//===-- X86InstrExtension.td - Sign and Zero Extensions ----*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the sign and zero extension operations.
//
//===----------------------------------------------------------------------===//
let hasSideEffects = 0 in {
let Defs = [AX], Uses = [AL] in // AX = signext(AL)
def CBW : I<0x98, RawFrm, (outs), (ins),
"{cbtw|cbw}", []>, OpSize16, Sched<[WriteALU]>;
let Defs = [EAX], Uses = [AX] in // EAX = signext(AX)
def CWDE : I<0x98, RawFrm, (outs), (ins),
"{cwtl|cwde}", []>, OpSize32, Sched<[WriteALU]>;
let Defs = [AX,DX], Uses = [AX] in // DX:AX = signext(AX)
def CWD : I<0x99, RawFrm, (outs), (ins),
"{cwtd|cwd}", []>, OpSize16, Sched<[WriteALU]>;
let Defs = [EAX,EDX], Uses = [EAX] in // EDX:EAX = signext(EAX)
def CDQ : I<0x99, RawFrm, (outs), (ins),
"{cltd|cdq}", []>, OpSize32, Sched<[WriteALU]>;
let Defs = [RAX], Uses = [EAX] in // RAX = signext(EAX)
def CDQE : RI<0x98, RawFrm, (outs), (ins),
"{cltq|cdqe}", []>, Sched<[WriteALU]>;
let Defs = [RAX,RDX], Uses = [RAX] in // RDX:RAX = signext(RAX)
def CQO : RI<0x99, RawFrm, (outs), (ins),
"{cqto|cqo}", []>, Sched<[WriteALU]>;
}
// Sign/Zero extenders
let hasSideEffects = 0 in {
def MOVSX16rr8 : I<0xBE, MRMSrcReg, (outs GR16:$dst), (ins GR8:$src),
"movs{bw|x}\t{$src, $dst|$dst, $src}", []>,
TB, OpSize16, Sched<[WriteALU]>;
let mayLoad = 1 in
def MOVSX16rm8 : I<0xBE, MRMSrcMem, (outs GR16:$dst), (ins i8mem:$src),
"movs{bw|x}\t{$src, $dst|$dst, $src}", []>,
TB, OpSize16, Sched<[WriteALULd]>;
} // hasSideEffects = 0
def MOVSX32rr8 : I<0xBE, MRMSrcReg, (outs GR32:$dst), (ins GR8:$src),
"movs{bl|x}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (sext GR8:$src))]>, TB,
OpSize32, Sched<[WriteALU]>;
def MOVSX32rm8 : I<0xBE, MRMSrcMem, (outs GR32:$dst), (ins i8mem :$src),
"movs{bl|x}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (sextloadi32i8 addr:$src))]>, TB,
OpSize32, Sched<[WriteALULd]>;
def MOVSX32rr16: I<0xBF, MRMSrcReg, (outs GR32:$dst), (ins GR16:$src),
"movs{wl|x}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (sext GR16:$src))]>, TB,
OpSize32, Sched<[WriteALU]>;
def MOVSX32rm16: I<0xBF, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src),
"movs{wl|x}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (sextloadi32i16 addr:$src))]>,
OpSize32, TB, Sched<[WriteALULd]>;
let hasSideEffects = 0 in {
def MOVZX16rr8 : I<0xB6, MRMSrcReg, (outs GR16:$dst), (ins GR8:$src),
"movz{bw|x}\t{$src, $dst|$dst, $src}", []>,
TB, OpSize16, Sched<[WriteALU]>;
let mayLoad = 1 in
def MOVZX16rm8 : I<0xB6, MRMSrcMem, (outs GR16:$dst), (ins i8mem:$src),
"movz{bw|x}\t{$src, $dst|$dst, $src}", []>,
TB, OpSize16, Sched<[WriteALULd]>;
} // hasSideEffects = 0
def MOVZX32rr8 : I<0xB6, MRMSrcReg, (outs GR32:$dst), (ins GR8 :$src),
"movz{bl|x}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (zext GR8:$src))]>, TB,
OpSize32, Sched<[WriteALU]>;
def MOVZX32rm8 : I<0xB6, MRMSrcMem, (outs GR32:$dst), (ins i8mem :$src),
"movz{bl|x}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (zextloadi32i8 addr:$src))]>, TB,
OpSize32, Sched<[WriteALULd]>;
def MOVZX32rr16: I<0xB7, MRMSrcReg, (outs GR32:$dst), (ins GR16:$src),
"movz{wl|x}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (zext GR16:$src))]>, TB,
OpSize32, Sched<[WriteALU]>;
def MOVZX32rm16: I<0xB7, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src),
"movz{wl|x}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (zextloadi32i16 addr:$src))]>,
TB, OpSize32, Sched<[WriteALULd]>;
// These instructions exist as a consequence of operand size prefix having
// control of the destination size, but not the input size. Only support them
// for the disassembler.
