Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
// Iterators -*- C++ -*-

// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING.  If not, write to the Free
// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
// USA.

// As a special exception, you may use this file as part of a free software
// library without restriction.  Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.

/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1996-1998
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/** @file stl_iterator.h
 *  This is an internal header file, included by other library headers.
 *  You should not attempt to use it directly.
 *
 *  This file implements reverse_iterator, back_insert_iterator,
 *  front_insert_iterator, insert_iterator, __normal_iterator, and their
 *  supporting functions and overloaded operators.
 */

#ifndef _ITERATOR_H
#define _ITERATOR_H 1

#include <bits/cpp_type_traits.h>
#include <ext/type_traits.h>

_GLIBCXX_BEGIN_NAMESPACE(std)

  // 24.4.1 Reverse iterators
  /**
   *  "Bidirectional and random access iterators have corresponding reverse
   *  %iterator adaptors that iterate through the data structure in the
   *  opposite direction.  They have the same signatures as the corresponding
   *  iterators.  The fundamental relation between a reverse %iterator and its
   *  corresponding %iterator @c i is established by the identity:
   *  @code
   *      &*(reverse_iterator(i)) == &*(i - 1)
   *  @endcode
   *
   *  This mapping is dictated by the fact that while there is always a
   *  pointer past the end of an array, there might not be a valid pointer
   *  before the beginning of an array." [24.4.1]/1,2
   *
   *  Reverse iterators can be tricky and surprising at first.  Their
   *  semantics make sense, however, and the trickiness is a side effect of
   *  the requirement that the iterators must be safe.
  */
  template<typename _Iterator>
    class reverse_iterator
    : public iterator<typename iterator_traits<_Iterator>::iterator_category,
		      typename iterator_traits<_Iterator>::value_type,
		      typename iterator_traits<_Iterator>::difference_type,
		      typename iterator_traits<_Iterator>::pointer,
                      typename iterator_traits<_Iterator>::reference>
    {
    protected:
      _Iterator current;

    public:
      typedef _Iterator					       iterator_type;
      typedef typename iterator_traits<_Iterator>::difference_type
							       difference_type;
      typedef typename iterator_traits<_Iterator>::reference   reference;
      typedef typename iterator_traits<_Iterator>::pointer     pointer;

    public:
      /**
       *  The default constructor default-initializes member @p current.
       *  If it is a pointer, that means it is zero-initialized.
      */
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 235 No specification of default ctor for reverse_iterator
      reverse_iterator() : current() { }

      /**
       *  This %iterator will move in the opposite direction that @p x does.
      */
      explicit
      reverse_iterator(iterator_type __x) : current(__x) { }

      /**
       *  The copy constructor is normal.
      */
      reverse_iterator(const reverse_iterator& __x)
      : current(__x.current) { }

      /**
       *  A reverse_iterator across other types can be copied in the normal
       *  fashion.
      */
      template<typename _Iter>
        reverse_iterator(const reverse_iterator<_Iter>& __x)
	: current(__x.base()) { }

      /**
       *  @return  @c current, the %iterator used for underlying work.
      */
      iterator_type
      base() const
      { return current; }

      /**
       *  @return  TODO
       *
       *  @doctodo
      */
      reference
      operator*() const
      {
	_Iterator __tmp = current;
	return *--__tmp;
      }

      /**
       *  @return  TODO
       *
       *  @doctodo
      */
      pointer
      operator->() const
      { return &(operator*()); }

      /**
       *  @return  TODO
       *
       *  @doctodo
      */
      reverse_iterator&
      operator++()
      {
	--current;
	return *this;
      }

      /**
       *  @return  TODO
       *
       *  @doctodo
      */
      reverse_iterator
      operator++(int)
      {
	reverse_iterator __tmp = *this;
	--current;
	return __tmp;
      }

      /**
       *  @return  TODO
       *
       *  @doctodo
      */
      reverse_iterator&
      operator--()
      {
	++current;
	return *this;
      }

