <class _Tp, bool = __derives_from_binary_function<_Tp>::value>
struct __maybe_derive_from_binary_function  // bool is true
    : public __derives_from_binary_function<_Tp>::type
{
};

template <class _Tp>
struct __maybe_derive_from_binary_function<_Tp, false>
{
};

template <class _Tp, bool = __has_result_type<_Tp>::value>
struct __weak_result_type_imp // bool is true
    : public __maybe_derive_from_unary_function<_Tp>,
      public __maybe_derive_from_binary_function<_Tp>
{
    typedef typename _Tp::result_type result_type;
};

template <class _Tp>
struct __weak_result_type_imp<_Tp, false>
    : public __maybe_derive_from_unary_function<_Tp>,
      public __maybe_derive_from_binary_function<_Tp>
{
};

template <class _Tp>
struct __weak_result_type
    : public __weak_result_type_imp<_Tp>
{
};

// 0 argument case

template <class _Rp>
struct __weak_result_type<_Rp ()>
{
    typedef _Rp result_type;
};

template <class _Rp>
struct __weak_result_type<_Rp (&)()>
{
    typedef _Rp result_type;
};

template <class _Rp>
struct __weak_result_type<_Rp (*)()>
{
    typedef _Rp result_type;
};

// 1 argument case

template <class _Rp, class _A1>
struct __weak_result_type<_Rp (_A1)>
    : public unary_function<_A1, _Rp>
{
};

template <class _Rp, class _A1>
struct __weak_result_type<_Rp (&)(_A1)>
    : public unary_function<_A1, _Rp>
{
};

template <class _Rp, class _A1>
struct __weak_result_type<_Rp (*)(_A1)>
    : public unary_function<_A1, _Rp>
{
};

template <class _Rp, class _Cp>
struct __weak_result_type<_Rp (_Cp::*)()>
    : public unary_function<_Cp*, _Rp>
{
};

template <class _Rp, class _Cp>
struct __weak_result_type<_Rp (_Cp::*)() const>
    : public unary_function<const _Cp*, _Rp>
{
};

template <class _Rp, class _Cp>
struct __weak_result_type<_Rp (_Cp::*)() volatile>
    : public unary_function<volatile _Cp*, _Rp>
{
};

template <class _Rp, class _Cp>
struct __weak_result_type<_Rp (_Cp::*)() const volatile>
    : public unary_function<const volatile _Cp*, _Rp>
{
};

// 2 argument case

template <class _Rp, class _A1, class _A2>
struct __weak_result_type<_Rp (_A1, _A2)>
    : public binary_function<_A1, _A2, _Rp>
{
};

template <class _Rp, class _A1, class _A2>
struct __weak_result_type<_Rp (*)(_A1, _A2)>
    : public binary_function<_A1, _A2, _Rp>
{
};

template <class _Rp, class _A1, class _A2>
struct __weak_result_type<_Rp (&)(_A1, _A2)>
    : public binary_function<_A1, _A2, _Rp>
{
};

template <class _Rp, class _Cp, class _A1>
struct __weak_result_type<_Rp (_Cp::*)(_A1)>
    : public binary_function<_Cp*, _A1, _Rp>
{
};

template <class _Rp, class _Cp, class _A1>
struct __weak_result_type<_Rp (_Cp::*)(_A1) const>
    : public binary_function<const _Cp*, _A1, _Rp>
{
};

template <class _Rp, class _Cp, class _A1>
struct __weak_result_type<_Rp (_Cp::*)(_A1) volatile>
    : public binary_function<volatile _Cp*, _A1, _Rp>
{
};

template <class _Rp, class _Cp, class _A1>
struct __weak_result_type<_Rp (_Cp::*)(_A1) const volatile>
    : public binary_function<const volatile _Cp*, _A1, _Rp>
{
};


#ifndef _LIBCPP_CXX03_LANG
// 3 or more arguments

template <class _Rp, class _A1, class _A2, class _A3, class ..._A4>
struct __weak_result_type<_Rp (_A1, _A2, _A3, _A4...)>
{
    typedef _Rp result_type;
};

template <class _Rp, class _A1, class _A2, class _A3, class ..._A4>
struct __weak_result_type<_Rp (&)(_A1, _A2, _A3, _A4...)>
{
    typedef _Rp result_type;
};

template <class _Rp, class _A1, class _A2, class _A3, class ..._A4>
struct __weak_result_type<_Rp (*)(_A1, _A2, _A3, _A4...)>
{
    typedef _Rp result_type;
};