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in {
def MOVSX16rr16: I<0xBF, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
"movs{ww|x}\t{$src, $dst|$dst, $src}",
[]>, TB, OpSize16, Sched<[WriteALU]>, NotMemoryFoldable;
def MOVZX16rr16: I<0xB7, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
"movz{ww|x}\t{$src, $dst|$dst, $src}",
[]>, TB, OpSize16, Sched<[WriteALU]>, NotMemoryFoldable;
let mayLoad = 1 in {
def MOVSX16rm16: I<0xBF, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
"movs{ww|x}\t{$src, $dst|$dst, $src}",
[]>, OpSize16, TB, Sched<[WriteALULd]>, NotMemoryFoldable;
def MOVZX16rm16: I<0xB7, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
"movz{ww|x}\t{$src, $dst|$dst, $src}",
[]>, TB, OpSize16, Sched<[WriteALULd]>, NotMemoryFoldable;
} // mayLoad = 1
} // isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0
// These are the same as the regular MOVZX32rr8 and MOVZX32rm8
// except that they use GR32_NOREX for the output operand register class
// instead of GR32. This allows them to operate on h registers on x86-64.
let hasSideEffects = 0, isCodeGenOnly = 1 in {
def MOVZX32rr8_NOREX : I<0xB6, MRMSrcReg,
(outs GR32_NOREX:$dst), (ins GR8_NOREX:$src),
"movz{bl|x}\t{$src, $dst|$dst, $src}",
[]>, TB, OpSize32, Sched<[WriteALU]>;
let mayLoad = 1 in
def MOVZX32rm8_NOREX : I<0xB6, MRMSrcMem,
(outs GR32_NOREX:$dst), (ins i8mem_NOREX:$src),
"movz{bl|x}\t{$src, $dst|$dst, $src}",
[]>, TB, OpSize32, Sched<[WriteALULd]>;
def MOVSX32rr8_NOREX : I<0xBE, MRMSrcReg,
(outs GR32_NOREX:$dst), (ins GR8_NOREX:$src),
"movs{bl|x}\t{$src, $dst|$dst, $src}",
[]>, TB, OpSize32, Sched<[WriteALU]>;
let mayLoad = 1 in
def MOVSX32rm8_NOREX : I<0xBE, MRMSrcMem,
(outs GR32_NOREX:$dst), (ins i8mem_NOREX:$src),
"movs{bl|x}\t{$src, $dst|$dst, $src}",
[]>, TB, OpSize32, Sched<[WriteALULd]>;
}
// MOVSX64rr8 always has a REX prefix and it has an 8-bit register
// operand, which makes it a rare instruction with an 8-bit register
// operand that can never access an h register. If support for h registers
// were generalized, this would require a special register class.
