Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
//===--- CodeGenTypes.cpp - TBAA information for LLVM CodeGen -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the code that manages TBAA information and defines the TBAA policy
// for the optimizer to use. Relevant standards text includes:
//
//   C99 6.5p7
//   C++ [basic.lval] (p10 in n3126, p15 in some earlier versions)
//
//===----------------------------------------------------------------------===//

#include "CodeGenTBAA.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/CodeGenOptions.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
using namespace clang;
using namespace CodeGen;

CodeGenTBAA::CodeGenTBAA(ASTContext &Ctx, llvm::Module &M,
                         const CodeGenOptions &CGO,
                         const LangOptions &Features, MangleContext &MContext)
  : Context(Ctx), Module(M), CodeGenOpts(CGO),
    Features(Features), MContext(MContext), MDHelper(M.getContext()),
    Root(nullptr), Char(nullptr)
{}

CodeGenTBAA::~CodeGenTBAA() {
}

llvm::MDNode *CodeGenTBAA::getRoot() {
  // Define the root of the tree. This identifies the tree, so that
  // if our LLVM IR is linked with LLVM IR from a different front-end
  // (or a different version of this front-end), their TBAA trees will
  // remain distinct, and the optimizer will treat them conservatively.
  if (!Root) {
    if (Features.CPlusPlus)
      Root = MDHelper.createTBAARoot("Simple C++ TBAA");
    else
      Root = MDHelper.createTBAARoot("Simple C/C++ TBAA");
  }

  return Root;
}

llvm::MDNode *CodeGenTBAA::createScalarTypeNode(StringRef Name,
                                                llvm::MDNode *Parent,
                                                uint64_t Size) {
  if (CodeGenOpts.NewStructPathTBAA) {
    llvm::Metadata *Id = MDHelper.createString(Name);
    return MDHelper.createTBAATypeNode(Parent, Size, Id);
  }
  return MDHelper.createTBAAScalarTypeNode(Name, Parent);
}

llvm::MDNode *CodeGenTBAA::getChar() {
  // Define the root of the tree for user-accessible memory. C and C++
  // give special powers to char and certain similar types. However,
  // these special powers only cover user-accessible memory, and doesn't
  // include things like vtables.
  if (!Char)
    Char = createScalarTypeNode("omnipotent char", getRoot(), /* Size= */ 1);

  return Char;
}

static bool TypeHasMayAlias(QualType QTy) {
  // Tagged types have declarations, and therefore may have attributes.
  if (const TagType *TTy = dyn_cast<TagType>(QTy))
    return TTy->getDecl()->hasAttr<MayAliasAttr>();

  // Typedef types have declarations, and therefore may have attributes.
  if (const TypedefType *TTy = dyn_cast<TypedefType>(QTy)) {
    if (TTy->getDecl()->hasAttr<MayAliasAttr>())
      return true;
    // Also, their underlying types may have relevant attributes.
    return TypeHasMayAlias(TTy->desugar());
  }

  return false;
}

/// Check if the given type is a valid base type to be used in access tags.
static bool isValidBaseType(QualType QTy) {
  if (QTy->isReferenceType())
    return false;
  if (const RecordType *TTy = QTy->getAs<RecordType>()) {
    const RecordDecl *RD = TTy->getDecl()->getDefinition();
    // Incomplete types are not valid base access types.
    if (!RD)
      return false;
    if (RD->hasFlexibleArrayMember())
      return false;
    // RD can be struct, union, class, interface or enum.
    // For now, we only handle struct and class.
    if (RD->isStruct() || RD->isClass())
      return true;
  }
  return false;
}

llvm::MDNode *CodeGenTBAA::getTypeInfoHelper(const Type *Ty) {
  uint64_t Size = Context.getTypeSizeInChars(Ty).getQuantity();

