Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the various pseudo instructions used by the compiler,
// as well as Pat patterns used during instruction selection.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Pattern Matching Support

def GetLo32XForm : SDNodeXForm<imm, [{
  // Transformation function: get the low 32 bits.
  return getI32Imm((uint32_t)N->getZExtValue(), SDLoc(N));
}]>;

def GetLo8XForm : SDNodeXForm<imm, [{
  // Transformation function: get the low 8 bits.
  return getI8Imm((uint8_t)N->getZExtValue(), SDLoc(N));
}]>;


//===----------------------------------------------------------------------===//
// Random Pseudo Instructions.

// PIC base construction.  This expands to code that looks like this:
//     call  $next_inst
//     popl %destreg"
let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP, SSP],
    SchedRW = [WriteJump] in
  def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
                      "", []>;

// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
// a stack adjustment and the codegen must know that they may modify the stack
// pointer before prolog-epilog rewriting occurs.
// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
// sub / add which can clobber EFLAGS.
let Defs = [ESP, EFLAGS, SSP], Uses = [ESP, SSP], SchedRW = [WriteALU] in {
def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs),
                           (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3),
                           "#ADJCALLSTACKDOWN", []>, Requires<[NotLP64]>;
def ADJCALLSTACKUP32   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
                           "#ADJCALLSTACKUP",
                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
                           Requires<[NotLP64]>;
}
def : Pat<(X86callseq_start timm:$amt1, timm:$amt2),
       (ADJCALLSTACKDOWN32 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[NotLP64]>;


// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
// a stack adjustment and the codegen must know that they may modify the stack
// pointer before prolog-epilog rewriting occurs.
// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
// sub / add which can clobber EFLAGS.
let Defs = [RSP, EFLAGS, SSP], Uses = [RSP, SSP], SchedRW = [WriteALU] in {
def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs),
                           (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3),
                           "#ADJCALLSTACKDOWN", []>, Requires<[IsLP64]>;
def ADJCALLSTACKUP64   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
                           "#ADJCALLSTACKUP",
                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
                           Requires<[IsLP64]>;
}
def : Pat<(X86callseq_start timm:$amt1, timm:$amt2),
        (ADJCALLSTACKDOWN64 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[IsLP64]>;

let SchedRW = [WriteSystem] in {

// x86-64 va_start lowering magic.
let usesCustomInserter = 1, Defs = [EFLAGS] in {
def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
                              (outs),
                              (ins GR8:$al,
                                   i64imm:$regsavefi, i64imm:$offset,
                                   variable_ops),
                              "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
                              [(X86vastart_save_xmm_regs GR8:$al,
                                                         imm:$regsavefi,
                                                         imm:$offset),
                               (implicit EFLAGS)]>;

// The VAARG_64 pseudo-instruction takes the address of the va_list,
// and places the address of the next argument into a register.
let Defs = [EFLAGS] in
def VAARG_64 : I<0, Pseudo,
                 (outs GR64:$dst),
                 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
                 "#VAARG_64 $dst, $ap, $size, $mode, $align",
                 [(set GR64:$dst,
                    (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
                  (implicit EFLAGS)]>;


// When using segmented stacks these are lowered into instructions which first
// check if the current stacklet has enough free memory. If it does, memory is
// allocated by bumping the stack pointer. Otherwise memory is allocated from
// the heap.

let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
                      "# variable sized alloca for segmented stacks",
                      [(set GR32:$dst,
                         (X86SegAlloca GR32:$size))]>,
                    Requires<[NotLP64]>;

let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
                      "# variable sized alloca for segmented stacks",
                      [(set GR64:$dst,
                         (X86SegAlloca GR64:$size))]>,
                    Requires<[In64BitMode]>;
}

// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
// targets.  These calls are needed to probe the stack when allocating more than
// 4k bytes in one go. Touching the stack at 4K increments is necessary to
// ensure that the guard pages used by the OS virtual memory manager are
// allocated in correct sequence.
// The main point of having separate instruction are extra unmodelled effects
// (compared to ordinary calls) like stack pointer change.

let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
def WIN_ALLOCA_32 : I<0, Pseudo, (outs), (ins GR32:$size),
                     "# dynamic stack allocation",
                     [(X86WinAlloca GR32:$size)]>,
                     Requires<[NotLP64]>;

let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
def WIN_ALLOCA_64 : I<0, Pseudo, (outs), (ins GR64:$size),
                     "# dynamic stack allocation",
                     [(X86WinAlloca GR64:$size)]>,
                     Requires<[In64BitMode]>;
} // SchedRW

// These instructions XOR the frame pointer into a GPR. They are used in some
// stack protection schemes. These are post-RA pseudos because we only know the
// frame register after register allocation.
let Constraints = "$src = $dst", isMoveImm = 1, isPseudo = 1, Defs = [EFLAGS] in {
  def XOR32_FP : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src),
                  "xorl\t$$FP, $src", []>,
                  Requires<[NotLP64]>, Sched<[WriteALU]>;
  def XOR64_FP : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src),
                  "xorq\t$$FP $src", []>,
                  Requires<[In64BitMode]>, Sched<[WriteALU]>;
}

//===----------------------------------------------------------------------===//
// EH Pseudo Instructions
//
let SchedRW = [WriteSystem] in {
let isTerminator = 1, isReturn = 1, isBarrier = 1,
    hasCtrlDep = 1, isCodeGenOnly = 1 in {
def EH_RETURN   : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
                    "ret\t#eh_return, addr: $addr",
                    [(X86ehret GR32:$addr)]>, Sched<[WriteJumpLd]>;

}

let isTerminator = 1, isReturn = 1, isBarrier = 1,
    hasCtrlDep = 1, isCodeGenOnly = 1 in {
def EH_RETURN64   : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
                     "ret\t#eh_return, addr: $addr",
                     [(X86ehret GR64:$addr)]>, Sched<[WriteJumpLd]>;

}

let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1,
    isCodeGenOnly = 1, isReturn = 1, isEHScopeReturn = 1 in {
  def CLEANUPRET : I<0, Pseudo, (outs), (ins), "# CLEANUPRET", [(cleanupret)]>;

  // CATCHRET needs a custom inserter for SEH.
  let usesCustomInserter = 1 in
    def CATCHRET : I<0, Pseudo, (outs), (ins brtarget32:$dst, brtarget32:$from),
                     "# CATCHRET",
                     [(catchret bb:$dst, bb:$from)]>;
}

let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1,
    usesCustomInserter = 1 in
def CATCHPAD : I<0, Pseudo, (outs), (ins), "# CATCHPAD", [(catchpad)]>;

// This instruction is responsible for re-establishing stack pointers after an
// exception has been caught and we are rejoining normal control flow in the
// parent function or funclet. It generally sets ESP and EBP, and optionally
// ESI. It is only needed for 32-bit WinEH, as the runtime restores CSRs for us
// elsewhere.
let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1 in
def EH_RESTORE : I<0, Pseudo, (outs), (ins), "# EH_RESTORE", []>;

let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
    usesCustomInserter = 1 in {
  def EH_SjLj_SetJmp32  : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
                            "#EH_SJLJ_SETJMP32",
                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
                          Requires<[Not64BitMode]>;
  def EH_SjLj_SetJmp64  : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
                            "#EH_SJLJ_SETJMP64",
                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
                          Requires<[In64BitMode]>;
  let isTerminator = 1 in {
  def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
                            "#EH_SJLJ_LONGJMP32",
                            [(X86eh_sjlj_longjmp addr:$buf)]>,
                          Requires<[Not64BitMode]>;
  def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
                            "#EH_SJLJ_LONGJMP64",
                            [(X86eh_sjlj_longjmp addr:$buf)]>,
                          Requires<[In64BitMode]>;
  }
}

let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
  def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
                        "#EH_SjLj_Setup\t$dst", []>;
}
} // SchedRW

//===----------------------------------------------------------------------===//
// Pseudo instructions used by unwind info.
//
let isPseudo = 1, SchedRW = [WriteSystem] in {
  def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
                            "#SEH_PushReg $reg", []>;
  def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
                            "#SEH_SaveReg $reg, $dst", []>;
  def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
                            "#SEH_SaveXMM $reg, $dst", []>;
  def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
                            "#SEH_StackAlloc $size", []>;
  def SEH_StackAlign : I<0, Pseudo, (outs), (ins i32imm:$align),
                            "#SEH_StackAlign $align", []>;
  def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
                            "#SEH_SetFrame $reg, $offset", []>;
  def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
                            "#SEH_PushFrame $mode", []>;
  def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
                            "#SEH_EndPrologue", []>;
  def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
                            "#SEH_Epilogue", []>;
}

//===----------------------------------------------------------------------===//
// Pseudo instructions used by segmented stacks.
//

// This is lowered into a RET instruction by MCInstLower.  We need
// this so that we don't have to have a MachineBasicBlock which ends
// with a RET and also has successors.
let isPseudo = 1, SchedRW = [WriteJumpLd] in {
def MORESTACK_RET: I<0, Pseudo, (outs), (ins), "", []>;

// This instruction is lowered to a RET followed by a MOV.  The two
// instructions are not generated on a higher level since then the
// verifier sees a MachineBasicBlock ending with a non-terminator.
def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins), "", []>;
}

//===----------------------------------------------------------------------===//
// Alias Instructions
//===----------------------------------------------------------------------===//

// Alias instruction mapping movr0 to xor.
// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
    isPseudo = 1, isMoveImm = 1, AddedComplexity = 10 in
def MOV32r0  : I<0, Pseudo, (outs GR32:$dst), (ins), "",
                 [(set GR32:$dst, 0)]>, Sched<[WriteZero]>;

// Other widths can also make use of the 32-bit xor, which may have a smaller
// encoding and avoid partial register updates.
let AddedComplexity = 10 in {
def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)>;
}

let Predicates = [OptForSize, Not64BitMode],
    AddedComplexity = 10 in {
  let SchedRW = [WriteALU] in {
  // Pseudo instructions for materializing 1 and -1 using XOR+INC/DEC,
  // which only require 3 bytes compared to MOV32ri which requires 5.
  let Defs = [EFLAGS], isReMaterializable = 1, isPseudo = 1 in {
    def MOV32r1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
                        [(set GR32:$dst, 1)]>;
    def MOV32r_1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
                        [(set GR32:$dst, -1)]>;
  }
  } // SchedRW

