Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
//===-- BPFInstrInfo.td - Target Description for BPF Target ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the BPF instructions in TableGen format.
//
//===----------------------------------------------------------------------===//

include "BPFInstrFormats.td"

// Instruction Operands and Patterns

// These are target-independent nodes, but have target-specific formats.
def SDT_BPFCallSeqStart : SDCallSeqStart<[SDTCisVT<0, iPTR>,
                                          SDTCisVT<1, iPTR>]>;
def SDT_BPFCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, iPTR>, SDTCisVT<1, iPTR>]>;
def SDT_BPFCall         : SDTypeProfile<0, -1, [SDTCisVT<0, iPTR>]>;
def SDT_BPFSetFlag      : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>]>;
def SDT_BPFSelectCC     : SDTypeProfile<1, 5, [SDTCisSameAs<1, 2>,
                                               SDTCisSameAs<0, 4>,
                                               SDTCisSameAs<4, 5>]>;
def SDT_BPFBrCC         : SDTypeProfile<0, 4, [SDTCisSameAs<0, 1>,
                                               SDTCisVT<3, OtherVT>]>;
def SDT_BPFWrapper      : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>,
                                               SDTCisPtrTy<0>]>;
def SDT_BPFMEMCPY       : SDTypeProfile<0, 4, [SDTCisVT<0, i64>,
                                               SDTCisVT<1, i64>,
                                               SDTCisVT<2, i64>,
                                               SDTCisVT<3, i64>]>;

def BPFcall         : SDNode<"BPFISD::CALL", SDT_BPFCall,
                             [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
                              SDNPVariadic]>;
def BPFretflag      : SDNode<"BPFISD::RET_FLAG", SDTNone,
                             [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def BPFcallseq_start: SDNode<"ISD::CALLSEQ_START", SDT_BPFCallSeqStart,
                             [SDNPHasChain, SDNPOutGlue]>;
def BPFcallseq_end  : SDNode<"ISD::CALLSEQ_END",   SDT_BPFCallSeqEnd,
                             [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def BPFbrcc         : SDNode<"BPFISD::BR_CC", SDT_BPFBrCC,
                             [SDNPHasChain, SDNPOutGlue, SDNPInGlue]>;

def BPFselectcc     : SDNode<"BPFISD::SELECT_CC", SDT_BPFSelectCC, [SDNPInGlue]>;
def BPFWrapper      : SDNode<"BPFISD::Wrapper", SDT_BPFWrapper>;
def BPFmemcpy       : SDNode<"BPFISD::MEMCPY", SDT_BPFMEMCPY,
                             [SDNPHasChain, SDNPInGlue, SDNPOutGlue,
                              SDNPMayStore, SDNPMayLoad]>;
def BPFIsLittleEndian : Predicate<"CurDAG->getDataLayout().isLittleEndian()">;
def BPFIsBigEndian    : Predicate<"!CurDAG->getDataLayout().isLittleEndian()">;
def BPFHasALU32 : Predicate<"Subtarget->getHasAlu32()">;
def BPFNoALU32 : Predicate<"!Subtarget->getHasAlu32()">;

def brtarget : Operand<OtherVT> {
  let PrintMethod = "printBrTargetOperand";
}
def calltarget : Operand<i64>;

def u64imm   : Operand<i64> {
  let PrintMethod = "printImm64Operand";
}

def i64immSExt32 : PatLeaf<(i64 imm),
                [{return isInt<32>(N->getSExtValue()); }]>;
def i32immSExt32 : PatLeaf<(i32 imm),
                [{return isInt<32>(N->getSExtValue()); }]>;

// Addressing modes.
def ADDRri : ComplexPattern<i64, 2, "SelectAddr", [], []>;
def FIri : ComplexPattern<i64, 2, "SelectFIAddr", [add, or], []>;

// Address operands
def MEMri : Operand<i64> {
  let PrintMethod = "printMemOperand";
  let EncoderMethod = "getMemoryOpValue";
  let DecoderMethod = "decodeMemoryOpValue";
  let MIOperandInfo = (ops GPR, i16imm);
}