def MOVSX64rr8 : RI<0xBE, MRMSrcReg, (outs GR64:$dst), (ins GR8 :$src),
"movs{bq|x}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (sext GR8:$src))]>, TB,
Sched<[WriteALU]>;
def MOVSX64rm8 : RI<0xBE, MRMSrcMem, (outs GR64:$dst), (ins i8mem :$src),
"movs{bq|x}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (sextloadi64i8 addr:$src))]>,
TB, Sched<[WriteALULd]>;
def MOVSX64rr16: RI<0xBF, MRMSrcReg, (outs GR64:$dst), (ins GR16:$src),
"movs{wq|x}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (sext GR16:$src))]>, TB,
Sched<[WriteALU]>;
def MOVSX64rm16: RI<0xBF, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src),
"movs{wq|x}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (sextloadi64i16 addr:$src))]>,
TB, Sched<[WriteALULd]>;
def MOVSX64rr32: RI<0x63, MRMSrcReg, (outs GR64:$dst), (ins GR32:$src),
"movs{lq|xd}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (sext GR32:$src))]>,
Sched<[WriteALU]>, Requires<[In64BitMode]>;
def MOVSX64rm32: RI<0x63, MRMSrcMem, (outs GR64:$dst), (ins i32mem:$src),
"movs{lq|xd}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (sextloadi64i32 addr:$src))]>,
Sched<[WriteALULd]>, Requires<[In64BitMode]>;
// These instructions exist as a consequence of operand size prefix having
// control of the destination size, but not the input size. Only support them
// for the disassembler.
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in {
def MOVSX16rr32: I<0x63, MRMSrcReg, (outs GR16:$dst), (ins GR32:$src),
"movs{lq|xd}\t{$src, $dst|$dst, $src}", []>,
Sched<[WriteALU]>, OpSize16, Requires<[In64BitMode]>;
def MOVSX32rr32: I<0x63, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
"movs{lq|xd}\t{$src, $dst|$dst, $src}", []>,
Sched<[WriteALU]>, OpSize32, Requires<[In64BitMode]>;
let mayLoad = 1 in {
def MOVSX16rm32: I<0x63, MRMSrcMem, (outs GR16:$dst), (ins i32mem:$src),
"movs{lq|xd}\t{$src, $dst|$dst, $src}", []>,
Sched<[WriteALULd]>, OpSize16, Requires<[In64BitMode]>;
def MOVSX32rm32: I<0x63, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
"movs{lq|xd}\t{$src, $dst|$dst, $src}", []>,
Sched<[WriteALULd]>, OpSize32, Requires<[In64BitMode]>;
} // mayLoad = 1
} // isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0
// movzbq and movzwq encodings for the disassembler
let hasSideEffects = 0 in {
def MOVZX64rr8 : RI<0xB6, MRMSrcReg, (outs GR64:$dst), (ins GR8:$src),
"movz{bq|x}\t{$src, $dst|$dst, $src}", []>,
TB, Sched<[WriteALU]>;
let mayLoad = 1 in
def MOVZX64rm8 : RI<0xB6, MRMSrcMem, (outs GR64:$dst), (ins i8mem:$src),
"movz{bq|x}\t{$src, $dst|$dst, $src}", []>,
TB, Sched<[WriteALULd]>;
def MOVZX64rr16 : RI<0xB7, MRMSrcReg, (outs GR64:$dst), (ins GR16:$src),
"movz{wq|x}\t{$src, $dst|$dst, $src}", []>,
TB, Sched<[WriteALU]>;
let mayLoad = 1 in
def MOVZX64rm16 : RI<0xB7, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src),
"movz{wq|x}\t{$src, $dst|$dst, $src}", []>,
TB, Sched<[WriteALULd]>;
}
// 64-bit zero-extension patterns use SUBREG_TO_REG and an operation writing a
// 32-bit register.
def : Pat<(i64 (zext GR8:$src)),
(SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8:$src), sub_32bit)>;
def : Pat<(zextloadi64i8 addr:$src),
(SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
def : Pat<(i64 (zext GR16:$src)),
(SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16:$src), sub_32bit)>;
def : Pat<(zextloadi64i16 addr:$src),
(SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
// The preferred way to do 32-bit-to-64-bit zero extension on x86-64 is to use a
// SUBREG_TO_REG to utilize implicit zero-extension, however this isn't possible
// when the 32-bit value is defined by a truncate or is copied from something
// where the high bits aren't necessarily all zero. In such cases, we fall back
// to these explicit zext instructions.
def : Pat<(i64 (zext GR32:$src)),
(SUBREG_TO_REG (i64 0), (MOV32rr GR32:$src), sub_32bit)>;
def : Pat<(i64 (zextloadi64i32 addr:$src)),
(SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;