template <class _Rp, class _Cp, class _A1, class _A2, class ..._A3>
struct __weak_result_type<_Rp (_Cp::*)(_A1, _A2, _A3...)>
{
    typedef _Rp result_type;
};

template <class _Rp, class _Cp, class _A1, class _A2, class ..._A3>
struct __weak_result_type<_Rp (_Cp::*)(_A1, _A2, _A3...) const>
{
    typedef _Rp result_type;
};

template <class _Rp, class _Cp, class _A1, class _A2, class ..._A3>
struct __weak_result_type<_Rp (_Cp::*)(_A1, _A2, _A3...) volatile>
{
    typedef _Rp result_type;
};

template <class _Rp, class _Cp, class _A1, class _A2, class ..._A3>
struct __weak_result_type<_Rp (_Cp::*)(_A1, _A2, _A3...) const volatile>
{
    typedef _Rp result_type;
};

template <class _Tp, class ..._Args>
struct __invoke_return
{
    typedef decltype(__invoke(_VSTD::declval<_Tp>(), _VSTD::declval<_Args>()...)) type;
};

#else // defined(_LIBCPP_CXX03_LANG)

#include <__functional_base_03>

#endif  // !defined(_LIBCPP_CXX03_LANG)


template <class _Ret>
struct __invoke_void_return_wrapper
{
#ifndef _LIBCPP_CXX03_LANG
    template <class ..._Args>
    static _Ret __call(_Args&&... __args) {
        return __invoke(_VSTD::forward<_Args>(__args)...);
    }
#else
    template <class _Fn>
    static _Ret __call(_Fn __f) {
        return __invoke(__f);
    }

    template <class _Fn, class _A0>
    static _Ret __call(_Fn __f, _A0& __a0) {
        return __invoke(__f, __a0);
    }

    template <class _Fn, class _A0, class _A1>
    static _Ret __call(_Fn __f, _A0& __a0, _A1& __a1) {
        return __invoke(__f, __a0, __a1);
    }

    template <class _Fn, class _A0, class _A1, class _A2>
    static _Ret __call(_Fn __f, _A0& __a0, _A1& __a1, _A2& __a2){
        return __invoke(__f, __a0, __a1, __a2);
    }
#endif
};

template <>
struct __invoke_void_return_wrapper<void>
{
#ifndef _LIBCPP_CXX03_LANG
    template <class ..._Args>
    static void __call(_Args&&... __args) {
        __invoke(_VSTD::forward<_Args>(__args)...);
    }
#else
    template <class _Fn>
    static void __call(_Fn __f) {
        __invoke(__f);
    }

    template <class _Fn, class _A0>
    static void __call(_Fn __f, _A0& __a0) {
        __invoke(__f, __a0);
    }

    template <class _Fn, class _A0, class _A1>
    static void __call(_Fn __f, _A0& __a0, _A1& __a1) {
        __invoke(__f, __a0, __a1);
    }

    template <class _Fn, class _A0, class _A1, class _A2>
    static void __call(_Fn __f, _A0& __a0, _A1& __a1, _A2& __a2) {
        __invoke(__f, __a0, __a1, __a2);
    }
#endif
};

template <class _Tp>
class _LIBCPP_TEMPLATE_VIS reference_wrapper
    : public __weak_result_type<_Tp>
{
public:
    // types
    typedef _Tp type;
private:
    type* __f_;

public:
    // construct/copy/destroy
    _LIBCPP_INLINE_VISIBILITY reference_wrapper(type& __f) _NOEXCEPT
        : __f_(_VSTD::addressof(__f)) {}
#ifndef _LIBCPP_CXX03_LANG
    private: reference_wrapper(type&&); public: // = delete; // do not bind to temps
#endif

    // access
    _LIBCPP_INLINE_VISIBILITY operator type&    () const _NOEXCEPT {return *__f_;}
    _LIBCPP_INLINE_VISIBILITY          type& get() const _NOEXCEPT {return *__f_;}

#ifndef _LIBCPP_CXX03_LANG
    // invoke
    template <class... _ArgTypes>
    _LIBCPP_INLINE_VISIBILITY
    typename __invoke_of<type&, _ArgTypes...>::type
    operator() (_ArgTypes&&... __args) const {
        return __invoke(get(), _VSTD::forward<_ArgTypes>(__args)...);
    }
#else