// Conditional code predicates - used for pattern matching for jump instructions
def BPF_CC_EQ  : PatLeaf<(i64 imm),
                         [{return (N->getZExtValue() == ISD::SETEQ);}]>;
def BPF_CC_NE  : PatLeaf<(i64 imm),
                         [{return (N->getZExtValue() == ISD::SETNE);}]>;
def BPF_CC_GE  : PatLeaf<(i64 imm),
                         [{return (N->getZExtValue() == ISD::SETGE);}]>;
def BPF_CC_GT  : PatLeaf<(i64 imm),
                         [{return (N->getZExtValue() == ISD::SETGT);}]>;
def BPF_CC_GTU : PatLeaf<(i64 imm),
                         [{return (N->getZExtValue() == ISD::SETUGT);}]>;
def BPF_CC_GEU : PatLeaf<(i64 imm),
                         [{return (N->getZExtValue() == ISD::SETUGE);}]>;
def BPF_CC_LE  : PatLeaf<(i64 imm),
                         [{return (N->getZExtValue() == ISD::SETLE);}]>;
def BPF_CC_LT  : PatLeaf<(i64 imm),
                         [{return (N->getZExtValue() == ISD::SETLT);}]>;
def BPF_CC_LTU : PatLeaf<(i64 imm),
                         [{return (N->getZExtValue() == ISD::SETULT);}]>;
def BPF_CC_LEU : PatLeaf<(i64 imm),
                         [{return (N->getZExtValue() == ISD::SETULE);}]>;

// For arithmetic and jump instructions the 8-bit 'code'
// field is divided into three parts:
//
//  +----------------+--------+--------------------+
//  |   4 bits       |  1 bit |   3 bits           |
//  | operation code | source | instruction class  |
//  +----------------+--------+--------------------+
//  (MSB)                                      (LSB)
class TYPE_ALU_JMP<bits<4> op, bits<1> srctype,
                   dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstBPF<outs, ins, asmstr, pattern> {

  let Inst{63-60} = op;
  let Inst{59} = srctype;
}

//For load and store instructions the 8-bit 'code' field is divided as:
//
//  +--------+--------+-------------------+
//  | 3 bits | 2 bits |   3 bits          |
//  |  mode  |  size  | instruction class |
//  +--------+--------+-------------------+
//  (MSB)                             (LSB)
class TYPE_LD_ST<bits<3> mode, bits<2> size,
                 dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstBPF<outs, ins, asmstr, pattern> {

  let Inst{63-61} = mode;
  let Inst{60-59} = size;
}

// jump instructions
class JMP_RR<BPFJumpOp Opc, string OpcodeStr, PatLeaf Cond>
    : TYPE_ALU_JMP<Opc.Value, BPF_X.Value,
                   (outs),
                   (ins GPR:$dst, GPR:$src, brtarget:$BrDst),
                   "if $dst "#OpcodeStr#" $src goto $BrDst",
                   [(BPFbrcc i64:$dst, i64:$src, Cond, bb:$BrDst)]> {
  bits<4> dst;
  bits<4> src;
  bits<16> BrDst;

  let Inst{55-52} = src;
  let Inst{51-48} = dst;
  let Inst{47-32} = BrDst;
  let BPFClass = BPF_JMP;
}

class JMP_RI<BPFJumpOp Opc, string OpcodeStr, PatLeaf Cond>
    : TYPE_ALU_JMP<Opc.Value, BPF_K.Value,
                   (outs),
                   (ins GPR:$dst, i64imm:$imm, brtarget:$BrDst),
                   "if $dst "#OpcodeStr#" $imm goto $BrDst",
                   [(BPFbrcc i64:$dst, i64immSExt32:$imm, Cond, bb:$BrDst)]> {
  bits<4> dst;
  bits<16> BrDst;
  bits<32> imm;

  let Inst{51-48} = dst;
  let Inst{47-32} = BrDst;
  let Inst{31-0} = imm;
  let BPFClass = BPF_JMP;
}

multiclass J<BPFJumpOp Opc, string OpcodeStr, PatLeaf Cond> {
  def _rr : JMP_RR<Opc, OpcodeStr, Cond>;
  def _ri : JMP_RI<Opc, OpcodeStr, Cond>;
}

let isBranch = 1, isTerminator = 1, hasDelaySlot=0 in {
// cmp+goto instructions
defm JEQ  : J<BPF_JEQ, "==",  BPF_CC_EQ>;
defm JUGT : J<BPF_JGT, ">", BPF_CC_GTU>;
defm JUGE : J<BPF_JGE, ">=", BPF_CC_GEU>;
defm JNE  : J<BPF_JNE, "!=",  BPF_CC_NE>;
defm JSGT : J<BPF_JSGT, "s>", BPF_CC_GT>;
defm JSGE : J<BPF_JSGE, "s>=", BPF_CC_GE>;
defm JULT : J<BPF_JLT, "<", BPF_CC_LTU>;
defm JULE : J<BPF_JLE, "<=", BPF_CC_LEU>;
defm JSLT : J<BPF_JSLT, "s<", BPF_CC_LT>;
defm JSLE : J<BPF_JSLE, "s<=", BPF_CC_LE>;
}