      /**
       *  @return  TODO
       *
       *  @doctodo
      */
      reverse_iterator
      operator--(int)
      {
	reverse_iterator __tmp = *this;
	++current;
	return __tmp;
      }

      /**
       *  @return  TODO
       *
       *  @doctodo
      */
      reverse_iterator
      operator+(difference_type __n) const
      { return reverse_iterator(current - __n); }

      /**
       *  @return  TODO
       *
       *  @doctodo
      */
      reverse_iterator&
      operator+=(difference_type __n)
      {
	current -= __n;
	return *this;
      }

      /**
       *  @return  TODO
       *
       *  @doctodo
      */
      reverse_iterator
      operator-(difference_type __n) const
      { return reverse_iterator(current + __n); }

      /**
       *  @return  TODO
       *
       *  @doctodo
      */
      reverse_iterator&
      operator-=(difference_type __n)
      {
	current += __n;
	return *this;
      }

      /**
       *  @return  TODO
       *
       *  @doctodo
      */
      reference
      operator[](difference_type __n) const
      { return *(*this + __n); }
    };

  //@{
  /**
   *  @param  x  A %reverse_iterator.
   *  @param  y  A %reverse_iterator.
   *  @return  A simple bool.
   *
   *  Reverse iterators forward many operations to their underlying base()
   *  iterators.  Others are implemented in terms of one another.
   *
  */
  template<typename _Iterator>
    inline bool
    operator==(const reverse_iterator<_Iterator>& __x,
	       const reverse_iterator<_Iterator>& __y)
    { return __x.base() == __y.base(); }

  template<typename _Iterator>
    inline bool
    operator<(const reverse_iterator<_Iterator>& __x,
	      const reverse_iterator<_Iterator>& __y)
    { return __y.base() < __x.base(); }

  template<typename _Iterator>
    inline bool
    operator!=(const reverse_iterator<_Iterator>& __x,
	       const reverse_iterator<_Iterator>& __y)
    { return !(__x == __y); }

  template<typename _Iterator>
    inline bool
    operator>(const reverse_iterator<_Iterator>& __x,
	      const reverse_iterator<_Iterator>& __y)
    { return __y < __x; }

  template<typename _Iterator>
    inline bool
    operator<=(const reverse_iterator<_Iterator>& __x,
	       const reverse_iterator<_Iterator>& __y)
    { return !(__y < __x); }

  template<typename _Iterator>
    inline bool
    operator>=(const reverse_iterator<_Iterator>& __x,
	       const reverse_iterator<_Iterator>& __y)
    { return !(__x < __y); }

  template<typename _Iterator>
    inline typename reverse_iterator<_Iterator>::difference_type
    operator-(const reverse_iterator<_Iterator>& __x,
	      const reverse_iterator<_Iterator>& __y)
    { return __y.base() - __x.base(); }

  template<typename _Iterator>
    inline reverse_iterator<_Iterator>
    operator+(typename reverse_iterator<_Iterator>::difference_type __n,
	      const reverse_iterator<_Iterator>& __x)
    { return reverse_iterator<_Iterator>(__x.base() - __n); }

  // _GLIBCXX_RESOLVE_LIB_DEFECTS
  // DR 280. Comparison of reverse_iterator to const reverse_iterator.
  template<typename _IteratorL, typename _IteratorR>
    inline bool
    operator==(const reverse_iterator<_IteratorL>& __x,
	       const reverse_iterator<_IteratorR>& __y)
    { return __x.base() == __y.base(); }

  template<typename _IteratorL, typename _IteratorR>
    inline bool
    operator<(const reverse_iterator<_IteratorL>& __x,
	      const reverse_iterator<_IteratorR>& __y)
    { return __y.base() < __x.base(); }

  template<typename _IteratorL, typename _IteratorR>
    inline bool
    operator!=(const reverse_iterator<_IteratorL>& __x,
	       const reverse_iterator<_IteratorR>& __y)
    { return !(__x == __y); }