  // MOV16ri is 4 bytes, so the instructions above are smaller.
  def : Pat<(i16 1), (EXTRACT_SUBREG (MOV32r1), sub_16bit)>;
  def : Pat<(i16 -1), (EXTRACT_SUBREG (MOV32r_1), sub_16bit)>;
}

let isReMaterializable = 1, isPseudo = 1, AddedComplexity = 5,
    SchedRW = [WriteALU] in {
// AddedComplexity higher than MOV64ri but lower than MOV32r0 and MOV32r1.
def MOV32ImmSExti8 : I<0, Pseudo, (outs GR32:$dst), (ins i32i8imm:$src), "",
                       [(set GR32:$dst, i32immSExt8:$src)]>,
                       Requires<[OptForMinSize, NotWin64WithoutFP]>;
def MOV64ImmSExti8 : I<0, Pseudo, (outs GR64:$dst), (ins i64i8imm:$src), "",
                       [(set GR64:$dst, i64immSExt8:$src)]>,
                       Requires<[OptForMinSize, NotWin64WithoutFP]>;
}

// Materialize i64 constant where top 32-bits are zero. This could theoretically
// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
// that would make it more difficult to rematerialize.
let isReMaterializable = 1, isAsCheapAsAMove = 1,
    isPseudo = 1, hasSideEffects = 0, SchedRW = [WriteMove] in
def MOV32ri64 : I<0, Pseudo, (outs GR64:$dst), (ins i64i32imm:$src), "", []>;

// This 64-bit pseudo-move can be used for both a 64-bit constant that is
// actually the zero-extension of a 32-bit constant and for labels in the
// x86-64 small code model.
def mov64imm32 : ComplexPattern<i64, 1, "selectMOV64Imm32", [imm, X86Wrapper]>;

def : Pat<(i64 mov64imm32:$src), (MOV32ri64 mov64imm32:$src)>;

// Use sbb to materialize carry bit.
let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
// However, Pat<> can't replicate the destination reg into the inputs of the
// result.
def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
                 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
                 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
                 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
                 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
} // isCodeGenOnly


def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
          (SETB_C16r)>;
def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
          (SETB_C32r)>;
def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
          (SETB_C64r)>;

def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
          (SETB_C16r)>;
def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
          (SETB_C32r)>;
def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
          (SETB_C64r)>;

// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
// will be eliminated and that the sbb can be extended up to a wider type.  When
// this happens, it is great.  However, if we are left with an 8-bit sbb and an
// and, we might as well just match it as a setb.
def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
          (SETBr)>;

// Patterns to give priority when both inputs are zero so that we don't use
// an immediate for the RHS.
// TODO: Should we use a 32-bit sbb for 8/16 to push the extract_subreg out?
def : Pat<(X86sbb_flag (i8 0), (i8 0), EFLAGS),
          (SBB8rr (EXTRACT_SUBREG (MOV32r0), sub_8bit),
                  (EXTRACT_SUBREG (MOV32r0), sub_8bit))>;
def : Pat<(X86sbb_flag (i16 0), (i16 0), EFLAGS),
          (SBB16rr (EXTRACT_SUBREG (MOV32r0), sub_16bit),
                   (EXTRACT_SUBREG (MOV32r0), sub_16bit))>;
def : Pat<(X86sbb_flag (i32 0), (i32 0), EFLAGS),
          (SBB32rr (MOV32r0), (MOV32r0))>;
def : Pat<(X86sbb_flag (i64 0), (i64 0), EFLAGS),
          (SBB64rr (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit),
                   (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit))>;

//===----------------------------------------------------------------------===//
// String Pseudo Instructions
//
let SchedRW = [WriteMicrocoded] in {
let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins),
                    "{rep;movsb (%esi), %es:(%edi)|rep movsb es:[edi], [esi]}",
                    [(X86rep_movs i8)]>, REP, AdSize32,
                   Requires<[NotLP64]>;
def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins),
                    "{rep;movsw (%esi), %es:(%edi)|rep movsw es:[edi], [esi]}",
                    [(X86rep_movs i16)]>, REP, AdSize32, OpSize16,
                   Requires<[NotLP64]>;
def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins),
                    "{rep;movsl (%esi), %es:(%edi)|rep movsd es:[edi], [esi]}",
                    [(X86rep_movs i32)]>, REP, AdSize32, OpSize32,
                   Requires<[NotLP64]>;
def REP_MOVSQ_32 : RI<0xA5, RawFrm, (outs), (ins),
                    "{rep;movsq (%esi), %es:(%edi)|rep movsq es:[edi], [esi]}",
                    [(X86rep_movs i64)]>, REP, AdSize32,
                   Requires<[NotLP64, In64BitMode]>;
}

let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins),
                    "{rep;movsb (%rsi), %es:(%rdi)|rep movsb es:[rdi], [rsi]}",
                    [(X86rep_movs i8)]>, REP, AdSize64,
                   Requires<[IsLP64]>;
def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins),
                    "{rep;movsw (%rsi), %es:(%rdi)|rep movsw es:[rdi], [rsi]}",
                    [(X86rep_movs i16)]>, REP, AdSize64, OpSize16,
                   Requires<[IsLP64]>;
def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins),
                    "{rep;movsl (%rsi), %es:(%rdi)|rep movsdi es:[rdi], [rsi]}",
                    [(X86rep_movs i32)]>, REP, AdSize64, OpSize32,
                   Requires<[IsLP64]>;
def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins),
                    "{rep;movsq (%rsi), %es:(%rdi)|rep movsq es:[rdi], [rsi]}",
                    [(X86rep_movs i64)]>, REP, AdSize64,
                   Requires<[IsLP64]>;
}

// FIXME: Should use "(X86rep_stos AL)" as the pattern.
let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
  let Uses = [AL,ECX,EDI] in
  def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins),
                       "{rep;stosb %al, %es:(%edi)|rep stosb es:[edi], al}",
                      [(X86rep_stos i8)]>, REP, AdSize32,
                     Requires<[NotLP64]>;
  let Uses = [AX,ECX,EDI] in
  def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins),
                      "{rep;stosw %ax, %es:(%edi)|rep stosw es:[edi], ax}",
                      [(X86rep_stos i16)]>, REP, AdSize32, OpSize16,
                     Requires<[NotLP64]>;
  let Uses = [EAX,ECX,EDI] in
  def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins),
                      "{rep;stosl %eax, %es:(%edi)|rep stosd es:[edi], eax}",
                      [(X86rep_stos i32)]>, REP, AdSize32, OpSize32,
                     Requires<[NotLP64]>;
  let Uses = [RAX,RCX,RDI] in
  def REP_STOSQ_32 : RI<0xAB, RawFrm, (outs), (ins),
                        "{rep;stosq %rax, %es:(%edi)|rep stosq es:[edi], rax}",
                        [(X86rep_stos i64)]>, REP, AdSize32,
                        Requires<[NotLP64, In64BitMode]>;
}

let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
  let Uses = [AL,RCX,RDI] in
  def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins),
                       "{rep;stosb %al, %es:(%rdi)|rep stosb es:[rdi], al}",
                       [(X86rep_stos i8)]>, REP, AdSize64,
                       Requires<[IsLP64]>;
  let Uses = [AX,RCX,RDI] in
  def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins),
                       "{rep;stosw %ax, %es:(%rdi)|rep stosw es:[rdi], ax}",
                       [(X86rep_stos i16)]>, REP, AdSize64, OpSize16,
                       Requires<[IsLP64]>;
  let Uses = [RAX,RCX,RDI] in
  def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins),
                      "{rep;stosl %eax, %es:(%rdi)|rep stosd es:[rdi], eax}",
                       [(X86rep_stos i32)]>, REP, AdSize64, OpSize32,
                       Requires<[IsLP64]>;

  let Uses = [RAX,RCX,RDI] in
  def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins),
                        "{rep;stosq %rax, %es:(%rdi)|rep stosq es:[rdi], rax}",
                        [(X86rep_stos i64)]>, REP, AdSize64,
                        Requires<[IsLP64]>;
}
} // SchedRW

//===----------------------------------------------------------------------===//
// Thread Local Storage Instructions
//
let SchedRW = [WriteSystem] in {

// ELF TLS Support
// All calls clobber the non-callee saved registers. ESP is marked as
// a use to prevent stack-pointer assignments that appear immediately
// before calls from potentially appearing dead.
let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
            ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF],
    usesCustomInserter = 1, Uses = [ESP, SSP] in {
def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
                  "# TLS_addr32",
                  [(X86tlsaddr tls32addr:$sym)]>,
                  Requires<[Not64BitMode]>;
def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
                  "# TLS_base_addr32",
                  [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
                  Requires<[Not64BitMode]>;
}

// All calls clobber the non-callee saved registers. RSP is marked as
// a use to prevent stack-pointer assignments that appear immediately
// before calls from potentially appearing dead.
let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
            FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
            ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF],
    usesCustomInserter = 1, Uses = [RSP, SSP] in {
def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
                   "# TLS_addr64",
                  [(X86tlsaddr tls64addr:$sym)]>,
                  Requires<[In64BitMode]>;
def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
                   "# TLS_base_addr64",
                  [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
                  Requires<[In64BitMode]>;
}

// Darwin TLS Support
// For i386, the address of the thunk is passed on the stack, on return the
// address of the variable is in %eax.  %ecx is trashed during the function
// call.  All other registers are preserved.
let Defs = [EAX, ECX, EFLAGS, DF],
    Uses = [ESP, SSP],
    usesCustomInserter = 1 in
def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
                "# TLSCall_32",
                [(X86TLSCall addr:$sym)]>,
                Requires<[Not64BitMode]>;

// For x86_64, the address of the thunk is passed in %rdi, but the
// pseudo directly use the symbol, so do not add an implicit use of
// %rdi. The lowering will do the right thing with RDI.
// On return the address of the variable is in %rax.  All other
// registers are preserved.
let Defs = [RAX, EFLAGS, DF],
    Uses = [RSP, SSP],
    usesCustomInserter = 1 in
def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
                  "# TLSCall_64",
                  [(X86TLSCall addr:$sym)]>,
                  Requires<[In64BitMode]>;
} // SchedRW

//===----------------------------------------------------------------------===//
// Conditional Move Pseudo Instructions

// CMOV* - Used to implement the SELECT DAG operation.  Expanded after
// instruction selection into a branch sequence.
multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> {
  def CMOV#NAME  : I<0, Pseudo,
                    (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond),
                    "#CMOV_"#NAME#" PSEUDO!",
                    [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, imm:$cond,
                                                EFLAGS)))]>;
}

let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS] in {
  // X86 doesn't have 8-bit conditional moves. Use a customInserter to
  // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
  // however that requires promoting the operands, and can induce additional
  // i8 register pressure.
  defm _GR8 : CMOVrr_PSEUDO<GR8, i8>;

  let Predicates = [NoCMov] in {
    defm _GR32 : CMOVrr_PSEUDO<GR32, i32>;
    defm _GR16 : CMOVrr_PSEUDO<GR16, i16>;
  } // Predicates = [NoCMov]

  // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
  // SSE1/SSE2.
  let Predicates = [FPStackf32] in
    defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>;

  let Predicates = [FPStackf64] in
    defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>;

  defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>;

  defm _FR32   : CMOVrr_PSEUDO<FR32, f32>;
  defm _FR64   : CMOVrr_PSEUDO<FR64, f64>;
  let Predicates = [NoVLX] in {
    defm _VR128  : CMOVrr_PSEUDO<VR128, v2i64>;
    defm _VR256  : CMOVrr_PSEUDO<VR256, v4i64>;
  }
  let Predicates = [HasVLX] in {
    defm _VR128X : CMOVrr_PSEUDO<VR128X, v2i64>;
    defm _VR256X : CMOVrr_PSEUDO<VR256X, v4i64>;
  }
  defm _VR512  : CMOVrr_PSEUDO<VR512, v8i64>;
  defm _VK2    : CMOVrr_PSEUDO<VK2,  v2i1>;
  defm _VK4    : CMOVrr_PSEUDO<VK4,  v4i1>;
  defm _VK8    : CMOVrr_PSEUDO<VK8,  v8i1>;
  defm _VK16   : CMOVrr_PSEUDO<VK16, v16i1>;
  defm _VK32   : CMOVrr_PSEUDO<VK32, v32i1>;
  defm _VK64   : CMOVrr_PSEUDO<VK64, v64i1>;
} // usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS]

def : Pat<(f128 (X86cmov VR128:$t, VR128:$f, imm:$cond, EFLAGS)),
          (CMOV_VR128 VR128:$t, VR128:$f, imm:$cond)>;

let Predicates = [NoVLX] in {
  def : Pat<(v16i8 (X86cmov VR128:$t, VR128:$f, imm:$cond, EFLAGS)),
            (CMOV_VR128 VR128:$t, VR128:$f, imm:$cond)>;
  def : Pat<(v8i16 (X86cmov VR128:$t, VR128:$f, imm:$cond, EFLAGS)),
            (CMOV_VR128 VR128:$t, VR128:$f, imm:$cond)>;
  def : Pat<(v4i32 (X86cmov VR128:$t, VR128:$f, imm:$cond, EFLAGS)),
            (CMOV_VR128 VR128:$t, VR128:$f, imm:$cond)>;
  def : Pat<(v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond, EFLAGS)),
            (CMOV_VR128 VR128:$t, VR128:$f, imm:$cond)>;
  def : Pat<(v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond, EFLAGS)),
            (CMOV_VR128 VR128:$t, VR128:$f, imm:$cond)>;

  def : Pat<(v32i8 (X86cmov VR256:$t, VR256:$f, imm:$cond, EFLAGS)),
            (CMOV_VR256 VR256:$t, VR256:$f, imm:$cond)>;
  def : Pat<(v16i16 (X86cmov VR256:$t, VR256:$f, imm:$cond, EFLAGS)),
            (CMOV_VR256 VR256:$t, VR256:$f, imm:$cond)>;
  def : Pat<(v8i32 (X86cmov VR256:$t, VR256:$f, imm:$cond, EFLAGS)),
            (CMOV_VR256 VR256:$t, VR256:$f, imm:$cond)>;
  def : Pat<(v8f32 (X86cmov VR256:$t, VR256:$f, imm:$cond, EFLAGS)),
            (CMOV_VR256 VR256:$t, VR256:$f, imm:$cond)>;
  def : Pat<(v4f64 (X86cmov VR256:$t, VR256:$f, imm:$cond, EFLAGS)),
            (CMOV_VR256 VR256:$t, VR256:$f, imm:$cond)>;
}
let Predicates = [HasVLX] in {
  def : Pat<(v16i8 (X86cmov VR128X:$t, VR128X:$f, imm:$cond, EFLAGS)),
            (CMOV_VR128X VR128X:$t, VR128X:$f, imm:$cond)>;
  def : Pat<(v8i16 (X86cmov VR128X:$t, VR128X:$f, imm:$cond, EFLAGS)),
            (CMOV_VR128X VR128X:$t, VR128X:$f, imm:$cond)>;
  def : Pat<(v4i32 (X86cmov VR128X:$t, VR128X:$f, imm:$cond, EFLAGS)),
            (CMOV_VR128X VR128X:$t, VR128X:$f, imm:$cond)>;
  def : Pat<(v4f32 (X86cmov VR128X:$t, VR128X:$f, imm:$cond, EFLAGS)),
            (CMOV_VR128X VR128X:$t, VR128X:$f, imm:$cond)>;
  def : Pat<(v2f64 (X86cmov VR128X:$t, VR128X:$f, imm:$cond, EFLAGS)),
            (CMOV_VR128X VR128X:$t, VR128X:$f, imm:$cond)>;

  def : Pat<(v32i8 (X86cmov VR256X:$t, VR256X:$f, imm:$cond, EFLAGS)),
            (CMOV_VR256X VR256X:$t, VR256X:$f, imm:$cond)>;
  def : Pat<(v16i16 (X86cmov VR256X:$t, VR256X:$f, imm:$cond, EFLAGS)),
            (CMOV_VR256X VR256X:$t, VR256X:$f, imm:$cond)>;
  def : Pat<(v8i32 (X86cmov VR256X:$t, VR256X:$f, imm:$cond, EFLAGS)),
            (CMOV_VR256X VR256X:$t, VR256X:$f, imm:$cond)>;
  def : Pat<(v8f32 (X86cmov VR256X:$t, VR256X:$f, imm:$cond, EFLAGS)),
            (CMOV_VR256X VR256X:$t, VR256X:$f, imm:$cond)>;
  def : Pat<(v4f64 (X86cmov VR256X:$t, VR256X:$f, imm:$cond, EFLAGS)),
            (CMOV_VR256X VR256X:$t, VR256X:$f, imm:$cond)>;
}

def : Pat<(v64i8 (X86cmov VR512:$t, VR512:$f, imm:$cond, EFLAGS)),
          (CMOV_VR512 VR512:$t, VR512:$f, imm:$cond)>;
def : Pat<(v32i16 (X86cmov VR512:$t, VR512:$f, imm:$cond, EFLAGS)),
          (CMOV_VR512 VR512:$t, VR512:$f, imm:$cond)>;
def : Pat<(v16i32 (X86cmov VR512:$t, VR512:$f, imm:$cond, EFLAGS)),
          (CMOV_VR512 VR512:$t, VR512:$f, imm:$cond)>;
def : Pat<(v16f32 (X86cmov VR512:$t, VR512:$f, imm:$cond, EFLAGS)),
          (CMOV_VR512 VR512:$t, VR512:$f, imm:$cond)>;
def : Pat<(v8f64 (X86cmov VR512:$t, VR512:$f, imm:$cond, EFLAGS)),
          (CMOV_VR512 VR512:$t, VR512:$f, imm:$cond)>;

//===----------------------------------------------------------------------===//
// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
//===----------------------------------------------------------------------===//

// FIXME: Use normal instructions and add lock prefix dynamically.

// Memory barriers

let isCodeGenOnly = 1, Defs = [EFLAGS] in
def OR32mi8Locked  : Ii8<0x83, MRM1m, (outs), (ins i32mem:$dst, i32i8imm:$zero),
                         "or{l}\t{$zero, $dst|$dst, $zero}", []>,
                         Requires<[Not64BitMode]>, OpSize32, LOCK,
                         Sched<[WriteALURMW]>;

let hasSideEffects = 1 in
def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
                     "#MEMBARRIER",
                     [(X86MemBarrier)]>, Sched<[WriteLoad]>;

// RegOpc corresponds to the mr version of the instruction
// ImmOpc corresponds to the mi version of the instruction
// ImmOpc8 corresponds to the mi8 version of the instruction
// ImmMod corresponds to the instruction format of the mi and mi8 versions
multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
                           Format ImmMod, SDNode Op, string mnemonic> {
let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
    SchedRW = [WriteALURMW] in {

def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
                  RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
                  MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
                  !strconcat(mnemonic, "{b}\t",
                             "{$src2, $dst|$dst, $src2}"),
                  [(set EFLAGS, (Op addr:$dst, GR8:$src2))]>, LOCK;

def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
                   MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
                   !strconcat(mnemonic, "{w}\t",
                              "{$src2, $dst|$dst, $src2}"),
                   [(set EFLAGS, (Op addr:$dst, GR16:$src2))]>,
                   OpSize16, LOCK;

def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
                   MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
                   !strconcat(mnemonic, "{l}\t",
                              "{$src2, $dst|$dst, $src2}"),
                   [(set EFLAGS, (Op addr:$dst, GR32:$src2))]>,
                   OpSize32, LOCK;

def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
                    MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
                    !strconcat(mnemonic, "{q}\t",
                               "{$src2, $dst|$dst, $src2}"),
                    [(set EFLAGS, (Op addr:$dst, GR64:$src2))]>, LOCK;

def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
                    ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
                    ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
                    !strconcat(mnemonic, "{b}\t",
                               "{$src2, $dst|$dst, $src2}"),
                    [(set EFLAGS, (Op addr:$dst, (i8 imm:$src2)))]>, LOCK;

def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
                      ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
                      !strconcat(mnemonic, "{w}\t",
                                 "{$src2, $dst|$dst, $src2}"),
                      [(set EFLAGS, (Op addr:$dst, (i16 imm:$src2)))]>,
                      OpSize16, LOCK;

def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
                      ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
                      !strconcat(mnemonic, "{l}\t",
                                 "{$src2, $dst|$dst, $src2}"),
                      [(set EFLAGS, (Op addr:$dst, (i32 imm:$src2)))]>,
                      OpSize32, LOCK;

def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
                          ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
                          ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
                          !strconcat(mnemonic, "{q}\t",
                                     "{$src2, $dst|$dst, $src2}"),
                          [(set EFLAGS, (Op addr:$dst, i64immSExt32:$src2))]>,
                          LOCK;

def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
                      ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
                      !strconcat(mnemonic, "{w}\t",
                                 "{$src2, $dst|$dst, $src2}"),
                      [(set EFLAGS, (Op addr:$dst, i16immSExt8:$src2))]>,
                      OpSize16, LOCK;

def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
                      ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
                      !strconcat(mnemonic, "{l}\t",
                                 "{$src2, $dst|$dst, $src2}"),
                      [(set EFLAGS, (Op addr:$dst, i32immSExt8:$src2))]>,
                      OpSize32, LOCK;

def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
                       ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
                       !strconcat(mnemonic, "{q}\t",
                                  "{$src2, $dst|$dst, $src2}"),
                       [(set EFLAGS, (Op addr:$dst, i64immSExt8:$src2))]>,
                       LOCK;
}