  // Handle builtin types.
  if (const BuiltinType *BTy = dyn_cast<BuiltinType>(Ty)) {
    switch (BTy->getKind()) {
    // Character types are special and can alias anything.
    // In C++, this technically only includes "char" and "unsigned char",
    // and not "signed char". In C, it includes all three. For now,
    // the risk of exploiting this detail in C++ seems likely to outweigh
    // the benefit.
    case BuiltinType::Char_U:
    case BuiltinType::Char_S:
    case BuiltinType::UChar:
    case BuiltinType::SChar:
      return getChar();

    // Unsigned types can alias their corresponding signed types.
    case BuiltinType::UShort:
      return getTypeInfo(Context.ShortTy);
    case BuiltinType::UInt:
      return getTypeInfo(Context.IntTy);
    case BuiltinType::ULong:
      return getTypeInfo(Context.LongTy);
    case BuiltinType::ULongLong:
      return getTypeInfo(Context.LongLongTy);
    case BuiltinType::UInt128:
      return getTypeInfo(Context.Int128Ty);

    // Treat all other builtin types as distinct types. This includes
    // treating wchar_t, char16_t, and char32_t as distinct from their
    // "underlying types".
    default:
      return createScalarTypeNode(BTy->getName(Features), getChar(), Size);
    }
  }

  // C++1z [basic.lval]p10: "If a program attempts to access the stored value of
  // an object through a glvalue of other than one of the following types the
  // behavior is undefined: [...] a char, unsigned char, or std::byte type."
  if (Ty->isStdByteType())
    return getChar();

  // Handle pointers and references.
  // TODO: Implement C++'s type "similarity" and consider dis-"similar"
  // pointers distinct.
  if (Ty->isPointerType() || Ty->isReferenceType())
    return createScalarTypeNode("any pointer", getChar(), Size);

  // Accesses to arrays are accesses to objects of their element types.
  if (CodeGenOpts.NewStructPathTBAA && Ty->isArrayType())
    return getTypeInfo(cast<ArrayType>(Ty)->getElementType());

  // Enum types are distinct types. In C++ they have "underlying types",
  // however they aren't related for TBAA.
  if (const EnumType *ETy = dyn_cast<EnumType>(Ty)) {
    // In C++ mode, types have linkage, so we can rely on the ODR and
    // on their mangled names, if they're external.
    // TODO: Is there a way to get a program-wide unique name for a
    // decl with local linkage or no linkage?
    if (!Features.CPlusPlus || !ETy->getDecl()->isExternallyVisible())
      return getChar();

    SmallString<256> OutName;
    llvm::raw_svector_ostream Out(OutName);
    MContext.mangleTypeName(QualType(ETy, 0), Out);
    return createScalarTypeNode(OutName, getChar(), Size);
  }

  // For now, handle any other kind of type conservatively.
  return getChar();
}

llvm::MDNode *CodeGenTBAA::getTypeInfo(QualType QTy) {
  // At -O0 or relaxed aliasing, TBAA is not emitted for regular types.
  if (CodeGenOpts.OptimizationLevel == 0 || CodeGenOpts.RelaxedAliasing)
    return nullptr;

  // If the type has the may_alias attribute (even on a typedef), it is
  // effectively in the general char alias class.
  if (TypeHasMayAlias(QTy))
    return getChar();

  // We need this function to not fall back to returning the "omnipotent char"
  // type node for aggregate and union types. Otherwise, any dereference of an
  // aggregate will result into the may-alias access descriptor, meaning all
  // subsequent accesses to direct and indirect members of that aggregate will
  // be considered may-alias too.
  // TODO: Combine getTypeInfo() and getBaseTypeInfo() into a single function.
  if (isValidBaseType(QTy))
    return getBaseTypeInfo(QTy);

  const Type *Ty = Context.getCanonicalType(QTy).getTypePtr();
  if (llvm::MDNode *N = MetadataCache[Ty])
    return N;

  // Note that the following helper call is allowed to add new nodes to the
  // cache, which invalidates all its previously obtained iterators. So we
  // first generate the node for the type and then add that node to the cache.
  llvm::MDNode *TypeNode = getTypeInfoHelper(Ty);
  return MetadataCache[Ty] = TypeNode;
}