// ALU instructions
class ALU_RI<BPFOpClass Class, BPFArithOp Opc,
             dag outs, dag ins, string asmstr, list<dag> pattern>
    : TYPE_ALU_JMP<Opc.Value, BPF_K.Value, outs, ins, asmstr, pattern> {
  bits<4> dst;
  bits<32> imm;

  let Inst{51-48} = dst;
  let Inst{31-0} = imm;
  let BPFClass = Class;
}

class ALU_RR<BPFOpClass Class, BPFArithOp Opc,
             dag outs, dag ins, string asmstr, list<dag> pattern>
    : TYPE_ALU_JMP<Opc.Value, BPF_X.Value, outs, ins, asmstr, pattern> {
  bits<4> dst;
  bits<4> src;

  let Inst{55-52} = src;
  let Inst{51-48} = dst;
  let BPFClass = Class;
}

multiclass ALU<BPFArithOp Opc, string OpcodeStr, SDNode OpNode> {
  def _rr : ALU_RR<BPF_ALU64, Opc,
                   (outs GPR:$dst),
                   (ins GPR:$src2, GPR:$src),
                   "$dst "#OpcodeStr#" $src",
                   [(set GPR:$dst, (OpNode i64:$src2, i64:$src))]>;
  def _ri : ALU_RI<BPF_ALU64, Opc,
                   (outs GPR:$dst),
                   (ins GPR:$src2, i64imm:$imm),
                   "$dst "#OpcodeStr#" $imm",
                   [(set GPR:$dst, (OpNode GPR:$src2, i64immSExt32:$imm))]>;
  def _rr_32 : ALU_RR<BPF_ALU, Opc,
                   (outs GPR32:$dst),
                   (ins GPR32:$src2, GPR32:$src),
                   "$dst "#OpcodeStr#" $src",
                   [(set GPR32:$dst, (OpNode i32:$src2, i32:$src))]>;
  def _ri_32 : ALU_RI<BPF_ALU, Opc,
                   (outs GPR32:$dst),
                   (ins GPR32:$src2, i32imm:$imm),
                   "$dst "#OpcodeStr#" $imm",
                   [(set GPR32:$dst, (OpNode GPR32:$src2, i32immSExt32:$imm))]>;
}

let Constraints = "$dst = $src2" in {
let isAsCheapAsAMove = 1 in {
  defm ADD : ALU<BPF_ADD, "+=", add>;
  defm SUB : ALU<BPF_SUB, "-=", sub>;
  defm OR  : ALU<BPF_OR, "|=", or>;
  defm AND : ALU<BPF_AND, "&=", and>;
  defm SLL : ALU<BPF_LSH, "<<=", shl>;
  defm SRL : ALU<BPF_RSH, ">>=", srl>;
  defm XOR : ALU<BPF_XOR, "^=", xor>;
  defm SRA : ALU<BPF_ARSH, "s>>=", sra>;
}
  defm MUL : ALU<BPF_MUL, "*=", mul>;
  defm DIV : ALU<BPF_DIV, "/=", udiv>;
}

class NEG_RR<BPFOpClass Class, BPFArithOp Opc,
             dag outs, dag ins, string asmstr, list<dag> pattern>
    : TYPE_ALU_JMP<Opc.Value, 0, outs, ins, asmstr, pattern> {
  bits<4> dst;

  let Inst{51-48} = dst;
  let BPFClass = Class;
}

let Constraints = "$dst = $src", isAsCheapAsAMove = 1 in {
  def NEG_64: NEG_RR<BPF_ALU64, BPF_NEG, (outs GPR:$dst), (ins GPR:$src),
                     "$dst = -$src",
                     [(set GPR:$dst, (ineg i64:$src))]>;
  def NEG_32: NEG_RR<BPF_ALU, BPF_NEG, (outs GPR32:$dst), (ins GPR32:$src),
                     "$dst = -$src",
                     [(set GPR32:$dst, (ineg i32:$src))]>;
}

class LD_IMM64<bits<4> Pseudo, string OpcodeStr>
    : TYPE_LD_ST<BPF_IMM.Value, BPF_DW.Value,
                 (outs GPR:$dst),
                 (ins u64imm:$imm),
                 "$dst "#OpcodeStr#" ${imm} ll",
                 [(set GPR:$dst, (i64 imm:$imm))]> {