    _LIBCPP_INLINE_VISIBILITY
    typename __invoke_return<type>::type
    operator() () const {
        return __invoke(get());
    }

    template <class _A0>
    _LIBCPP_INLINE_VISIBILITY
    typename __invoke_return0<type, _A0>::type
    operator() (_A0& __a0) const {
        return __invoke(get(), __a0);
    }

    template <class _A0>
    _LIBCPP_INLINE_VISIBILITY
    typename __invoke_return0<type, _A0 const>::type
    operator() (_A0 const& __a0) const {
        return __invoke(get(), __a0);
    }

    template <class _A0, class _A1>
    _LIBCPP_INLINE_VISIBILITY
    typename __invoke_return1<type, _A0, _A1>::type
    operator() (_A0& __a0, _A1& __a1) const {
        return __invoke(get(), __a0, __a1);
    }

    template <class _A0, class _A1>
    _LIBCPP_INLINE_VISIBILITY
    typename __invoke_return1<type, _A0 const, _A1>::type
    operator() (_A0 const& __a0, _A1& __a1) const {
        return __invoke(get(), __a0, __a1);
    }

    template <class _A0, class _A1>
    _LIBCPP_INLINE_VISIBILITY
    typename __invoke_return1<type, _A0, _A1 const>::type
    operator() (_A0& __a0, _A1 const& __a1) const {
        return __invoke(get(), __a0, __a1);
    }

    template <class _A0, class _A1>
    _LIBCPP_INLINE_VISIBILITY
    typename __invoke_return1<type, _A0 const, _A1 const>::type
    operator() (_A0 const& __a0, _A1 const& __a1) const {
        return __invoke(get(), __a0, __a1);
    }

    template <class _A0, class _A1, class _A2>
    _LIBCPP_INLINE_VISIBILITY
    typename __invoke_return2<type, _A0, _A1, _A2>::type
    operator() (_A0& __a0, _A1& __a1, _A2& __a2) const {
        return __invoke(get(), __a0, __a1, __a2);
    }

    template <class _A0, class _A1, class _A2>
    _LIBCPP_INLINE_VISIBILITY
    typename __invoke_return2<type, _A0 const, _A1, _A2>::type
    operator() (_A0 const& __a0, _A1& __a1, _A2& __a2) const {
        return __invoke(get(), __a0, __a1, __a2);
    }

    template <class _A0, class _A1, class _A2>
    _LIBCPP_INLINE_VISIBILITY
    typename __invoke_return2<type, _A0, _A1 const, _A2>::type
    operator() (_A0& __a0, _A1 const& __a1, _A2& __a2) const {
        return __invoke(get(), __a0, __a1, __a2);
    }

    template <class _A0, class _A1, class _A2>
    _LIBCPP_INLINE_VISIBILITY
    typename __invoke_return2<type, _A0, _A1, _A2 const>::type
    operator() (_A0& __a0, _A1& __a1, _A2 const& __a2) const {
        return __invoke(get(), __a0, __a1, __a2);
    }

    template <class _A0, class _A1, class _A2>
    _LIBCPP_INLINE_VISIBILITY
    typename __invoke_return2<type, _A0 const, _A1 const, _A2>::type
    operator() (_A0 const& __a0, _A1 const& __a1, _A2& __a2) const {
        return __invoke(get(), __a0, __a1, __a2);
    }

    template <class _A0, class _A1, class _A2>
    _LIBCPP_INLINE_VISIBILITY
    typename __invoke_return2<type, _A0 const, _A1, _A2 const>::type
    operator() (_A0 const& __a0, _A1& __a1, _A2 const& __a2) const {
        return __invoke(get(), __a0, __a1, __a2);
    }

    template <class _A0, class _A1, class _A2>
    _LIBCPP_INLINE_VISIBILITY
    typename __invoke_return2<type, _A0, _A1 const, _A2 const>::type
    operator() (_A0& __a0, _A1 const& __a1, _A2 const& __a2) const {
        return __invoke(get(), __a0, __a1, __a2);
    }

    template <class _A0, class _A1, class _A2>
    _LIBCPP_INLINE_VISIBILITY
    typename __invoke_return2<type, _A0 const, _A1 const, _A2 const>::type
    operator() (_A0 const& __a0, _A1 const& __a1, _A2 const& __a2) const {
        return __invoke(get(), __a0, __a1, __a2);
    }
#endif // _LIBCPP_CXX03_LANG
};


template <class _Tp>
inline _LIBCPP_INLINE_VISIBILITY
reference_wrapper<_Tp>
ref(_Tp& __t) _NOEXCEPT
{
    return reference_wrapper<_Tp>(__t);
}

template <class _Tp>
inline _LIBCPP_INLINE_VISIBILITY
reference_wrapper<_Tp>
ref(reference_wrapper<_Tp> __t) _NOEXCEPT
{
    return ref(__t.get());
}

template <class _Tp>
inline _LIBCPP_INLINE_VISIBILITY
reference_wrapper<const _Tp>
cref(const _Tp& __t) _NOEXCEPT
{
    return reference_wrapper<const _Tp>(__t);
}

template <class _Tp>
inline _LIBCPP_INLINE_VISIBILITY
reference_wrapper<const _Tp>
cref(reference_wrapper<_Tp> __t) _NOEXCEPT
{
    return cref(__t.get());
}