}

defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, X86lock_add, "add">;
defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, X86lock_sub, "sub">;
defm LOCK_OR  : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, X86lock_or , "or">;
defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, X86lock_and, "and">;
defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, X86lock_xor, "xor">;

def X86lock_add_nocf : PatFrag<(ops node:$lhs, node:$rhs),
                               (X86lock_add node:$lhs, node:$rhs), [{
  return hasNoCarryFlagUses(SDValue(N, 0));
}]>;

def X86lock_sub_nocf : PatFrag<(ops node:$lhs, node:$rhs),
                               (X86lock_sub node:$lhs, node:$rhs), [{
  return hasNoCarryFlagUses(SDValue(N, 0));
}]>;

let Predicates = [UseIncDec] in {
  let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
      SchedRW = [WriteALURMW]  in {
    def LOCK_INC8m  : I<0xFE, MRM0m, (outs), (ins i8mem :$dst),
                        "inc{b}\t$dst",
                        [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i8 1)))]>,
                        LOCK;
    def LOCK_INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst),
                        "inc{w}\t$dst",
                        [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i16 1)))]>,
                        OpSize16, LOCK;
    def LOCK_INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst),
                        "inc{l}\t$dst",
                        [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i32 1)))]>,
                        OpSize32, LOCK;
    def LOCK_INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst),
                         "inc{q}\t$dst",
                         [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i64 1)))]>,
                         LOCK;

    def LOCK_DEC8m  : I<0xFE, MRM1m, (outs), (ins i8mem :$dst),
                        "dec{b}\t$dst",
                        [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i8 1)))]>,
                        LOCK;
    def LOCK_DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst),
                        "dec{w}\t$dst",
                        [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i16 1)))]>,
                        OpSize16, LOCK;
    def LOCK_DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst),
                        "dec{l}\t$dst",
                        [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i32 1)))]>,
                        OpSize32, LOCK;
    def LOCK_DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst),
                         "dec{q}\t$dst",
                         [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i64 1)))]>,
                         LOCK;
  }

  // Additional patterns for -1 constant.
  def : Pat<(X86lock_add addr:$dst, (i8  -1)), (LOCK_DEC8m  addr:$dst)>;
  def : Pat<(X86lock_add addr:$dst, (i16 -1)), (LOCK_DEC16m addr:$dst)>;
  def : Pat<(X86lock_add addr:$dst, (i32 -1)), (LOCK_DEC32m addr:$dst)>;
  def : Pat<(X86lock_add addr:$dst, (i64 -1)), (LOCK_DEC64m addr:$dst)>;
  def : Pat<(X86lock_sub addr:$dst, (i8  -1)), (LOCK_INC8m  addr:$dst)>;
  def : Pat<(X86lock_sub addr:$dst, (i16 -1)), (LOCK_INC16m addr:$dst)>;
  def : Pat<(X86lock_sub addr:$dst, (i32 -1)), (LOCK_INC32m addr:$dst)>;
  def : Pat<(X86lock_sub addr:$dst, (i64 -1)), (LOCK_INC64m addr:$dst)>;
}

// Atomic compare and swap.
multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
                         SDPatternOperator frag, X86MemOperand x86memop> {
let isCodeGenOnly = 1, usesCustomInserter = 1 in {
  def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
               !strconcat(mnemonic, "\t$ptr"),
               [(frag addr:$ptr)]>, TB, LOCK;
}
}

multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
                          string mnemonic, SDPatternOperator frag> {
let isCodeGenOnly = 1, SchedRW = [WriteCMPXCHGRMW] in {
  let Defs = [AL, EFLAGS], Uses = [AL] in
  def NAME#8  : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
                  !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
                  [(frag addr:$ptr, GR8:$swap, 1)]>, TB, LOCK;
  let Defs = [AX, EFLAGS], Uses = [AX] in
  def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
                  !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
                  [(frag addr:$ptr, GR16:$swap, 2)]>, TB, OpSize16, LOCK;
  let Defs = [EAX, EFLAGS], Uses = [EAX] in
  def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
                  !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
                  [(frag addr:$ptr, GR32:$swap, 4)]>, TB, OpSize32, LOCK;
  let Defs = [RAX, EFLAGS], Uses = [RAX] in
  def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
                   !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
                   [(frag addr:$ptr, GR64:$swap, 8)]>, TB, LOCK;
}
}

let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
    SchedRW = [WriteCMPXCHGRMW] in {
defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b", X86cas8, i64mem>;
}

// This pseudo must be used when the frame uses RBX as
// the base pointer. Indeed, in such situation RBX is a reserved
// register and the register allocator will ignore any use/def of
// it. In other words, the register will not fix the clobbering of
// RBX that will happen when setting the arguments for the instrucion.
//
// Unlike the actual related instuction, we mark that this one
// defines EBX (instead of using EBX).
// The rationale is that we will define RBX during the expansion of
// the pseudo. The argument feeding EBX is ebx_input.
//
// The additional argument, $ebx_save, is a temporary register used to
// save the value of RBX across the actual instruction.
//
// To make sure the register assigned to $ebx_save does not interfere with
// the definition of the actual instruction, we use a definition $dst which
// is tied to $rbx_save. That way, the live-range of $rbx_save spans across
// the instruction and we are sure we will have a valid register to restore
// the value of RBX.
let Defs = [EAX, EDX, EBX, EFLAGS], Uses = [EAX, ECX, EDX],
    SchedRW = [WriteCMPXCHGRMW], isCodeGenOnly = 1, isPseudo = 1,
    Constraints = "$ebx_save = $dst", usesCustomInserter = 1 in {
def LCMPXCHG8B_SAVE_EBX :
    I<0, Pseudo, (outs GR32:$dst),
      (ins i64mem:$ptr, GR32:$ebx_input, GR32:$ebx_save),
      !strconcat("cmpxchg8b", "\t$ptr"),
      [(set GR32:$dst, (X86cas8save_ebx addr:$ptr, GR32:$ebx_input,
                                        GR32:$ebx_save))]>;
}


let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
    Predicates = [HasCmpxchg16b], SchedRW = [WriteCMPXCHGRMW] in {
defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
                                 X86cas16, i128mem>, REX_W;
}

// Same as LCMPXCHG8B_SAVE_RBX but for the 16 Bytes variant.
let Defs = [RAX, RDX, RBX, EFLAGS], Uses = [RAX, RCX, RDX],
    Predicates = [HasCmpxchg16b], SchedRW = [WriteCMPXCHGRMW],
    isCodeGenOnly = 1, isPseudo = 1, Constraints = "$rbx_save = $dst",
    usesCustomInserter = 1 in {
def LCMPXCHG16B_SAVE_RBX :
    I<0, Pseudo, (outs GR64:$dst),
      (ins i128mem:$ptr, GR64:$rbx_input, GR64:$rbx_save),
      !strconcat("cmpxchg16b", "\t$ptr"),
      [(set GR64:$dst, (X86cas16save_rbx addr:$ptr, GR64:$rbx_input,
                                                    GR64:$rbx_save))]>;
}

defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg", X86cas>;

// Atomic exchange and add
multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
                             string frag> {
  let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
      SchedRW = [WriteALURMW] in {
    def NAME#8  : I<opc8, MRMSrcMem, (outs GR8:$dst),
                    (ins GR8:$val, i8mem:$ptr),
                    !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
                    [(set GR8:$dst,
                          (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))]>;
    def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
                    (ins GR16:$val, i16mem:$ptr),
                    !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
                    [(set
                       GR16:$dst,
                       (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))]>,
                    OpSize16;
    def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
                    (ins GR32:$val, i32mem:$ptr),
                    !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
                    [(set
                       GR32:$dst,
                       (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))]>, 
                    OpSize32;
    def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
                     (ins GR64:$val, i64mem:$ptr),
                     !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
                     [(set
                        GR64:$dst,
                        (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))]>;
  }
}

defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add">, TB, LOCK;

/* The following multiclass tries to make sure that in code like
 *    x.store (immediate op x.load(acquire), release)
 * and
 *    x.store (register op x.load(acquire), release)
 * an operation directly on memory is generated instead of wasting a register.
 * It is not automatic as atomic_store/load are only lowered to MOV instructions
 * extremely late to prevent them from being accidentally reordered in the backend
 * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
 */
multiclass RELEASE_BINOP_MI<string Name, SDNode op> {
  def : Pat<(atomic_store_8 addr:$dst,
             (op (atomic_load_8 addr:$dst), (i8 imm:$src))),
            (!cast<Instruction>(Name#"8mi") addr:$dst, imm:$src)>;
  def : Pat<(atomic_store_16 addr:$dst,
             (op (atomic_load_16 addr:$dst), (i16 imm:$src))),
            (!cast<Instruction>(Name#"16mi") addr:$dst, imm:$src)>;
  def : Pat<(atomic_store_32 addr:$dst,
             (op (atomic_load_32 addr:$dst), (i32 imm:$src))),
            (!cast<Instruction>(Name#"32mi") addr:$dst, imm:$src)>;
  def : Pat<(atomic_store_64 addr:$dst,
             (op (atomic_load_64 addr:$dst), (i64immSExt32:$src))),
            (!cast<Instruction>(Name#"64mi32") addr:$dst, (i64immSExt32:$src))>;

  def : Pat<(atomic_store_8 addr:$dst,
             (op (atomic_load_8 addr:$dst), (i8 GR8:$src))),
            (!cast<Instruction>(Name#"8mr") addr:$dst, GR8:$src)>;
  def : Pat<(atomic_store_16 addr:$dst,
             (op (atomic_load_16 addr:$dst), (i16 GR16:$src))),
            (!cast<Instruction>(Name#"16mr") addr:$dst, GR16:$src)>;
  def : Pat<(atomic_store_32 addr:$dst,
             (op (atomic_load_32 addr:$dst), (i32 GR32:$src))),
            (!cast<Instruction>(Name#"32mr") addr:$dst, GR32:$src)>;
  def : Pat<(atomic_store_64 addr:$dst,
             (op (atomic_load_64 addr:$dst), (i64 GR64:$src))),
            (!cast<Instruction>(Name#"64mr") addr:$dst, GR64:$src)>;
}
defm : RELEASE_BINOP_MI<"ADD", add>;
defm : RELEASE_BINOP_MI<"AND", and>;
defm : RELEASE_BINOP_MI<"OR",  or>;
defm : RELEASE_BINOP_MI<"XOR", xor>;
defm : RELEASE_BINOP_MI<"SUB", sub>;