  bits<4> dst;
  bits<64> imm;

  let Inst{51-48} = dst;
  let Inst{55-52} = Pseudo;
  let Inst{47-32} = 0;
  let Inst{31-0} = imm{31-0};
  let BPFClass = BPF_LD;
}

let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
def LD_imm64 : LD_IMM64<0, "=">;
def MOV_rr : ALU_RR<BPF_ALU64, BPF_MOV,
                    (outs GPR:$dst),
                    (ins GPR:$src),
                    "$dst = $src",
                    []>;
def MOV_ri : ALU_RI<BPF_ALU64, BPF_MOV,
                    (outs GPR:$dst),
                    (ins i64imm:$imm),
                    "$dst = $imm",
                    [(set GPR:$dst, (i64 i64immSExt32:$imm))]>;
def MOV_rr_32 : ALU_RR<BPF_ALU, BPF_MOV,
                    (outs GPR32:$dst),
                    (ins GPR32:$src),
                    "$dst = $src",
                    []>;
def MOV_ri_32 : ALU_RI<BPF_ALU, BPF_MOV,
                    (outs GPR32:$dst),
                    (ins i32imm:$imm),
                    "$dst = $imm",
                    [(set GPR32:$dst, (i32 i32immSExt32:$imm))]>;
}

def FI_ri
    : TYPE_LD_ST<BPF_IMM.Value, BPF_DW.Value,
                 (outs GPR:$dst),
                 (ins MEMri:$addr),
                 "lea\t$dst, $addr",
                 [(set i64:$dst, FIri:$addr)]> {
  // This is a tentative instruction, and will be replaced
  // with MOV_rr and ADD_ri in PEI phase
  let Inst{51-48} = 0;
  let Inst{55-52} = 2;
  let Inst{47-32} = 0;
  let Inst{31-0} = 0;
  let BPFClass = BPF_LD;
}

def LD_pseudo
    : TYPE_LD_ST<BPF_IMM.Value, BPF_DW.Value,
                 (outs GPR:$dst),
                 (ins i64imm:$pseudo, u64imm:$imm),
                 "ld_pseudo\t$dst, $pseudo, $imm",
                 [(set GPR:$dst, (int_bpf_pseudo imm:$pseudo, imm:$imm))]> {

  bits<4> dst;
  bits<64> imm;
  bits<4> pseudo;

  let Inst{51-48} = dst;
  let Inst{55-52} = pseudo;
  let Inst{47-32} = 0;
  let Inst{31-0} = imm{31-0};
  let BPFClass = BPF_LD;
}

// STORE instructions
class STORE<BPFWidthModifer SizeOp, string OpcodeStr, list<dag> Pattern>
    : TYPE_LD_ST<BPF_MEM.Value, SizeOp.Value,
                 (outs),
                 (ins GPR:$src, MEMri:$addr),
                 "*("#OpcodeStr#" *)($addr) = $src",
                 Pattern> {
  bits<4> src;
  bits<20> addr;

  let Inst{51-48} = addr{19-16}; // base reg
  let Inst{55-52} = src;
  let Inst{47-32} = addr{15-0}; // offset
  let BPFClass = BPF_STX;
}

class STOREi64<BPFWidthModifer Opc, string OpcodeStr, PatFrag OpNode>
    : STORE<Opc, OpcodeStr, [(OpNode i64:$src, ADDRri:$addr)]>;

let Predicates = [BPFNoALU32] in {
  def STW : STOREi64<BPF_W, "u32", truncstorei32>;
  def STH : STOREi64<BPF_H, "u16", truncstorei16>;
  def STB : STOREi64<BPF_B, "u8", truncstorei8>;
}
def STD : STOREi64<BPF_DW, "u64", store>;

// LOAD instructions
class LOAD<BPFWidthModifer SizeOp, string OpcodeStr, list<dag> Pattern>
    : TYPE_LD_ST<BPF_MEM.Value, SizeOp.Value,
                 (outs GPR:$dst),
                 (ins MEMri:$addr),
                 "$dst = *("#OpcodeStr#" *)($addr)",
                 Pattern> {
  bits<4> dst;
  bits<20> addr;

  let Inst{51-48} = dst;
  let Inst{55-52} = addr{19-16};
  let Inst{47-32} = addr{15-0};
  let BPFClass = BPF_LDX;
}

class LOADi64<BPFWidthModifer SizeOp, string OpcodeStr, PatFrag OpNode>
    : LOAD<SizeOp, OpcodeStr, [(set i64:$dst, (OpNode ADDRri:$addr))]>;