  template<typename _IteratorL, typename _IteratorR>
    inline bool
    operator>(const reverse_iterator<_IteratorL>& __x,
	      const reverse_iterator<_IteratorR>& __y)
    { return __y < __x; }

  template<typename _IteratorL, typename _IteratorR>
    inline bool
    operator<=(const reverse_iterator<_IteratorL>& __x,
	       const reverse_iterator<_IteratorR>& __y)
    { return !(__y < __x); }

  template<typename _IteratorL, typename _IteratorR>
    inline bool
    operator>=(const reverse_iterator<_IteratorL>& __x,
	       const reverse_iterator<_IteratorR>& __y)
    { return !(__x < __y); }

  template<typename _IteratorL, typename _IteratorR>
    inline typename reverse_iterator<_IteratorL>::difference_type
    operator-(const reverse_iterator<_IteratorL>& __x,
	      const reverse_iterator<_IteratorR>& __y)
    { return __y.base() - __x.base(); }
  //@}

  // 24.4.2.2.1 back_insert_iterator
  /**
   *  @brief  Turns assignment into insertion.
   *
   *  These are output iterators, constructed from a container-of-T.
   *  Assigning a T to the iterator appends it to the container using
   *  push_back.
   *
   *  Tip:  Using the back_inserter function to create these iterators can
   *  save typing.
  */
  template<typename _Container>
    class back_insert_iterator
    : public iterator<output_iterator_tag, void, void, void, void>
    {
    protected:
      _Container* container;

    public:
      /// A nested typedef for the type of whatever container you used.
      typedef _Container          container_type;

      /// The only way to create this %iterator is with a container.
      explicit
      back_insert_iterator(_Container& __x) : container(&__x) { }

      /**
       *  @param  value  An instance of whatever type
       *                 container_type::const_reference is; presumably a
       *                 reference-to-const T for container<T>.
       *  @return  This %iterator, for chained operations.
       *
       *  This kind of %iterator doesn't really have a "position" in the
       *  container (you can think of the position as being permanently at
       *  the end, if you like).  Assigning a value to the %iterator will
       *  always append the value to the end of the container.
      */
      back_insert_iterator&
      operator=(typename _Container::const_reference __value)
      {
	container->push_back(__value);
	return *this;
      }

      /// Simply returns *this.
      back_insert_iterator&
      operator*()
      { return *this; }

      /// Simply returns *this.  (This %iterator does not "move".)
      back_insert_iterator&
      operator++()
      { return *this; }

      /// Simply returns *this.  (This %iterator does not "move".)
      back_insert_iterator
      operator++(int)
      { return *this; }
    };

  /**
   *  @param  x  A container of arbitrary type.
   *  @return  An instance of back_insert_iterator working on @p x.
   *
   *  This wrapper function helps in creating back_insert_iterator instances.
   *  Typing the name of the %iterator requires knowing the precise full
   *  type of the container, which can be tedious and impedes generic
   *  programming.  Using this function lets you take advantage of automatic
   *  template parameter deduction, making the compiler match the correct
   *  types for you.
  */
  template<typename _Container>
    inline back_insert_iterator<_Container>
    back_inserter(_Container& __x)
    { return back_insert_iterator<_Container>(__x); }

  /**
   *  @brief  Turns assignment into insertion.
   *
   *  These are output iterators, constructed from a container-of-T.
   *  Assigning a T to the iterator prepends it to the container using
   *  push_front.
   *
   *  Tip:  Using the front_inserter function to create these iterators can
   *  save typing.
  */
  template<typename _Container>
    class front_insert_iterator
    : public iterator<output_iterator_tag, void, void, void, void>
    {
    protected:
      _Container* container;

    public:
      /// A nested typedef for the type of whatever container you used.
      typedef _Container          container_type;

      /// The only way to create this %iterator is with a container.
      explicit front_insert_iterator(_Container& __x) : container(&__x) { }