// Same as above, but for floating-point.
// FIXME: imm version.
// FIXME: Version that doesn't clobber $src, using AVX's VADDSS.
// FIXME: This could also handle SIMD operations with *ps and *pd instructions.
let usesCustomInserter = 1, SchedRW = [WriteMicrocoded] in {
multiclass RELEASE_FP_BINOP_MI<SDNode op> {
    def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, FR32:$src),
        "#BINOP "#NAME#"32mr PSEUDO!",
        [(atomic_store_32 addr:$dst,
           (i32 (bitconvert (op
             (f32 (bitconvert (i32 (atomic_load_32 addr:$dst)))),
          FR32:$src))))]>, Requires<[HasSSE1]>;
    def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, FR64:$src),
        "#BINOP "#NAME#"64mr PSEUDO!",
        [(atomic_store_64 addr:$dst,
           (i64 (bitconvert (op
             (f64 (bitconvert (i64 (atomic_load_64 addr:$dst)))),
          FR64:$src))))]>, Requires<[HasSSE2]>;
}
defm RELEASE_FADD : RELEASE_FP_BINOP_MI<fadd>;
// FIXME: Add fsub, fmul, fdiv, ...
}

multiclass RELEASE_UNOP<string Name, dag dag8, dag dag16, dag dag32,
                        dag dag64> {
  def : Pat<(atomic_store_8 addr:$dst, dag8),
            (!cast<Instruction>(Name#8m) addr:$dst)>;
  def : Pat<(atomic_store_16 addr:$dst, dag16),
            (!cast<Instruction>(Name#16m) addr:$dst)>;
  def : Pat<(atomic_store_32 addr:$dst, dag32),
            (!cast<Instruction>(Name#32m) addr:$dst)>;
  def : Pat<(atomic_store_64 addr:$dst, dag64),
            (!cast<Instruction>(Name#64m) addr:$dst)>;
}

let Predicates = [UseIncDec] in {
  defm : RELEASE_UNOP<"INC",
      (add (atomic_load_8  addr:$dst), (i8 1)),
      (add (atomic_load_16 addr:$dst), (i16 1)),
      (add (atomic_load_32 addr:$dst), (i32 1)),
      (add (atomic_load_64 addr:$dst), (i64 1))>;
  defm : RELEASE_UNOP<"DEC",
      (add (atomic_load_8  addr:$dst), (i8 -1)),
      (add (atomic_load_16 addr:$dst), (i16 -1)),
      (add (atomic_load_32 addr:$dst), (i32 -1)),
      (add (atomic_load_64 addr:$dst), (i64 -1))>;
}

defm : RELEASE_UNOP<"NEG",
    (ineg (i8 (atomic_load_8  addr:$dst))),
    (ineg (i16 (atomic_load_16 addr:$dst))),
    (ineg (i32 (atomic_load_32 addr:$dst))),
    (ineg (i64 (atomic_load_64 addr:$dst)))>;
defm : RELEASE_UNOP<"NOT",
    (not (i8 (atomic_load_8  addr:$dst))),
    (not (i16 (atomic_load_16 addr:$dst))),
    (not (i32 (atomic_load_32 addr:$dst))),
    (not (i64 (atomic_load_64 addr:$dst)))>;

def : Pat<(atomic_store_8 addr:$dst, (i8 imm:$src)),
          (MOV8mi addr:$dst, imm:$src)>;
def : Pat<(atomic_store_16 addr:$dst, (i16 imm:$src)),
          (MOV16mi addr:$dst, imm:$src)>;
def : Pat<(atomic_store_32 addr:$dst, (i32 imm:$src)),
          (MOV32mi addr:$dst, imm:$src)>;
def : Pat<(atomic_store_64 addr:$dst, (i64immSExt32:$src)),
          (MOV64mi32 addr:$dst, i64immSExt32:$src)>;

def : Pat<(atomic_store_8 addr:$dst, GR8:$src),
          (MOV8mr addr:$dst, GR8:$src)>;
def : Pat<(atomic_store_16 addr:$dst, GR16:$src),
          (MOV16mr addr:$dst, GR16:$src)>;
def : Pat<(atomic_store_32 addr:$dst, GR32:$src),
          (MOV32mr addr:$dst, GR32:$src)>;
def : Pat<(atomic_store_64 addr:$dst, GR64:$src),
          (MOV64mr addr:$dst, GR64:$src)>;

def : Pat<(i8  (atomic_load_8 addr:$src)),  (MOV8rm addr:$src)>;
def : Pat<(i16 (atomic_load_16 addr:$src)), (MOV16rm addr:$src)>;
def : Pat<(i32 (atomic_load_32 addr:$src)), (MOV32rm addr:$src)>;
def : Pat<(i64 (atomic_load_64 addr:$src)), (MOV64rm addr:$src)>;

//===----------------------------------------------------------------------===//
// DAG Pattern Matching Rules
//===----------------------------------------------------------------------===//

// Use AND/OR to store 0/-1 in memory when optimizing for minsize. This saves
// binary size compared to a regular MOV, but it introduces an unnecessary
// load, so is not suitable for regular or optsize functions.
let Predicates = [OptForMinSize] in {
def : Pat<(nonvolatile_store (i16 0), addr:$dst), (AND16mi8 addr:$dst, 0)>;
def : Pat<(nonvolatile_store (i32 0), addr:$dst), (AND32mi8 addr:$dst, 0)>;
def : Pat<(nonvolatile_store (i64 0), addr:$dst), (AND64mi8 addr:$dst, 0)>;
def : Pat<(nonvolatile_store (i16 -1), addr:$dst), (OR16mi8 addr:$dst, -1)>;
def : Pat<(nonvolatile_store (i32 -1), addr:$dst), (OR32mi8 addr:$dst, -1)>;
def : Pat<(nonvolatile_store (i64 -1), addr:$dst), (OR64mi8 addr:$dst, -1)>;
}

// In kernel code model, we can get the address of a label
// into a register with 'movq'.  FIXME: This is a hack, the 'imm' predicate of
// the MOV64ri32 should accept these.
def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
          (MOV64ri32 tconstpool  :$dst)>, Requires<[KernelCode]>;
def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
          (MOV64ri32 tjumptable  :$dst)>, Requires<[KernelCode]>;
def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
          (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
          (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
def : Pat<(i64 (X86Wrapper mcsym:$dst)),
          (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>;
def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
          (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;

// If we have small model and -static mode, it is safe to store global addresses
// directly as immediates.  FIXME: This is really a hack, the 'imm' predicate
// for MOV64mi32 should handle this sort of thing.
def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
          (MOV64mi32 addr:$dst, tconstpool:$src)>,
          Requires<[NearData, IsNotPIC]>;
def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
          (MOV64mi32 addr:$dst, tjumptable:$src)>,
          Requires<[NearData, IsNotPIC]>;
def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
          (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
          Requires<[NearData, IsNotPIC]>;
def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
          (MOV64mi32 addr:$dst, texternalsym:$src)>,
          Requires<[NearData, IsNotPIC]>;
def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst),
          (MOV64mi32 addr:$dst, mcsym:$src)>,
          Requires<[NearData, IsNotPIC]>;
def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
          (MOV64mi32 addr:$dst, tblockaddress:$src)>,
          Requires<[NearData, IsNotPIC]>;

def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>;
def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>;

// Calls

// tls has some funny stuff here...
// This corresponds to movabs $foo@tpoff, %rax
def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
          (MOV64ri32 tglobaltlsaddr :$dst)>;
// This corresponds to add $foo@tpoff, %rax
def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
          (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;


// Direct PC relative function call for small code model. 32-bit displacement
// sign extended to 64-bit.
def : Pat<(X86call (i64 tglobaladdr:$dst)),
          (CALL64pcrel32 tglobaladdr:$dst)>;
def : Pat<(X86call (i64 texternalsym:$dst)),
          (CALL64pcrel32 texternalsym:$dst)>;

// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
// can never use callee-saved registers. That is the purpose of the GR64_TC
// register classes.
//
// The only volatile register that is never used by the calling convention is
// %r11. This happens when calling a vararg function with 6 arguments.
//
// Match an X86tcret that uses less than 7 volatile registers.
def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
                             (X86tcret node:$ptr, node:$off), [{
  // X86tcret args: (*chain, ptr, imm, regs..., glue)
  unsigned NumRegs = 0;
  for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
    if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
      return false;
  return true;
}]>;

def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
          (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
          Requires<[Not64BitMode, NotUseRetpolineIndirectCalls]>;

// FIXME: This is disabled for 32-bit PIC mode because the global base
// register which is part of the address mode may be assigned a
// callee-saved register.
def : Pat<(X86tcret (load addr:$dst), imm:$off),
          (TCRETURNmi addr:$dst, imm:$off)>,
          Requires<[Not64BitMode, IsNotPIC, NotUseRetpolineIndirectCalls]>;

def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
          (TCRETURNdi tglobaladdr:$dst, imm:$off)>,
          Requires<[NotLP64]>;

def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
          (TCRETURNdi texternalsym:$dst, imm:$off)>,
          Requires<[NotLP64]>;

def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
          (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
          Requires<[In64BitMode, NotUseRetpolineIndirectCalls]>;

// Don't fold loads into X86tcret requiring more than 6 regs.
// There wouldn't be enough scratch registers for base+index.
def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
          (TCRETURNmi64 addr:$dst, imm:$off)>,
          Requires<[In64BitMode, NotUseRetpolineIndirectCalls]>;

def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
          (RETPOLINE_TCRETURN64 ptr_rc_tailcall:$dst, imm:$off)>,
          Requires<[In64BitMode, UseRetpolineIndirectCalls]>;

def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
          (RETPOLINE_TCRETURN32 ptr_rc_tailcall:$dst, imm:$off)>,
          Requires<[Not64BitMode, UseRetpolineIndirectCalls]>;

def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
          (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
          Requires<[IsLP64]>;

def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
          (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
          Requires<[IsLP64]>;

// Normal calls, with various flavors of addresses.
def : Pat<(X86call (i32 tglobaladdr:$dst)),
          (CALLpcrel32 tglobaladdr:$dst)>;
def : Pat<(X86call (i32 texternalsym:$dst)),
          (CALLpcrel32 texternalsym:$dst)>;
def : Pat<(X86call (i32 imm:$dst)),
          (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;

// Comparisons.