let Predicates = [BPFNoALU32] in {
  def LDW : LOADi64<BPF_W, "u32", zextloadi32>;
  def LDH : LOADi64<BPF_H, "u16", zextloadi16>;
  def LDB : LOADi64<BPF_B, "u8", zextloadi8>;
}

def LDD : LOADi64<BPF_DW, "u64", load>;

class BRANCH<BPFJumpOp Opc, string OpcodeStr, list<dag> Pattern>
    : TYPE_ALU_JMP<Opc.Value, BPF_K.Value,
                   (outs),
                   (ins brtarget:$BrDst),
                   !strconcat(OpcodeStr, " $BrDst"),
                   Pattern> {
  bits<16> BrDst;

  let Inst{47-32} = BrDst;
  let BPFClass = BPF_JMP;
}

class CALL<string OpcodeStr>
    : TYPE_ALU_JMP<BPF_CALL.Value, BPF_K.Value,
                   (outs),
                   (ins calltarget:$BrDst),
                   !strconcat(OpcodeStr, " $BrDst"),
                   []> {
  bits<32> BrDst;

  let Inst{31-0} = BrDst;
  let BPFClass = BPF_JMP;
}

class CALLX<string OpcodeStr>
    : TYPE_ALU_JMP<BPF_CALL.Value, BPF_X.Value,
                   (outs),
                   (ins calltarget:$BrDst),
                   !strconcat(OpcodeStr, " $BrDst"),
                   []> {
  bits<32> BrDst;

  let Inst{31-0} = BrDst;
  let BPFClass = BPF_JMP;
}

// Jump always
let isBranch = 1, isTerminator = 1, hasDelaySlot=0, isBarrier = 1 in {
  def JMP : BRANCH<BPF_JA, "goto", [(br bb:$BrDst)]>;
}

// Jump and link
let isCall=1, hasDelaySlot=0, Uses = [R11],
    // Potentially clobbered registers
    Defs = [R0, R1, R2, R3, R4, R5] in {
  def JAL  : CALL<"call">;
  def JALX  : CALLX<"callx">;
}

class NOP_I<string OpcodeStr>
    : TYPE_ALU_JMP<BPF_MOV.Value, BPF_X.Value,
                   (outs),
                   (ins i32imm:$imm),
                   !strconcat(OpcodeStr, "\t$imm"),
                   []> {
  // mov r0, r0 == nop
  let Inst{55-52} = 0;
  let Inst{51-48} = 0;
  let BPFClass = BPF_ALU64;
}

let hasSideEffects = 0 in
  def NOP : NOP_I<"nop">;

class RET<string OpcodeStr>
    : TYPE_ALU_JMP<BPF_EXIT.Value, BPF_K.Value,
                   (outs),
                   (ins),
                   !strconcat(OpcodeStr, ""),
                   [(BPFretflag)]> {
  let Inst{31-0} = 0;
  let BPFClass = BPF_JMP;
}

let isReturn = 1, isTerminator = 1, hasDelaySlot=0, isBarrier = 1,
    isNotDuplicable = 1 in {
  def RET : RET<"exit">;
}

// ADJCALLSTACKDOWN/UP pseudo insns
let Defs = [R11], Uses = [R11], isCodeGenOnly = 1 in {
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
                              "#ADJCALLSTACKDOWN $amt1 $amt2",
                              [(BPFcallseq_start timm:$amt1, timm:$amt2)]>;
def ADJCALLSTACKUP   : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
                              "#ADJCALLSTACKUP $amt1 $amt2",
                              [(BPFcallseq_end timm:$amt1, timm:$amt2)]>;
}