#ifndef _LIBCPP_CXX03_LANG
template <class _Tp> void ref(const _Tp&&) = delete;
template <class _Tp> void cref(const _Tp&&) = delete;
#endif

#if _LIBCPP_STD_VER > 11
template <class _Tp, class, class = void>
struct __is_transparent : false_type {};

template <class _Tp, class _Up>
struct __is_transparent<_Tp, _Up,
                        typename __void_t<typename _Tp::is_transparent>::type>
   : true_type {};
#endif

// allocator_arg_t

struct _LIBCPP_TEMPLATE_VIS allocator_arg_t { };

#if defined(_LIBCPP_CXX03_LANG) || defined(_LIBCPP_BUILDING_LIBRARY)
extern _LIBCPP_EXPORTED_FROM_ABI const allocator_arg_t allocator_arg;
#else
/* _LIBCPP_INLINE_VAR */ constexpr allocator_arg_t allocator_arg = allocator_arg_t();
#endif

// uses_allocator

template <class _Tp>
struct __has_allocator_type
{
private:
    struct __two {char __lx; char __lxx;};
    template <class _Up> static __two __test(...);
    template <class _Up> static char __test(typename _Up::allocator_type* = 0);
public:
    static const bool value = sizeof(__test<_Tp>(0)) == 1;
};

template <class _Tp, class _Alloc, bool = __has_allocator_type<_Tp>::value>
struct __uses_allocator
    : public integral_constant<bool,
        is_convertible<_Alloc, typename _Tp::allocator_type>::value>
{
};

template <class _Tp, class _Alloc>
struct __uses_allocator<_Tp, _Alloc, false>
    : public false_type
{
};

template <class _Tp, class _Alloc>
struct _LIBCPP_TEMPLATE_VIS uses_allocator
    : public __uses_allocator<_Tp, _Alloc>
{
};

#if _LIBCPP_STD_VER > 14
template <class _Tp, class _Alloc>
_LIBCPP_INLINE_VAR constexpr size_t uses_allocator_v = uses_allocator<_Tp, _Alloc>::value;
#endif

#ifndef _LIBCPP_CXX03_LANG

// allocator construction

template <class _Tp, class _Alloc, class ..._Args>
struct __uses_alloc_ctor_imp
{
    typedef typename __uncvref<_Alloc>::type _RawAlloc;
    static const bool __ua = uses_allocator<_Tp, _RawAlloc>::value;
    static const bool __ic =
        is_constructible<_Tp, allocator_arg_t, _Alloc, _Args...>::value;
    static const int value = __ua ? 2 - __ic : 0;
};

template <class _Tp, class _Alloc, class ..._Args>
struct __uses_alloc_ctor
    : integral_constant<int, __uses_alloc_ctor_imp<_Tp, _Alloc, _Args...>::value>
    {};

template <class _Tp, class _Allocator, class... _Args>
inline _LIBCPP_INLINE_VISIBILITY
void __user_alloc_construct_impl (integral_constant<int, 0>, _Tp *__storage, const _Allocator &, _Args &&... __args )
{
    new (__storage) _Tp (_VSTD::forward<_Args>(__args)...);
}

// FIXME: This should have a version which takes a non-const alloc.
template <class _Tp, class _Allocator, class... _Args>
inline _LIBCPP_INLINE_VISIBILITY
void __user_alloc_construct_impl (integral_constant<int, 1>, _Tp *__storage, const _Allocator &__a, _Args &&... __args )
{
    new (__storage) _Tp (allocator_arg, __a, _VSTD::forward<_Args>(__args)...);
}

// FIXME: This should have a version which takes a non-const alloc.
template <class _Tp, class _Allocator, class... _Args>
inline _LIBCPP_INLINE_VISIBILITY
void __user_alloc_construct_impl (integral_constant<int, 2>, _Tp *__storage, const _Allocator &__a, _Args &&... __args )
{
    new (__storage) _Tp (_VSTD::forward<_Args>(__args)..., __a);
}

#endif  // _LIBCPP_CXX03_LANG

_LIBCPP_END_NAMESPACE_STD

#endif  // _LIBCPP_FUNCTIONAL_BASE