// TEST R,R is smaller than CMP R,0
def : Pat<(X86cmp GR8:$src1, 0),
          (TEST8rr GR8:$src1, GR8:$src1)>;
def : Pat<(X86cmp GR16:$src1, 0),
          (TEST16rr GR16:$src1, GR16:$src1)>;
def : Pat<(X86cmp GR32:$src1, 0),
          (TEST32rr GR32:$src1, GR32:$src1)>;
def : Pat<(X86cmp GR64:$src1, 0),
          (TEST64rr GR64:$src1, GR64:$src1)>;

// Conditional moves with folded loads with operands swapped and conditions
// inverted.
multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
                  Instruction Inst64> {
  let Predicates = [HasCMov] in {
    def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
              (Inst16 GR16:$src2, addr:$src1)>;
    def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
              (Inst32 GR32:$src2, addr:$src1)>;
    def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
              (Inst64 GR64:$src2, addr:$src1)>;
  }
}

defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;

// zextload bool -> zextload byte
// i1 stored in one byte in zero-extended form.
// Upper bits cleanup should be executed before Store.
def : Pat<(zextloadi8i1  addr:$src), (MOV8rm addr:$src)>;
def : Pat<(zextloadi16i1 addr:$src),
          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
def : Pat<(zextloadi64i1 addr:$src),
          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;

// extload bool -> extload byte
// When extloading from 16-bit and smaller memory locations into 64-bit
// registers, use zero-extending loads so that the entire 64-bit register is
// defined, avoiding partial-register updates.

def : Pat<(extloadi8i1 addr:$src),   (MOV8rm      addr:$src)>;
def : Pat<(extloadi16i1 addr:$src),
          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
def : Pat<(extloadi32i1 addr:$src),  (MOVZX32rm8  addr:$src)>;
def : Pat<(extloadi16i8 addr:$src),
          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
def : Pat<(extloadi32i8 addr:$src),  (MOVZX32rm8  addr:$src)>;
def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;

// For other extloads, use subregs, since the high contents of the register are
// defined after an extload.
def : Pat<(extloadi64i1 addr:$src),
          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
def : Pat<(extloadi64i8 addr:$src),
          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
def : Pat<(extloadi64i16 addr:$src),
          (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
def : Pat<(extloadi64i32 addr:$src),
          (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;

// anyext. Define these to do an explicit zero-extend to
// avoid partial-register updates.
def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
                                     (MOVZX32rr8 GR8 :$src), sub_16bit)>;
def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8  GR8 :$src)>;

// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
def : Pat<(i32 (anyext GR16:$src)),
          (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;

def : Pat<(i64 (anyext GR8 :$src)),
          (SUBREG_TO_REG (i64 0), (MOVZX32rr8  GR8  :$src), sub_32bit)>;
def : Pat<(i64 (anyext GR16:$src)),
          (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
def : Pat<(i64 (anyext GR32:$src)),
          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, sub_32bit)>;

// If this is an anyext of the remainder of an 8-bit sdivrem, use a MOVSX
// instead of a MOVZX. The sdivrem lowering will emit emit a MOVSX to move
// %ah to the lower byte of a register. By using a MOVSX here we allow a
// post-isel peephole to merge the two MOVSX instructions into one.
def anyext_sdiv : PatFrag<(ops node:$lhs), (anyext node:$lhs),[{
  return (N->getOperand(0).getOpcode() == ISD::SDIVREM &&
          N->getOperand(0).getResNo() == 1);
}]>;
def : Pat<(i32 (anyext_sdiv GR8:$src)), (MOVSX32rr8 GR8:$src)>;

// Any instruction that defines a 32-bit result leaves the high half of the
// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
// be copying from a truncate. Any other 32-bit operation will zero-extend
// up to 64 bits. AssertSext/AssertZext aren't saying anything about the upper
// 32 bits, they're probably just qualifying a CopyFromReg.
def def32 : PatLeaf<(i32 GR32:$src), [{
  return N->getOpcode() != ISD::TRUNCATE &&
         N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
         N->getOpcode() != ISD::CopyFromReg &&
         N->getOpcode() != ISD::AssertSext &&
         N->getOpcode() != ISD::AssertZext;
}]>;

// In the case of a 32-bit def that is known to implicitly zero-extend,
// we can use a SUBREG_TO_REG.
def : Pat<(i64 (zext def32:$src)),
          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;

//===----------------------------------------------------------------------===//
// Pattern match OR as ADD
//===----------------------------------------------------------------------===//

// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
// 3-addressified into an LEA instruction to avoid copies.  However, we also
// want to finally emit these instructions as an or at the end of the code
// generator to make the generated code easier to read.  To do this, we select
// into "disjoint bits" pseudo ops.

// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
    return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());

  KnownBits Known0 = CurDAG->computeKnownBits(N->getOperand(0), 0);
  KnownBits Known1 = CurDAG->computeKnownBits(N->getOperand(1), 0);
  return (~Known0.Zero & ~Known1.Zero) == 0;
}]>;


// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
// Try this before the selecting to OR.
let SchedRW = [WriteALU] in {

let isConvertibleToThreeAddress = 1,
    Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
let isCommutable = 1 in {
def ADD16rr_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
                    "", // orw/addw REG, REG
                    [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
def ADD32rr_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
                    "", // orl/addl REG, REG
                    [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
def ADD64rr_DB  : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                    "", // orq/addq REG, REG
                    [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
} // isCommutable

// NOTE: These are order specific, we want the ri8 forms to be listed
// first so that they are slightly preferred to the ri forms.

def ADD16ri8_DB : I<0, Pseudo,
                    (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
                    "", // orw/addw REG, imm8
                    [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
def ADD16ri_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
                    "", // orw/addw REG, imm
                    [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;

def ADD32ri8_DB : I<0, Pseudo,
                    (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
                    "", // orl/addl REG, imm8
                    [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
def ADD32ri_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
                    "", // orl/addl REG, imm
                    [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;


def ADD64ri8_DB : I<0, Pseudo,
                    (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
                    "", // orq/addq REG, imm8
                    [(set GR64:$dst, (or_is_add GR64:$src1,
                                                i64immSExt8:$src2))]>;
def ADD64ri32_DB : I<0, Pseudo,
                     (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
                     "", // orq/addq REG, imm
                     [(set GR64:$dst, (or_is_add GR64:$src1,
                                                 i64immSExt32:$src2))]>;
}
} // AddedComplexity, SchedRW

//===----------------------------------------------------------------------===//
// Pattern match SUB as XOR
//===----------------------------------------------------------------------===//

// An immediate in the LHS of a subtract can't be encoded in the instruction.
// If there is no possibility of a borrow we can use an XOR instead of a SUB
// to enable the immediate to be folded.
// TODO: Move this to a DAG combine?

def sub_is_xor : PatFrag<(ops node:$lhs, node:$rhs), (sub node:$lhs, node:$rhs),[{
  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
    KnownBits Known = CurDAG->computeKnownBits(N->getOperand(1));

    // If all possible ones in the RHS are set in the LHS then there can't be
    // a borrow and we can use xor.
    return (~Known.Zero).isSubsetOf(CN->getAPIntValue());
  }

  return false;
}]>;

let AddedComplexity = 5 in {
def : Pat<(sub_is_xor imm:$src2, GR8:$src1),
          (XOR8ri GR8:$src1, imm:$src2)>;
def : Pat<(sub_is_xor i16immSExt8:$src2, GR16:$src1),
          (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(sub_is_xor imm:$src2, GR16:$src1),
          (XOR16ri GR16:$src1, imm:$src2)>;
def : Pat<(sub_is_xor i32immSExt8:$src2, GR32:$src1),
          (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(sub_is_xor imm:$src2, GR32:$src1),
          (XOR32ri GR32:$src1, imm:$src2)>;
def : Pat<(sub_is_xor i64immSExt8:$src2, GR64:$src1),
          (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(sub_is_xor i64immSExt32:$src2, GR64:$src1),
          (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
}

//===----------------------------------------------------------------------===//
// Some peepholes
//===----------------------------------------------------------------------===//

// Odd encoding trick: -128 fits into an 8-bit immediate field while
// +128 doesn't, so in this special case use a sub instead of an add.
def : Pat<(add GR16:$src1, 128),
          (SUB16ri8 GR16:$src1, -128)>;
def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
          (SUB16mi8 addr:$dst, -128)>;

def : Pat<(add GR32:$src1, 128),
          (SUB32ri8 GR32:$src1, -128)>;
def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
          (SUB32mi8 addr:$dst, -128)>;

def : Pat<(add GR64:$src1, 128),
          (SUB64ri8 GR64:$src1, -128)>;
def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
          (SUB64mi8 addr:$dst, -128)>;

// The same trick applies for 32-bit immediate fields in 64-bit
// instructions.
def : Pat<(add GR64:$src1, 0x0000000080000000),
          (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
def : Pat<(store (add (loadi64 addr:$dst), 0x0000000080000000), addr:$dst),
          (SUB64mi32 addr:$dst, 0xffffffff80000000)>;

// To avoid needing to materialize an immediate in a register, use a 32-bit and
// with implicit zero-extension instead of a 64-bit and if the immediate has at
// least 32 bits of leading zeros. If in addition the last 32 bits can be
// represented with a sign extension of a 8 bit constant, use that.
// This can also reduce instruction size by eliminating the need for the REX
// prefix.

// AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32.
let AddedComplexity = 1 in {
def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
          (SUBREG_TO_REG
            (i64 0),
            (AND32ri8
              (EXTRACT_SUBREG GR64:$src, sub_32bit),
              (i32 (GetLo8XForm imm:$imm))),
            sub_32bit)>;

def : Pat<(and GR64:$src, i64immZExt32:$imm),
          (SUBREG_TO_REG
            (i64 0),
            (AND32ri
              (EXTRACT_SUBREG GR64:$src, sub_32bit),
              (i32 (GetLo32XForm imm:$imm))),
            sub_32bit)>;
} // AddedComplexity = 1


// AddedComplexity is needed due to the increased complexity on the
// i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all
// the MOVZX patterns keeps thems together in DAGIsel tables.
let AddedComplexity = 1 in {
// r & (2^16-1) ==> movz
def : Pat<(and GR32:$src1, 0xffff),
          (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
// r & (2^8-1) ==> movz
def : Pat<(and GR32:$src1, 0xff),
          (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>;
// r & (2^8-1) ==> movz
def : Pat<(and GR16:$src1, 0xff),
           (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG GR16:$src1, sub_8bit)),
             sub_16bit)>;

// r & (2^32-1) ==> movz
def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
          (SUBREG_TO_REG (i64 0),
                         (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
                         sub_32bit)>;
// r & (2^16-1) ==> movz
def : Pat<(and GR64:$src, 0xffff),
          (SUBREG_TO_REG (i64 0),
                      (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
                      sub_32bit)>;
// r & (2^8-1) ==> movz
def : Pat<(and GR64:$src, 0xff),
          (SUBREG_TO_REG (i64 0),
                         (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
                         sub_32bit)>;
} // AddedComplexity = 1


// Try to use BTS/BTR/BTC for single bit operations on the upper 32-bits.