let usesCustomInserter = 1, isCodeGenOnly = 1 in {
  def Select : Pseudo<(outs GPR:$dst),
                      (ins GPR:$lhs, GPR:$rhs, i64imm:$imm, GPR:$src, GPR:$src2),
                      "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
                      [(set i64:$dst,
                       (BPFselectcc i64:$lhs, i64:$rhs, (i64 imm:$imm), i64:$src, i64:$src2))]>;
  def Select_Ri : Pseudo<(outs GPR:$dst),
                      (ins GPR:$lhs, i64imm:$rhs, i64imm:$imm, GPR:$src, GPR:$src2),
                      "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
                      [(set i64:$dst,
                       (BPFselectcc i64:$lhs, (i64immSExt32:$rhs), (i64 imm:$imm), i64:$src, i64:$src2))]>;
  def Select_64_32 : Pseudo<(outs GPR32:$dst),
                      (ins GPR:$lhs, GPR:$rhs, i64imm:$imm, GPR32:$src, GPR32:$src2),
                      "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
                      [(set i32:$dst,
                       (BPFselectcc i64:$lhs, i64:$rhs, (i64 imm:$imm), i32:$src, i32:$src2))]>;
  def Select_Ri_64_32 : Pseudo<(outs GPR32:$dst),
                      (ins GPR:$lhs, i64imm:$rhs, i64imm:$imm, GPR32:$src, GPR32:$src2),
                      "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
                      [(set i32:$dst,
                       (BPFselectcc i64:$lhs, (i64immSExt32:$rhs), (i64 imm:$imm), i32:$src, i32:$src2))]>;
  def Select_32 : Pseudo<(outs GPR32:$dst),
                      (ins GPR32:$lhs, GPR32:$rhs, i32imm:$imm, GPR32:$src, GPR32:$src2),
                      "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
                      [(set i32:$dst,
                       (BPFselectcc i32:$lhs, i32:$rhs, (i32 imm:$imm), i32:$src, i32:$src2))]>;
  def Select_Ri_32 : Pseudo<(outs GPR32:$dst),
                      (ins GPR32:$lhs, i32imm:$rhs, i32imm:$imm, GPR32:$src, GPR32:$src2),
                      "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
                      [(set i32:$dst,
                       (BPFselectcc i32:$lhs, (i32immSExt32:$rhs), (i32 imm:$imm), i32:$src, i32:$src2))]>;
  def Select_32_64 : Pseudo<(outs GPR:$dst),
                      (ins GPR32:$lhs, GPR32:$rhs, i32imm:$imm, GPR:$src, GPR:$src2),
                      "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
                      [(set i64:$dst,
                       (BPFselectcc i32:$lhs, i32:$rhs, (i32 imm:$imm), i64:$src, i64:$src2))]>;
  def Select_Ri_32_64 : Pseudo<(outs GPR:$dst),
                      (ins GPR32:$lhs, i32imm:$rhs, i32imm:$imm, GPR:$src, GPR:$src2),
                      "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
                      [(set i64:$dst,
                       (BPFselectcc i32:$lhs, (i32immSExt32:$rhs), (i32 imm:$imm), i64:$src, i64:$src2))]>;
}

// load 64-bit global addr into register
def : Pat<(BPFWrapper tglobaladdr:$in), (LD_imm64 tglobaladdr:$in)>;

// 0xffffFFFF doesn't fit into simm32, optimize common case
def : Pat<(i64 (and (i64 GPR:$src), 0xffffFFFF)),
          (SRL_ri (SLL_ri (i64 GPR:$src), 32), 32)>;

// Calls
def : Pat<(BPFcall tglobaladdr:$dst), (JAL tglobaladdr:$dst)>;
def : Pat<(BPFcall texternalsym:$dst), (JAL texternalsym:$dst)>;
def : Pat<(BPFcall imm:$dst), (JAL imm:$dst)>;
def : Pat<(BPFcall GPR:$dst), (JALX GPR:$dst)>;

// Loads
let Predicates = [BPFNoALU32] in {
  def : Pat<(i64 (extloadi8  ADDRri:$src)), (i64 (LDB ADDRri:$src))>;
  def : Pat<(i64 (extloadi16 ADDRri:$src)), (i64 (LDH ADDRri:$src))>;
  def : Pat<(i64 (extloadi32 ADDRri:$src)), (i64 (LDW ADDRri:$src))>;
}

// Atomics
class XADD<BPFWidthModifer SizeOp, string OpcodeStr, PatFrag OpNode>
    : TYPE_LD_ST<BPF_XADD.Value, SizeOp.Value,
                 (outs GPR:$dst),
                 (ins MEMri:$addr, GPR:$val),
                 "lock *("#OpcodeStr#" *)($addr) += $val",
                 [(set GPR:$dst, (OpNode ADDRri:$addr, GPR:$val))]> {
  bits<4> dst;
  bits<20> addr;

  let Inst{51-48} = addr{19-16}; // base reg
  let Inst{55-52} = dst;
  let Inst{47-32} = addr{15-0}; // offset
  let BPFClass = BPF_STX;
}

let Constraints = "$dst = $val" in {
def XADD32 : XADD<BPF_W, "u32", atomic_load_add_32>;
def XADD64 : XADD<BPF_DW, "u64", atomic_load_add_64>;
// undefined def XADD16 : XADD<1, "xadd16", atomic_load_add_16>;
// undefined def XADD8  : XADD<2, "xadd8", atomic_load_add_8>;
}

