Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
//===-- PPCHazardRecognizers.cpp - PowerPC Hazard Recognizer Impls --------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements hazard recognizers for scheduling on PowerPC processors.
//
//===----------------------------------------------------------------------===//

#include "PPCHazardRecognizers.h"
#include "PPC.h"
#include "PPCInstrInfo.h"
#include "PPCTargetMachine.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

#define DEBUG_TYPE "pre-RA-sched"

bool PPCDispatchGroupSBHazardRecognizer::isLoadAfterStore(SUnit *SU) {
  // FIXME: Move this.
  if (isBCTRAfterSet(SU))
    return true;

  const MCInstrDesc *MCID = DAG->getInstrDesc(SU);
  if (!MCID)
    return false;

  if (!MCID->mayLoad())
    return false;

  // SU is a load; for any predecessors in this dispatch group, that are stores,
  // and with which we have an ordering dependency, return true.
  for (unsigned i = 0, ie = (unsigned) SU->Preds.size(); i != ie; ++i) {
    const MCInstrDesc *PredMCID = DAG->getInstrDesc(SU->Preds[i].getSUnit());
    if (!PredMCID || !PredMCID->mayStore())
      continue;

    if (!SU->Preds[i].isNormalMemory() && !SU->Preds[i].isBarrier())
      continue;

    for (unsigned j = 0, je = CurGroup.size(); j != je; ++j)
      if (SU->Preds[i].getSUnit() == CurGroup[j])
        return true;
  }

  return false;
}

bool PPCDispatchGroupSBHazardRecognizer::isBCTRAfterSet(SUnit *SU) {
  const MCInstrDesc *MCID = DAG->getInstrDesc(SU);
  if (!MCID)
    return false;

  if (!MCID->isBranch())
    return false;

  // SU is a branch; for any predecessors in this dispatch group, with which we
  // have a data dependence and set the counter register, return true.
  for (unsigned i = 0, ie = (unsigned) SU->Preds.size(); i != ie; ++i) {
    const MCInstrDesc *PredMCID = DAG->getInstrDesc(SU->Preds[i].getSUnit());
    if (!PredMCID || PredMCID->getSchedClass() != PPC::Sched::IIC_SprMTSPR)
      continue;

    if (SU->Preds[i].isCtrl())
      continue;

    for (unsigned j = 0, je = CurGroup.size(); j != je; ++j)
      if (SU->Preds[i].getSUnit() == CurGroup[j])
        return true;
  }

  return false;
}

// FIXME: Remove this when we don't need this:
namespace llvm { namespace PPC { extern int getNonRecordFormOpcode(uint16_t); } }

// FIXME: A lot of code in PPCDispatchGroupSBHazardRecognizer is P7 specific.

bool PPCDispatchGroupSBHazardRecognizer::mustComeFirst(const MCInstrDesc *MCID,
                                                       unsigned &NSlots) {
  // FIXME: Indirectly, this information is contained in the itinerary, and
  // we should derive it from there instead of separately specifying it
  // here.
  unsigned IIC = MCID->getSchedClass();
  switch (IIC) {
  default:
    NSlots = 1;
    break;
  case PPC::Sched::IIC_IntDivW:
  case PPC::Sched::IIC_IntDivD:
  case PPC::Sched::IIC_LdStLoadUpd:
  case PPC::Sched::IIC_LdStLDU:
  case PPC::Sched::IIC_LdStLFDU:
  case PPC::Sched::IIC_LdStLFDUX:
  case PPC::Sched::IIC_LdStLHA:
  case PPC::Sched::IIC_LdStLHAU:
  case PPC::Sched::IIC_LdStLWA:
  case PPC::Sched::IIC_LdStSTU:
  case PPC::Sched::IIC_LdStSTFDU:
    NSlots = 2;
    break;
  case PPC::Sched::IIC_LdStLoadUpdX:
  case PPC::Sched::IIC_LdStLDUX:
  case PPC::Sched::IIC_LdStLHAUX:
  case PPC::Sched::IIC_LdStLWARX:
  case PPC::Sched::IIC_LdStLDARX:
  case PPC::Sched::IIC_LdStSTUX:
  case PPC::Sched::IIC_LdStSTDCX:
  case PPC::Sched::IIC_LdStSTWCX:
  case PPC::Sched::IIC_BrMCRX: // mtcr
  // FIXME: Add sync/isync (here and in the itinerary).
    NSlots = 4;
    break;
  }