      /**
       *  @param  value  An instance of whatever type
       *                 container_type::const_reference is; presumably a
       *                 reference-to-const T for container<T>.
       *  @return  This %iterator, for chained operations.
       *
       *  This kind of %iterator doesn't really have a "position" in the
       *  container (you can think of the position as being permanently at
       *  the front, if you like).  Assigning a value to the %iterator will
       *  always prepend the value to the front of the container.
      */
      front_insert_iterator&
      operator=(typename _Container::const_reference __value)
      {
	container->push_front(__value);
	return *this;
      }

      /// Simply returns *this.
      front_insert_iterator&
      operator*()
      { return *this; }

      /// Simply returns *this.  (This %iterator does not "move".)
      front_insert_iterator&
      operator++()
      { return *this; }

      /// Simply returns *this.  (This %iterator does not "move".)
      front_insert_iterator
      operator++(int)
      { return *this; }
    };

  /**
   *  @param  x  A container of arbitrary type.
   *  @return  An instance of front_insert_iterator working on @p x.
   *
   *  This wrapper function helps in creating front_insert_iterator instances.
   *  Typing the name of the %iterator requires knowing the precise full
   *  type of the container, which can be tedious and impedes generic
   *  programming.  Using this function lets you take advantage of automatic
   *  template parameter deduction, making the compiler match the correct
   *  types for you.
  */
  template<typename _Container>
    inline front_insert_iterator<_Container>
    front_inserter(_Container& __x)
    { return front_insert_iterator<_Container>(__x); }

  /**
   *  @brief  Turns assignment into insertion.
   *
   *  These are output iterators, constructed from a container-of-T.
   *  Assigning a T to the iterator inserts it in the container at the
   *  %iterator's position, rather than overwriting the value at that
   *  position.
   *
   *  (Sequences will actually insert a @e copy of the value before the
   *  %iterator's position.)
   *
   *  Tip:  Using the inserter function to create these iterators can
   *  save typing.
  */
  template<typename _Container>
    class insert_iterator
    : public iterator<output_iterator_tag, void, void, void, void>
    {
    protected:
      _Container* container;
      typename _Container::iterator iter;

    public:
      /// A nested typedef for the type of whatever container you used.
      typedef _Container          container_type;

      /**
       *  The only way to create this %iterator is with a container and an
       *  initial position (a normal %iterator into the container).
      */
      insert_iterator(_Container& __x, typename _Container::iterator __i)
      : container(&__x), iter(__i) {}

      /**
       *  @param  value  An instance of whatever type
       *                 container_type::const_reference is; presumably a
       *                 reference-to-const T for container<T>.
       *  @return  This %iterator, for chained operations.
       *
       *  This kind of %iterator maintains its own position in the
       *  container.  Assigning a value to the %iterator will insert the
       *  value into the container at the place before the %iterator.
       *
       *  The position is maintained such that subsequent assignments will
       *  insert values immediately after one another.  For example,
       *  @code
       *     // vector v contains A and Z
       *
       *     insert_iterator i (v, ++v.begin());
       *     i = 1;
       *     i = 2;
       *     i = 3;
       *
       *     // vector v contains A, 1, 2, 3, and Z
       *  @endcode
      */
      insert_iterator&
      operator=(const typename _Container::const_reference __value)
      {
	iter = container->insert(iter, __value);
	++iter;
	return *this;
      }

      /// Simply returns *this.
      insert_iterator&
      operator*()
      { return *this; }

      /// Simply returns *this.  (This %iterator does not "move".)
      insert_iterator&
      operator++()
      { return *this; }

      /// Simply returns *this.  (This %iterator does not "move".)
      insert_iterator&
      operator++(int)
      { return *this; }
    };

  /**
   *  @param  x  A container of arbitrary type.
   *  @return  An instance of insert_iterator working on @p x.
   *
   *  This wrapper function helps in creating insert_iterator instances.
   *  Typing the name of the %iterator requires knowing the precise full
   *  type of the container, which can be tedious and impedes generic
   *  programming.  Using this function lets you take advantage of automatic
   *  template parameter deduction, making the compiler match the correct
   *  types for you.
  */
  template<typename _Container, typename _Iterator>
    inline insert_iterator<_Container>
    inserter(_Container& __x, _Iterator __i)
    {
      return insert_iterator<_Container>(__x,
					 typename _Container::iterator(__i));
    }