// bswap16, bswap32, bswap64
class BSWAP<bits<32> SizeOp, string OpcodeStr, BPFSrcType SrcType, list<dag> Pattern>
    : TYPE_ALU_JMP<BPF_END.Value, SrcType.Value,
                   (outs GPR:$dst),
                   (ins GPR:$src),
                   "$dst = "#OpcodeStr#" $src",
                   Pattern> {
  bits<4> dst;

  let Inst{51-48} = dst;
  let Inst{31-0} = SizeOp;
  let BPFClass = BPF_ALU;
}


let Constraints = "$dst = $src" in {
    let Predicates = [BPFIsLittleEndian] in {
        def BE16 : BSWAP<16, "be16", BPF_TO_BE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 48)))]>;
        def BE32 : BSWAP<32, "be32", BPF_TO_BE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 32)))]>;
        def BE64 : BSWAP<64, "be64", BPF_TO_BE, [(set GPR:$dst, (bswap GPR:$src))]>;
    }
    let Predicates = [BPFIsBigEndian] in {
        def LE16 : BSWAP<16, "le16", BPF_TO_LE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 48)))]>;
        def LE32 : BSWAP<32, "le32", BPF_TO_LE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 32)))]>;
        def LE64 : BSWAP<64, "le64", BPF_TO_LE, [(set GPR:$dst, (bswap GPR:$src))]>;
    }
}

let Defs = [R0, R1, R2, R3, R4, R5], Uses = [R6], hasSideEffects = 1,
    hasExtraDefRegAllocReq = 1, hasExtraSrcRegAllocReq = 1, mayLoad = 1 in {
class LOAD_ABS<BPFWidthModifer SizeOp, string OpcodeStr, Intrinsic OpNode>
    : TYPE_LD_ST<BPF_ABS.Value, SizeOp.Value,
                 (outs),
                 (ins GPR:$skb, i64imm:$imm),
                 "r0 = *("#OpcodeStr#" *)skb[$imm]",
                 [(set R0, (OpNode GPR:$skb, i64immSExt32:$imm))]> {
  bits<32> imm;

  let Inst{31-0} = imm;
  let BPFClass = BPF_LD;
}

class LOAD_IND<BPFWidthModifer SizeOp, string OpcodeStr, Intrinsic OpNode>
    : TYPE_LD_ST<BPF_IND.Value, SizeOp.Value,
                 (outs),
                 (ins GPR:$skb, GPR:$val),
                 "r0 = *("#OpcodeStr#" *)skb[$val]",
                 [(set R0, (OpNode GPR:$skb, GPR:$val))]> {
  bits<4> val;

  let Inst{55-52} = val;
  let BPFClass = BPF_LD;
}
}

def LD_ABS_B : LOAD_ABS<BPF_B, "u8", int_bpf_load_byte>;
def LD_ABS_H : LOAD_ABS<BPF_H, "u16", int_bpf_load_half>;
def LD_ABS_W : LOAD_ABS<BPF_W, "u32", int_bpf_load_word>;

def LD_IND_B : LOAD_IND<BPF_B, "u8", int_bpf_load_byte>;
def LD_IND_H : LOAD_IND<BPF_H, "u16", int_bpf_load_half>;
def LD_IND_W : LOAD_IND<BPF_W, "u32", int_bpf_load_word>;

let isCodeGenOnly = 1 in {
  def MOV_32_64 : ALU_RR<BPF_ALU, BPF_MOV,
                         (outs GPR:$dst), (ins GPR32:$src),
                         "$dst = $src", []>;
}

def : Pat<(i64 (sext GPR32:$src)),
          (SRA_ri (SLL_ri (MOV_32_64 GPR32:$src), 32), 32)>;

def : Pat<(i64 (zext GPR32:$src)),
          (SRL_ri (SLL_ri (MOV_32_64 GPR32:$src), 32), 32)>;

// For i64 -> i32 truncation, use the 32-bit subregister directly.
def : Pat<(i32 (trunc GPR:$src)),
          (i32 (EXTRACT_SUBREG GPR:$src, sub_32))>;