def BTRXForm : SDNodeXForm<imm, [{
  // Transformation function: Find the lowest 0.
  return getI64Imm((uint8_t)N->getAPIntValue().countTrailingOnes(), SDLoc(N));
}]>;

def BTCBTSXForm : SDNodeXForm<imm, [{
  // Transformation function: Find the lowest 1.
  return getI64Imm((uint8_t)N->getAPIntValue().countTrailingZeros(), SDLoc(N));
}]>;

def BTRMask64 : ImmLeaf<i64, [{
  return !isUInt<32>(Imm) && !isInt<32>(Imm) && isPowerOf2_64(~Imm);
}]>;

def BTCBTSMask64 : ImmLeaf<i64, [{
  return !isInt<32>(Imm) && isPowerOf2_64(Imm);
}]>;

// For now only do this for optsize.
let AddedComplexity = 1, Predicates=[OptForSize] in {
  def : Pat<(and GR64:$src1, BTRMask64:$mask),
            (BTR64ri8 GR64:$src1, (BTRXForm imm:$mask))>;
  def : Pat<(or GR64:$src1, BTCBTSMask64:$mask),
            (BTS64ri8 GR64:$src1, (BTCBTSXForm imm:$mask))>;
  def : Pat<(xor GR64:$src1, BTCBTSMask64:$mask),
            (BTC64ri8 GR64:$src1, (BTCBTSXForm imm:$mask))>;
}


// sext_inreg patterns
def : Pat<(sext_inreg GR32:$src, i16),
          (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
def : Pat<(sext_inreg GR32:$src, i8),
          (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>;

def : Pat<(sext_inreg GR16:$src, i8),
           (EXTRACT_SUBREG (MOVSX32rr8 (EXTRACT_SUBREG GR16:$src, sub_8bit)),
             sub_16bit)>;

def : Pat<(sext_inreg GR64:$src, i32),
          (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
def : Pat<(sext_inreg GR64:$src, i16),
          (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
def : Pat<(sext_inreg GR64:$src, i8),
          (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;

// sext, sext_load, zext, zext_load
def: Pat<(i16 (sext GR8:$src)),
          (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
def: Pat<(sextloadi16i8 addr:$src),
          (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
def: Pat<(i16 (zext GR8:$src)),
          (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
def: Pat<(zextloadi16i8 addr:$src),
          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;

// trunc patterns
def : Pat<(i16 (trunc GR32:$src)),
          (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
def : Pat<(i8 (trunc GR32:$src)),
          (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
                          sub_8bit)>,
      Requires<[Not64BitMode]>;
def : Pat<(i8 (trunc GR16:$src)),
          (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
                          sub_8bit)>,
      Requires<[Not64BitMode]>;
def : Pat<(i32 (trunc GR64:$src)),
          (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
def : Pat<(i16 (trunc GR64:$src)),
          (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
def : Pat<(i8 (trunc GR64:$src)),
          (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
def : Pat<(i8 (trunc GR32:$src)),
          (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
      Requires<[In64BitMode]>;
def : Pat<(i8 (trunc GR16:$src)),
          (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
      Requires<[In64BitMode]>;

def immff00_ffff  : ImmLeaf<i32, [{
  return Imm >= 0xff00 && Imm <= 0xffff;
}]>;

// h-register tricks
def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
          (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>,
      Requires<[Not64BitMode]>;
def : Pat<(i8 (trunc (srl_su (i32 (anyext GR16:$src)), (i8 8)))),
          (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>,
      Requires<[Not64BitMode]>;
def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
          (EXTRACT_SUBREG GR32:$src, sub_8bit_hi)>,
      Requires<[Not64BitMode]>;
def : Pat<(srl GR16:$src, (i8 8)),
          (EXTRACT_SUBREG
            (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
            sub_16bit)>;
def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>;
def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>;
def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;
def : Pat<(srl (and_su GR32:$src, immff00_ffff), (i8 8)),
          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;

// h-register tricks.
// For now, be conservative on x86-64 and use an h-register extract only if the
// value is immediately zero-extended or stored, which are somewhat common
// cases. This uses a bunch of code to prevent a register requiring a REX prefix
// from being allocated in the same instruction as the h register, as there's
// currently no way to describe this requirement to the register allocator.

// h-register extract and zero-extend.
def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
          (SUBREG_TO_REG
            (i64 0),
            (MOVZX32rr8_NOREX
              (EXTRACT_SUBREG GR64:$src, sub_8bit_hi)),
            sub_32bit)>;
def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
          (SUBREG_TO_REG
            (i64 0),
            (MOVZX32rr8_NOREX
              (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
            sub_32bit)>;
def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
          (SUBREG_TO_REG
            (i64 0),
            (MOVZX32rr8_NOREX
              (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
            sub_32bit)>;

// h-register extract and store.
def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
          (MOV8mr_NOREX
            addr:$dst,
            (EXTRACT_SUBREG GR64:$src, sub_8bit_hi))>;
def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
          (MOV8mr_NOREX
            addr:$dst,
            (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>,
      Requires<[In64BitMode]>;
def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
          (MOV8mr_NOREX
            addr:$dst,
            (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>,
      Requires<[In64BitMode]>;


// (shl x, 1) ==> (add x, x)
// Note that if x is undef (immediate or otherwise), we could theoretically
// end up with the two uses of x getting different values, producing a result
// where the least significant bit is not 0. However, the probability of this
// happening is considered low enough that this is officially not a
// "real problem".
def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr  GR8 :$src1, GR8 :$src1)>;
def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;

// Helper imms to check if a mask doesn't change significant shift/rotate bits.
def immShift8 : ImmLeaf<i8, [{
  return countTrailingOnes<uint64_t>(Imm) >= 3;
}]>;
def immShift16 : ImmLeaf<i8, [{
  return countTrailingOnes<uint64_t>(Imm) >= 4;
}]>;
def immShift32 : ImmLeaf<i8, [{
  return countTrailingOnes<uint64_t>(Imm) >= 5;
}]>;
def immShift64 : ImmLeaf<i8, [{
  return countTrailingOnes<uint64_t>(Imm) >= 6;
}]>;

// Shift amount is implicitly masked.
multiclass MaskedShiftAmountPats<SDNode frag, string name> {
  // (shift x (and y, 31)) ==> (shift x, y)
  def : Pat<(frag GR8:$src1, (and CL, immShift32)),
            (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
  def : Pat<(frag GR16:$src1, (and CL, immShift32)),
            (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
  def : Pat<(frag GR32:$src1, (and CL, immShift32)),
            (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
  def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
            (!cast<Instruction>(name # "8mCL") addr:$dst)>;
  def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
            (!cast<Instruction>(name # "16mCL") addr:$dst)>;
  def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
            (!cast<Instruction>(name # "32mCL") addr:$dst)>;

  // (shift x (and y, 63)) ==> (shift x, y)
  def : Pat<(frag GR64:$src1, (and CL, immShift64)),
            (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
  def : Pat<(store (frag (loadi64 addr:$dst), (and CL, immShift64)), addr:$dst),
            (!cast<Instruction>(name # "64mCL") addr:$dst)>;
}

defm : MaskedShiftAmountPats<shl, "SHL">;
defm : MaskedShiftAmountPats<srl, "SHR">;
defm : MaskedShiftAmountPats<sra, "SAR">;

// ROL/ROR instructions allow a stronger mask optimization than shift for 8- and
// 16-bit. We can remove a mask of any (bitwidth - 1) on the rotation amount
// because over-rotating produces the same result. This is noted in the Intel
// docs with: "tempCOUNT <- (COUNT & COUNTMASK) MOD SIZE". Masking the rotation
// amount could affect EFLAGS results, but that does not matter because we are
// not tracking flags for these nodes.
multiclass MaskedRotateAmountPats<SDNode frag, string name> {
  // (rot x (and y, BitWidth - 1)) ==> (rot x, y)
  def : Pat<(frag GR8:$src1, (and CL, immShift8)),
  (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
  def : Pat<(frag GR16:$src1, (and CL, immShift16)),
  (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
  def : Pat<(frag GR32:$src1, (and CL, immShift32)),
  (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
  def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift8)), addr:$dst),
  (!cast<Instruction>(name # "8mCL") addr:$dst)>;
  def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift16)), addr:$dst),
  (!cast<Instruction>(name # "16mCL") addr:$dst)>;
  def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
  (!cast<Instruction>(name # "32mCL") addr:$dst)>;

  // (rot x (and y, 63)) ==> (rot x, y)
  def : Pat<(frag GR64:$src1, (and CL, immShift64)),
  (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
  def : Pat<(store (frag (loadi64 addr:$dst), (and CL, immShift64)), addr:$dst),
  (!cast<Instruction>(name # "64mCL") addr:$dst)>;
}


defm : MaskedRotateAmountPats<rotl, "ROL">;
defm : MaskedRotateAmountPats<rotr, "ROR">;

// Double shift amount is implicitly masked.
multiclass MaskedDoubleShiftAmountPats<SDNode frag, string name> {
  // (shift x (and y, 31)) ==> (shift x, y)
  def : Pat<(frag GR16:$src1, GR16:$src2, (and CL, immShift32)),
            (!cast<Instruction>(name # "16rrCL") GR16:$src1, GR16:$src2)>;
  def : Pat<(frag GR32:$src1, GR32:$src2, (and CL, immShift32)),
            (!cast<Instruction>(name # "32rrCL") GR32:$src1, GR32:$src2)>;

  // (shift x (and y, 63)) ==> (shift x, y)
  def : Pat<(frag GR64:$src1, GR64:$src2, (and CL, immShift64)),
            (!cast<Instruction>(name # "64rrCL") GR64:$src1, GR64:$src2)>;
}

defm : MaskedDoubleShiftAmountPats<X86shld, "SHLD">;
defm : MaskedDoubleShiftAmountPats<X86shrd, "SHRD">;

let Predicates = [HasBMI2] in {
  let AddedComplexity = 1 in {
    def : Pat<(sra GR32:$src1, (and GR8:$src2, immShift32)),
              (SARX32rr GR32:$src1,
                        (INSERT_SUBREG
                          (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
    def : Pat<(sra GR64:$src1, (and GR8:$src2, immShift64)),
              (SARX64rr GR64:$src1,
                        (INSERT_SUBREG
                          (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;

    def : Pat<(srl GR32:$src1, (and GR8:$src2, immShift32)),
              (SHRX32rr GR32:$src1,
                        (INSERT_SUBREG
                          (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
    def : Pat<(srl GR64:$src1, (and GR8:$src2, immShift64)),
              (SHRX64rr GR64:$src1,
                        (INSERT_SUBREG
                          (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;

    def : Pat<(shl GR32:$src1, (and GR8:$src2, immShift32)),
              (SHLX32rr GR32:$src1,
                        (INSERT_SUBREG
                          (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
    def : Pat<(shl GR64:$src1, (and GR8:$src2, immShift64)),
              (SHLX64rr GR64:$src1,
                        (INSERT_SUBREG
                          (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  }

  def : Pat<(sra (loadi32 addr:$src1), (and GR8:$src2, immShift32)),
            (SARX32rm addr:$src1,
                      (INSERT_SUBREG
                        (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  def : Pat<(sra (loadi64 addr:$src1), (and GR8:$src2, immShift64)),
            (SARX64rm addr:$src1,
                      (INSERT_SUBREG
                        (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;

  def : Pat<(srl (loadi32 addr:$src1), (and GR8:$src2, immShift32)),
            (SHRX32rm addr:$src1,
                      (INSERT_SUBREG
                        (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  def : Pat<(srl (loadi64 addr:$src1), (and GR8:$src2, immShift64)),
            (SHRX64rm addr:$src1,
                      (INSERT_SUBREG
                        (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;

  def : Pat<(shl (loadi32 addr:$src1), (and GR8:$src2, immShift32)),
            (SHLX32rm addr:$src1,
                      (INSERT_SUBREG
                        (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  def : Pat<(shl (loadi64 addr:$src1), (and GR8:$src2, immShift64)),
            (SHLX64rm addr:$src1,
                      (INSERT_SUBREG
                        (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
}