  // FIXME: record-form instructions need a different itinerary class.
  if (NSlots == 1 && PPC::getNonRecordFormOpcode(MCID->getOpcode()) != -1)
    NSlots = 2;

  switch (IIC) {
  default:
    // All multi-slot instructions must come first.
    return NSlots > 1;
  case PPC::Sched::IIC_BrCR: // cr logicals
  case PPC::Sched::IIC_SprMFCR:
  case PPC::Sched::IIC_SprMFCRF:
  case PPC::Sched::IIC_SprMTSPR:
    return true;
  }
}

ScheduleHazardRecognizer::HazardType
PPCDispatchGroupSBHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
  if (Stalls == 0 && isLoadAfterStore(SU))
    return NoopHazard;

  return ScoreboardHazardRecognizer::getHazardType(SU, Stalls);
}

bool PPCDispatchGroupSBHazardRecognizer::ShouldPreferAnother(SUnit *SU) {
  const MCInstrDesc *MCID = DAG->getInstrDesc(SU);
  unsigned NSlots;
  if (MCID && mustComeFirst(MCID, NSlots) && CurSlots)
    return true;

  return ScoreboardHazardRecognizer::ShouldPreferAnother(SU);
}

unsigned PPCDispatchGroupSBHazardRecognizer::PreEmitNoops(SUnit *SU) {
  // We only need to fill out a maximum of 5 slots here: The 6th slot could
  // only be a second branch, and otherwise the next instruction will start a
  // new group.
  if (isLoadAfterStore(SU) && CurSlots < 6) {
    unsigned Directive =
        DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
    // If we're using a special group-terminating nop, then we need only one.
    // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
    if (Directive == PPC::DIR_PWR6 || Directive == PPC::DIR_PWR7 ||
        Directive == PPC::DIR_PWR8 || Directive == PPC::DIR_PWR9)
      return 1;

    return 5 - CurSlots;
  }

  return ScoreboardHazardRecognizer::PreEmitNoops(SU);
}

void PPCDispatchGroupSBHazardRecognizer::EmitInstruction(SUnit *SU) {
  const MCInstrDesc *MCID = DAG->getInstrDesc(SU);
  if (MCID) {
    if (CurSlots == 5 || (MCID->isBranch() && CurBranches == 1)) {
      CurGroup.clear();
      CurSlots = CurBranches = 0;
    } else {
      LLVM_DEBUG(dbgs() << "**** Adding to dispatch group: ");
      LLVM_DEBUG(DAG->dumpNode(*SU));

      unsigned NSlots;
      bool MustBeFirst = mustComeFirst(MCID, NSlots);

      // If this instruction must come first, but does not, then it starts a
      // new group.
      if (MustBeFirst && CurSlots) {
        CurSlots = CurBranches = 0;
        CurGroup.clear();
      }

      CurSlots += NSlots;
      CurGroup.push_back(SU);

      if (MCID->isBranch())
        ++CurBranches;
    }
  }

  return ScoreboardHazardRecognizer::EmitInstruction(SU);
}

void PPCDispatchGroupSBHazardRecognizer::AdvanceCycle() {
  return ScoreboardHazardRecognizer::AdvanceCycle();
}

void PPCDispatchGroupSBHazardRecognizer::RecedeCycle() {
  llvm_unreachable("Bottom-up scheduling not supported");
}

void PPCDispatchGroupSBHazardRecognizer::Reset() {
  CurGroup.clear();
  CurSlots = CurBranches = 0;
  return ScoreboardHazardRecognizer::Reset();
}

void PPCDispatchGroupSBHazardRecognizer::EmitNoop() {
  unsigned Directive =
      DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
  // If the group has now filled all of its slots, or if we're using a special
  // group-terminating nop, the group is complete.
  // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
  if (Directive == PPC::DIR_PWR6 || Directive == PPC::DIR_PWR7 ||
      Directive == PPC::DIR_PWR8 || Directive == PPC::DIR_PWR9 ||
      CurSlots == 6) {
    CurGroup.clear();
    CurSlots = CurBranches = 0;
  } else {
    CurGroup.push_back(nullptr);
    ++CurSlots;
  }
}