// For i32 -> i64 anyext, we don't care about the high bits.
def : Pat<(i64 (anyext GPR32:$src)),
          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32)>;

class STORE32<BPFWidthModifer SizeOp, string OpcodeStr, list<dag> Pattern>
    : TYPE_LD_ST<BPF_MEM.Value, SizeOp.Value,
                 (outs),
                 (ins GPR32:$src, MEMri:$addr),
                 "*("#OpcodeStr#" *)($addr) = $src",
                 Pattern> {
  bits<4> src;
  bits<20> addr;

  let Inst{51-48} = addr{19-16}; // base reg
  let Inst{55-52} = src;
  let Inst{47-32} = addr{15-0}; // offset
  let BPFClass = BPF_STX;
}

class STOREi32<BPFWidthModifer Opc, string OpcodeStr, PatFrag OpNode>
    : STORE32<Opc, OpcodeStr, [(OpNode i32:$src, ADDRri:$addr)]>;

let Predicates = [BPFHasALU32], DecoderNamespace = "BPFALU32" in {
  def STW32 : STOREi32<BPF_W, "u32", store>;
  def STH32 : STOREi32<BPF_H, "u16", truncstorei16>;
  def STB32 : STOREi32<BPF_B, "u8", truncstorei8>;
}

class LOAD32<BPFWidthModifer SizeOp, string OpcodeStr, list<dag> Pattern>
    : TYPE_LD_ST<BPF_MEM.Value, SizeOp.Value,
                (outs GPR32:$dst),
                (ins MEMri:$addr),
                "$dst = *("#OpcodeStr#" *)($addr)",
                Pattern> {
  bits<4> dst;
  bits<20> addr;

  let Inst{51-48} = dst;
  let Inst{55-52} = addr{19-16};
  let Inst{47-32} = addr{15-0};
  let BPFClass = BPF_LDX;
}

class LOADi32<BPFWidthModifer SizeOp, string OpcodeStr, PatFrag OpNode>
    : LOAD32<SizeOp, OpcodeStr, [(set i32:$dst, (OpNode ADDRri:$addr))]>;

let Predicates = [BPFHasALU32], DecoderNamespace = "BPFALU32" in {
  def LDW32 : LOADi32<BPF_W, "u32", load>;
  def LDH32 : LOADi32<BPF_H, "u16", zextloadi16>;
  def LDB32 : LOADi32<BPF_B, "u8", zextloadi8>;
}

let Predicates = [BPFHasALU32] in {
  def : Pat<(truncstorei8 GPR:$src, ADDRri:$dst),
            (STB32 (EXTRACT_SUBREG GPR:$src, sub_32), ADDRri:$dst)>;
  def : Pat<(truncstorei16 GPR:$src, ADDRri:$dst),
            (STH32 (EXTRACT_SUBREG GPR:$src, sub_32), ADDRri:$dst)>;
  def : Pat<(truncstorei32 GPR:$src, ADDRri:$dst),
            (STW32 (EXTRACT_SUBREG GPR:$src, sub_32), ADDRri:$dst)>;
  def : Pat<(i32 (extloadi8 ADDRri:$src)), (i32 (LDB32 ADDRri:$src))>;
  def : Pat<(i32 (extloadi16 ADDRri:$src)), (i32 (LDH32 ADDRri:$src))>;
  def : Pat<(i64 (zextloadi8  ADDRri:$src)),
            (SUBREG_TO_REG (i64 0), (LDB32 ADDRri:$src), sub_32)>;
  def : Pat<(i64 (zextloadi16 ADDRri:$src)),
            (SUBREG_TO_REG (i64 0), (LDH32 ADDRri:$src), sub_32)>;
  def : Pat<(i64 (zextloadi32 ADDRri:$src)),
            (SUBREG_TO_REG (i64 0), (LDW32 ADDRri:$src), sub_32)>;
  def : Pat<(i64 (extloadi8  ADDRri:$src)),
            (SUBREG_TO_REG (i64 0), (LDB32 ADDRri:$src), sub_32)>;
  def : Pat<(i64 (extloadi16 ADDRri:$src)),
            (SUBREG_TO_REG (i64 0), (LDH32 ADDRri:$src), sub_32)>;
  def : Pat<(i64 (extloadi32 ADDRri:$src)),
            (SUBREG_TO_REG (i64 0), (LDW32 ADDRri:$src), sub_32)>;
}

let usesCustomInserter = 1, isCodeGenOnly = 1 in {
    def MEMCPY : Pseudo<
      (outs),
      (ins GPR:$dst, GPR:$src, i64imm:$len, i64imm:$align, variable_ops),
      "#memcpy dst: $dst, src: $src, len: $len, align: $align",
      [(BPFmemcpy GPR:$dst, GPR:$src, imm:$len, imm:$align)]>;
}