_GLIBCXX_END_NAMESPACE

_GLIBCXX_BEGIN_NAMESPACE(__gnu_cxx)

  // This iterator adapter is 'normal' in the sense that it does not
  // change the semantics of any of the operators of its iterator
  // parameter.  Its primary purpose is to convert an iterator that is
  // not a class, e.g. a pointer, into an iterator that is a class.
  // The _Container parameter exists solely so that different containers
  // using this template can instantiate different types, even if the
  // _Iterator parameter is the same.
  using std::iterator_traits;
  using std::iterator;
  template<typename _Iterator, typename _Container>
    class __normal_iterator
    {
    protected:
      _Iterator _M_current;

    public:
      typedef typename iterator_traits<_Iterator>::iterator_category
                                                             iterator_category;
      typedef typename iterator_traits<_Iterator>::value_type  value_type;
      typedef typename iterator_traits<_Iterator>::difference_type
                                                             difference_type;
      typedef typename iterator_traits<_Iterator>::reference reference;
      typedef typename iterator_traits<_Iterator>::pointer   pointer;

      __normal_iterator() : _M_current(_Iterator()) { }

      explicit
      __normal_iterator(const _Iterator& __i) : _M_current(__i) { }

      // Allow iterator to const_iterator conversion
      template<typename _Iter>
        __normal_iterator(const __normal_iterator<_Iter,
			  typename __enable_if<
      	       (std::__are_same<_Iter, typename _Container::pointer>::__value),
		      _Container>::__type>& __i)
        : _M_current(__i.base()) { }

      // Forward iterator requirements
      reference
      operator*() const
      { return *_M_current; }

      pointer
      operator->() const
      { return _M_current; }

      __normal_iterator&
      operator++()
      {
	++_M_current;
	return *this;
      }

      __normal_iterator
      operator++(int)
      { return __normal_iterator(_M_current++); }

      // Bidirectional iterator requirements
      __normal_iterator&
      operator--()
      {
	--_M_current;
	return *this;
      }

      __normal_iterator
      operator--(int)
      { return __normal_iterator(_M_current--); }

      // Random access iterator requirements
      reference
      operator[](const difference_type& __n) const
      { return _M_current[__n]; }

      __normal_iterator&
      operator+=(const difference_type& __n)
      { _M_current += __n; return *this; }

      __normal_iterator
      operator+(const difference_type& __n) const
      { return __normal_iterator(_M_current + __n); }

      __normal_iterator&
      operator-=(const difference_type& __n)
      { _M_current -= __n; return *this; }

      __normal_iterator
      operator-(const difference_type& __n) const
      { return __normal_iterator(_M_current - __n); }

      const _Iterator&
      base() const
      { return _M_current; }
    };

  // Note: In what follows, the left- and right-hand-side iterators are
  // allowed to vary in types (conceptually in cv-qualification) so that
  // comparaison between cv-qualified and non-cv-qualified iterators be
  // valid.  However, the greedy and unfriendly operators in std::rel_ops
  // will make overload resolution ambiguous (when in scope) if we don't
  // provide overloads whose operands are of the same type.  Can someone
  // remind me what generic programming is about? -- Gaby

  // Forward iterator requirements
  template<typename _IteratorL, typename _IteratorR, typename _Container>
    inline bool
    operator==(const __normal_iterator<_IteratorL, _Container>& __lhs,
	       const __normal_iterator<_IteratorR, _Container>& __rhs)
    { return __lhs.base() == __rhs.base(); }

  template<typename _Iterator, typename _Container>
    inline bool
    operator==(const __normal_iterator<_Iterator, _Container>& __lhs,
	       const __normal_iterator<_Iterator, _Container>& __rhs)
    { return __lhs.base() == __rhs.base(); }

  template<typename _IteratorL, typename _IteratorR, typename _Container>
    inline bool
    operator!=(const __normal_iterator<_IteratorL, _Container>& __lhs,
	       const __normal_iterator<_IteratorR, _Container>& __rhs)
    { return __lhs.base() != __rhs.base(); }

  template<typename _Iterator, typename _Container>
    inline bool
    operator!=(const __normal_iterator<_Iterator, _Container>& __lhs,
	       const __normal_iterator<_Iterator, _Container>& __rhs)
    { return __lhs.base() != __rhs.base(); }