//===----------------------------------------------------------------------===//
// PowerPC 970 Hazard Recognizer
//
// This models the dispatch group formation of the PPC970 processor.  Dispatch
// groups are bundles of up to five instructions that can contain various mixes
// of instructions.  The PPC970 can dispatch a peak of 4 non-branch and one
// branch instruction per-cycle.
//
// There are a number of restrictions to dispatch group formation: some
// instructions can only be issued in the first slot of a dispatch group, & some
// instructions fill an entire dispatch group.  Additionally, only branches can
// issue in the 5th (last) slot.
//
// Finally, there are a number of "structural" hazards on the PPC970.  These
// conditions cause large performance penalties due to misprediction, recovery,
// and replay logic that has to happen.  These cases include setting a CTR and
// branching through it in the same dispatch group, and storing to an address,
// then loading from the same address within a dispatch group.  To avoid these
// conditions, we insert no-op instructions when appropriate.
//
// FIXME: This is missing some significant cases:
//   1. Modeling of microcoded instructions.
//   2. Handling of serialized operations.
//   3. Handling of the esoteric cases in "Resource-based Instruction Grouping".
//

PPCHazardRecognizer970::PPCHazardRecognizer970(const ScheduleDAG &DAG)
    : DAG(DAG) {
  EndDispatchGroup();
}

void PPCHazardRecognizer970::EndDispatchGroup() {
  LLVM_DEBUG(errs() << "=== Start of dispatch group\n");
  NumIssued = 0;

  // Structural hazard info.
  HasCTRSet = false;
  NumStores = 0;
}


PPCII::PPC970_Unit
PPCHazardRecognizer970::GetInstrType(unsigned Opcode,
                                     bool &isFirst, bool &isSingle,
                                     bool &isCracked,
                                     bool &isLoad, bool &isStore) {
  const MCInstrDesc &MCID = DAG.TII->get(Opcode);

  isLoad  = MCID.mayLoad();
  isStore = MCID.mayStore();

  uint64_t TSFlags = MCID.TSFlags;

  isFirst   = TSFlags & PPCII::PPC970_First;
  isSingle  = TSFlags & PPCII::PPC970_Single;
  isCracked = TSFlags & PPCII::PPC970_Cracked;
  return (PPCII::PPC970_Unit)(TSFlags & PPCII::PPC970_Mask);
}

/// isLoadOfStoredAddress - If we have a load from the previously stored pointer
/// as indicated by StorePtr1/StorePtr2/StoreSize, return true.
bool PPCHazardRecognizer970::
isLoadOfStoredAddress(uint64_t LoadSize, int64_t LoadOffset,
  const Value *LoadValue) const {
  for (unsigned i = 0, e = NumStores; i != e; ++i) {
    // Handle exact and commuted addresses.
    if (LoadValue == StoreValue[i] && LoadOffset == StoreOffset[i])
      return true;

    // Okay, we don't have an exact match, if this is an indexed offset, see if
    // we have overlap (which happens during fp->int conversion for example).
    if (StoreValue[i] == LoadValue) {
      // Okay the base pointers match, so we have [c1+r] vs [c2+r].  Check
      // to see if the load and store actually overlap.
      if (StoreOffset[i] < LoadOffset) {
        if (int64_t(StoreOffset[i]+StoreSize[i]) > LoadOffset) return true;
      } else {
        if (int64_t(LoadOffset+LoadSize) > StoreOffset[i]) return true;
      }
    }
  }
  return false;
}