// Use BTR/BTS/BTC for clearing/setting/toggling a bit in a variable location.
multiclass one_bit_patterns<RegisterClass RC, ValueType VT, Instruction BTR,
                            Instruction BTS, Instruction BTC,
                            ImmLeaf ImmShift> {
  def : Pat<(and RC:$src1, (rotl -2, GR8:$src2)),
            (BTR RC:$src1,
                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  def : Pat<(or RC:$src1, (shl 1, GR8:$src2)),
            (BTS RC:$src1,
                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  def : Pat<(xor RC:$src1, (shl 1, GR8:$src2)),
            (BTC RC:$src1,
                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;

  // Similar to above, but removing unneeded masking of the shift amount.
  def : Pat<(and RC:$src1, (rotl -2, (and GR8:$src2, ImmShift))),
            (BTR RC:$src1,
                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  def : Pat<(or RC:$src1, (shl 1, (and GR8:$src2, ImmShift))),
            (BTS RC:$src1,
                (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  def : Pat<(xor RC:$src1, (shl 1, (and GR8:$src2, ImmShift))),
            (BTC RC:$src1,
                (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
}

defm : one_bit_patterns<GR16, i16, BTR16rr, BTS16rr, BTC16rr, immShift16>;
defm : one_bit_patterns<GR32, i32, BTR32rr, BTS32rr, BTC32rr, immShift32>;
defm : one_bit_patterns<GR64, i64, BTR64rr, BTS64rr, BTC64rr, immShift64>;


// (anyext (setcc_carry)) -> (setcc_carry)
def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
          (SETB_C16r)>;
def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
          (SETB_C32r)>;
def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
          (SETB_C32r)>;

//===----------------------------------------------------------------------===//
// EFLAGS-defining Patterns
//===----------------------------------------------------------------------===//

// add reg, reg
def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr  GR8 :$src1, GR8 :$src2)>;
def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
def : Pat<(add GR64:$src1, GR64:$src2), (ADD64rr GR64:$src1, GR64:$src2)>;

// add reg, mem
def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
          (ADD8rm GR8:$src1, addr:$src2)>;
def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
          (ADD16rm GR16:$src1, addr:$src2)>;
def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
          (ADD32rm GR32:$src1, addr:$src2)>;
def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
          (ADD64rm GR64:$src1, addr:$src2)>;

// add reg, imm
def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri  GR8:$src1 , imm:$src2)>;
def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
def : Pat<(add GR16:$src1, i16immSExt8:$src2),
          (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(add GR32:$src1, i32immSExt8:$src2),
          (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(add GR64:$src1, i64immSExt8:$src2),
          (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(add GR64:$src1, i64immSExt32:$src2),
          (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;

// sub reg, reg
def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr  GR8 :$src1, GR8 :$src2)>;
def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
def : Pat<(sub GR64:$src1, GR64:$src2), (SUB64rr GR64:$src1, GR64:$src2)>;

// sub reg, mem
def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
          (SUB8rm GR8:$src1, addr:$src2)>;
def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
          (SUB16rm GR16:$src1, addr:$src2)>;
def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
          (SUB32rm GR32:$src1, addr:$src2)>;
def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
          (SUB64rm GR64:$src1, addr:$src2)>;

// sub reg, imm
def : Pat<(sub GR8:$src1, imm:$src2),
          (SUB8ri GR8:$src1, imm:$src2)>;
def : Pat<(sub GR16:$src1, imm:$src2),
          (SUB16ri GR16:$src1, imm:$src2)>;
def : Pat<(sub GR32:$src1, imm:$src2),
          (SUB32ri GR32:$src1, imm:$src2)>;
def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
          (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
          (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
          (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
          (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;

// sub 0, reg
def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r  GR8 :$src)>;
def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;

// sub reg, relocImm
def : Pat<(X86sub_flag GR64:$src1, i64relocImmSExt8_su:$src2),
          (SUB64ri8 GR64:$src1, i64relocImmSExt8_su:$src2)>;
def : Pat<(X86sub_flag GR64:$src1, i64relocImmSExt32_su:$src2),
          (SUB64ri32 GR64:$src1, i64relocImmSExt32_su:$src2)>;

// mul reg, reg
def : Pat<(mul GR16:$src1, GR16:$src2),
          (IMUL16rr GR16:$src1, GR16:$src2)>;
def : Pat<(mul GR32:$src1, GR32:$src2),
          (IMUL32rr GR32:$src1, GR32:$src2)>;
def : Pat<(mul GR64:$src1, GR64:$src2),
          (IMUL64rr GR64:$src1, GR64:$src2)>;

// mul reg, mem
def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
          (IMUL16rm GR16:$src1, addr:$src2)>;
def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
          (IMUL32rm GR32:$src1, addr:$src2)>;
def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
          (IMUL64rm GR64:$src1, addr:$src2)>;

// mul reg, imm
def : Pat<(mul GR16:$src1, imm:$src2),
          (IMUL16rri GR16:$src1, imm:$src2)>;
def : Pat<(mul GR32:$src1, imm:$src2),
          (IMUL32rri GR32:$src1, imm:$src2)>;
def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
          (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
          (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
          (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
          (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;

// reg = mul mem, imm
def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
          (IMUL16rmi addr:$src1, imm:$src2)>;
def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
          (IMUL32rmi addr:$src1, imm:$src2)>;
def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
          (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
          (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
          (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
          (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;

// Increment/Decrement reg.
// Do not make INC/DEC if it is slow
let Predicates = [UseIncDec] in {
  def : Pat<(add GR8:$src, 1),   (INC8r GR8:$src)>;
  def : Pat<(add GR16:$src, 1),  (INC16r GR16:$src)>;
  def : Pat<(add GR32:$src, 1),  (INC32r GR32:$src)>;
  def : Pat<(add GR64:$src, 1),  (INC64r GR64:$src)>;
  def : Pat<(add GR8:$src, -1),  (DEC8r GR8:$src)>;
  def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
  def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
  def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;

  def : Pat<(X86add_flag_nocf GR8:$src, -1),  (DEC8r GR8:$src)>;
  def : Pat<(X86add_flag_nocf GR16:$src, -1), (DEC16r GR16:$src)>;
  def : Pat<(X86add_flag_nocf GR32:$src, -1), (DEC32r GR32:$src)>;
  def : Pat<(X86add_flag_nocf GR64:$src, -1), (DEC64r GR64:$src)>;
  def : Pat<(X86sub_flag_nocf GR8:$src, -1),  (INC8r GR8:$src)>;
  def : Pat<(X86sub_flag_nocf GR16:$src, -1), (INC16r GR16:$src)>;
  def : Pat<(X86sub_flag_nocf GR32:$src, -1), (INC32r GR32:$src)>;
  def : Pat<(X86sub_flag_nocf GR64:$src, -1), (INC64r GR64:$src)>;
}

// or reg/reg.
def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr  GR8 :$src1, GR8 :$src2)>;
def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;

// or reg/mem
def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
          (OR8rm GR8:$src1, addr:$src2)>;
def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
          (OR16rm GR16:$src1, addr:$src2)>;
def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
          (OR32rm GR32:$src1, addr:$src2)>;
def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
          (OR64rm GR64:$src1, addr:$src2)>;

// or reg/imm
def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri  GR8 :$src1, imm:$src2)>;
def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
def : Pat<(or GR16:$src1, i16immSExt8:$src2),
          (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(or GR32:$src1, i32immSExt8:$src2),
          (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(or GR64:$src1, i64immSExt8:$src2),
          (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(or GR64:$src1, i64immSExt32:$src2),
          (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;

// xor reg/reg
def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr  GR8 :$src1, GR8 :$src2)>;
def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;

// xor reg/mem
def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
          (XOR8rm GR8:$src1, addr:$src2)>;
def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
          (XOR16rm GR16:$src1, addr:$src2)>;
def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
          (XOR32rm GR32:$src1, addr:$src2)>;
def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
          (XOR64rm GR64:$src1, addr:$src2)>;

// xor reg/imm
def : Pat<(xor GR8:$src1, imm:$src2),
          (XOR8ri GR8:$src1, imm:$src2)>;
def : Pat<(xor GR16:$src1, imm:$src2),
          (XOR16ri GR16:$src1, imm:$src2)>;
def : Pat<(xor GR32:$src1, imm:$src2),
          (XOR32ri GR32:$src1, imm:$src2)>;
def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
          (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
          (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
          (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
          (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;

// and reg/reg
def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr  GR8 :$src1, GR8 :$src2)>;
def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;

// and reg/mem
def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
          (AND8rm GR8:$src1, addr:$src2)>;
def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
          (AND16rm GR16:$src1, addr:$src2)>;
def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
          (AND32rm GR32:$src1, addr:$src2)>;
def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
          (AND64rm GR64:$src1, addr:$src2)>;

// and reg/imm
def : Pat<(and GR8:$src1, imm:$src2),
          (AND8ri GR8:$src1, imm:$src2)>;
def : Pat<(and GR16:$src1, imm:$src2),
          (AND16ri GR16:$src1, imm:$src2)>;
def : Pat<(and GR32:$src1, imm:$src2),
          (AND32ri GR32:$src1, imm:$src2)>;
def : Pat<(and GR16:$src1, i16immSExt8:$src2),
          (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(and GR32:$src1, i32immSExt8:$src2),
          (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(and GR64:$src1, i64immSExt8:$src2),
          (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(and GR64:$src1, i64immSExt32:$src2),
          (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;

// Bit scan instruction patterns to match explicit zero-undef behavior.
def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;

// When HasMOVBE is enabled it is possible to get a non-legalized
// register-register 16 bit bswap. This maps it to a ROL instruction.
let Predicates = [HasMOVBE] in {
 def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
}