  // Random access iterator requirements
  template<typename _IteratorL, typename _IteratorR, typename _Container>
    inline bool
    operator<(const __normal_iterator<_IteratorL, _Container>& __lhs,
	      const __normal_iterator<_IteratorR, _Container>& __rhs)
    { return __lhs.base() < __rhs.base(); }

  template<typename _Iterator, typename _Container>
    inline bool
    operator<(const __normal_iterator<_Iterator, _Container>& __lhs,
	      const __normal_iterator<_Iterator, _Container>& __rhs)
    { return __lhs.base() < __rhs.base(); }

  template<typename _IteratorL, typename _IteratorR, typename _Container>
    inline bool
    operator>(const __normal_iterator<_IteratorL, _Container>& __lhs,
	      const __normal_iterator<_IteratorR, _Container>& __rhs)
    { return __lhs.base() > __rhs.base(); }

  template<typename _Iterator, typename _Container>
    inline bool
    operator>(const __normal_iterator<_Iterator, _Container>& __lhs,
	      const __normal_iterator<_Iterator, _Container>& __rhs)
    { return __lhs.base() > __rhs.base(); }

  template<typename _IteratorL, typename _IteratorR, typename _Container>
    inline bool
    operator<=(const __normal_iterator<_IteratorL, _Container>& __lhs,
	       const __normal_iterator<_IteratorR, _Container>& __rhs)
    { return __lhs.base() <= __rhs.base(); }

  template<typename _Iterator, typename _Container>
    inline bool
    operator<=(const __normal_iterator<_Iterator, _Container>& __lhs,
	       const __normal_iterator<_Iterator, _Container>& __rhs)
    { return __lhs.base() <= __rhs.base(); }

  template<typename _IteratorL, typename _IteratorR, typename _Container>
    inline bool
    operator>=(const __normal_iterator<_IteratorL, _Container>& __lhs,
	       const __normal_iterator<_IteratorR, _Container>& __rhs)
    { return __lhs.base() >= __rhs.base(); }

  template<typename _Iterator, typename _Container>
    inline bool
    operator>=(const __normal_iterator<_Iterator, _Container>& __lhs,
	       const __normal_iterator<_Iterator, _Container>& __rhs)
    { return __lhs.base() >= __rhs.base(); }

  // _GLIBCXX_RESOLVE_LIB_DEFECTS
  // According to the resolution of DR179 not only the various comparison
  // operators but also operator- must accept mixed iterator/const_iterator
  // parameters.
  template<typename _IteratorL, typename _IteratorR, typename _Container>
    inline typename __normal_iterator<_IteratorL, _Container>::difference_type
    operator-(const __normal_iterator<_IteratorL, _Container>& __lhs,
	      const __normal_iterator<_IteratorR, _Container>& __rhs)
    { return __lhs.base() - __rhs.base(); }

  template<typename _Iterator, typename _Container>
    inline typename __normal_iterator<_Iterator, _Container>::difference_type
    operator-(const __normal_iterator<_Iterator, _Container>& __lhs,
	      const __normal_iterator<_Iterator, _Container>& __rhs)
    { return __lhs.base() - __rhs.base(); }

  template<typename _Iterator, typename _Container>
    inline __normal_iterator<_Iterator, _Container>
    operator+(typename __normal_iterator<_Iterator, _Container>::difference_type
	      __n, const __normal_iterator<_Iterator, _Container>& __i)
    { return __normal_iterator<_Iterator, _Container>(__i.base() + __n); }

_GLIBCXX_END_NAMESPACE

#endif