/// getHazardType - We return hazard for any non-branch instruction that would
/// terminate the dispatch group.  We turn NoopHazard for any
/// instructions that wouldn't terminate the dispatch group that would cause a
/// pipeline flush.
ScheduleHazardRecognizer::HazardType PPCHazardRecognizer970::
getHazardType(SUnit *SU, int Stalls) {
  assert(Stalls == 0 && "PPC hazards don't support scoreboard lookahead");

  MachineInstr *MI = SU->getInstr();

  if (MI->isDebugInstr())
    return NoHazard;

  unsigned Opcode = MI->getOpcode();
  bool isFirst, isSingle, isCracked, isLoad, isStore;
  PPCII::PPC970_Unit InstrType =
    GetInstrType(Opcode, isFirst, isSingle, isCracked,
                 isLoad, isStore);
  if (InstrType == PPCII::PPC970_Pseudo) return NoHazard;

  // We can only issue a PPC970_First/PPC970_Single instruction (such as
  // crand/mtspr/etc) if this is the first cycle of the dispatch group.
  if (NumIssued != 0 && (isFirst || isSingle))
    return Hazard;

  // If this instruction is cracked into two ops by the decoder, we know that
  // it is not a branch and that it cannot issue if 3 other instructions are
  // already in the dispatch group.
  if (isCracked && NumIssued > 2)
    return Hazard;

  switch (InstrType) {
  default: llvm_unreachable("Unknown instruction type!");
  case PPCII::PPC970_FXU:
  case PPCII::PPC970_LSU:
  case PPCII::PPC970_FPU:
  case PPCII::PPC970_VALU:
  case PPCII::PPC970_VPERM:
    // We can only issue a branch as the last instruction in a group.
    if (NumIssued == 4) return Hazard;
    break;
  case PPCII::PPC970_CRU:
    // We can only issue a CR instruction in the first two slots.
    if (NumIssued >= 2) return Hazard;
    break;
  case PPCII::PPC970_BRU:
    break;
  }

  // Do not allow MTCTR and BCTRL to be in the same dispatch group.
  if (HasCTRSet && Opcode == PPC::BCTRL)
    return NoopHazard;

  // If this is a load following a store, make sure it's not to the same or
  // overlapping address.
  if (isLoad && NumStores && !MI->memoperands_empty()) {
    MachineMemOperand *MO = *MI->memoperands_begin();
    if (isLoadOfStoredAddress(MO->getSize(),
                              MO->getOffset(), MO->getValue()))
      return NoopHazard;
  }

  return NoHazard;
}

void PPCHazardRecognizer970::EmitInstruction(SUnit *SU) {
  MachineInstr *MI = SU->getInstr();

  if (MI->isDebugInstr())
    return;

  unsigned Opcode = MI->getOpcode();
  bool isFirst, isSingle, isCracked, isLoad, isStore;
  PPCII::PPC970_Unit InstrType =
    GetInstrType(Opcode, isFirst, isSingle, isCracked,
                 isLoad, isStore);
  if (InstrType == PPCII::PPC970_Pseudo) return;

  // Update structural hazard information.
  if (Opcode == PPC::MTCTR || Opcode == PPC::MTCTR8) HasCTRSet = true;

  // Track the address stored to.
  if (isStore && NumStores < 4 && !MI->memoperands_empty()) {
    MachineMemOperand *MO = *MI->memoperands_begin();
    StoreSize[NumStores] = MO->getSize();
    StoreOffset[NumStores] = MO->getOffset();
    StoreValue[NumStores] = MO->getValue();
    ++NumStores;
  }

  if (InstrType == PPCII::PPC970_BRU || isSingle)
    NumIssued = 4;  // Terminate a d-group.
  ++NumIssued;

  // If this instruction is cracked into two ops by the decoder, remember that
  // we issued two pieces.
  if (isCracked)
    ++NumIssued;

  if (NumIssued == 5)
    EndDispatchGroup();
}

void PPCHazardRecognizer970::AdvanceCycle() {
  assert(NumIssued < 5 && "Illegal dispatch group!");
  ++NumIssued;
  if (NumIssued == 5)
    EndDispatchGroup();
}

void PPCHazardRecognizer970::Reset() {
  EndDispatchGroup();
}