TBAAAccessInfo CodeGenTBAA::getAccessInfo(QualType AccessType) {
  // Pointee values may have incomplete types, but they shall never be
  // dereferenced.
  if (AccessType->isIncompleteType())
    return TBAAAccessInfo::getIncompleteInfo();

  if (TypeHasMayAlias(AccessType))
    return TBAAAccessInfo::getMayAliasInfo();

  uint64_t Size = Context.getTypeSizeInChars(AccessType).getQuantity();
  return TBAAAccessInfo(getTypeInfo(AccessType), Size);
}

TBAAAccessInfo CodeGenTBAA::getVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
  llvm::DataLayout DL(&Module);
  unsigned Size = DL.getPointerTypeSize(VTablePtrType);
  return TBAAAccessInfo(createScalarTypeNode("vtable pointer", getRoot(), Size),
                        Size);
}

bool
CodeGenTBAA::CollectFields(uint64_t BaseOffset,
                           QualType QTy,
                           SmallVectorImpl<llvm::MDBuilder::TBAAStructField> &
                             Fields,
                           bool MayAlias) {
  /* Things not handled yet include: C++ base classes, bitfields, */

  if (const RecordType *TTy = QTy->getAs<RecordType>()) {
    const RecordDecl *RD = TTy->getDecl()->getDefinition();
    if (RD->hasFlexibleArrayMember())
      return false;

    // TODO: Handle C++ base classes.
    if (const CXXRecordDecl *Decl = dyn_cast<CXXRecordDecl>(RD))
      if (Decl->bases_begin() != Decl->bases_end())
        return false;

    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);

    unsigned idx = 0;
    for (RecordDecl::field_iterator i = RD->field_begin(),
         e = RD->field_end(); i != e; ++i, ++idx) {
      uint64_t Offset = BaseOffset +
                        Layout.getFieldOffset(idx) / Context.getCharWidth();
      QualType FieldQTy = i->getType();
      if (!CollectFields(Offset, FieldQTy, Fields,
                         MayAlias || TypeHasMayAlias(FieldQTy)))
        return false;
    }
    return true;
  }

  /* Otherwise, treat whatever it is as a field. */
  uint64_t Offset = BaseOffset;
  uint64_t Size = Context.getTypeSizeInChars(QTy).getQuantity();
  llvm::MDNode *TBAAType = MayAlias ? getChar() : getTypeInfo(QTy);
  llvm::MDNode *TBAATag = getAccessTagInfo(TBAAAccessInfo(TBAAType, Size));
  Fields.push_back(llvm::MDBuilder::TBAAStructField(Offset, Size, TBAATag));
  return true;
}

llvm::MDNode *
CodeGenTBAA::getTBAAStructInfo(QualType QTy) {
  const Type *Ty = Context.getCanonicalType(QTy).getTypePtr();

  if (llvm::MDNode *N = StructMetadataCache[Ty])
    return N;

  SmallVector<llvm::MDBuilder::TBAAStructField, 4> Fields;
  if (CollectFields(0, QTy, Fields, TypeHasMayAlias(QTy)))
    return MDHelper.createTBAAStructNode(Fields);

  // For now, handle any other kind of type conservatively.
  return StructMetadataCache[Ty] = nullptr;
}

llvm::MDNode *CodeGenTBAA::getBaseTypeInfoHelper(const Type *Ty) {
  if (auto *TTy = dyn_cast<RecordType>(Ty)) {
    const RecordDecl *RD = TTy->getDecl()->getDefinition();
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    SmallVector<llvm::MDBuilder::TBAAStructField, 4> Fields;
    for (FieldDecl *Field : RD->fields()) {
      QualType FieldQTy = Field->getType();
      llvm::MDNode *TypeNode = isValidBaseType(FieldQTy) ?
          getBaseTypeInfo(FieldQTy) : getTypeInfo(FieldQTy);
      if (!TypeNode)
        return BaseTypeMetadataCache[Ty] = nullptr;

      uint64_t BitOffset = Layout.getFieldOffset(Field->getFieldIndex());
      uint64_t Offset = Context.toCharUnitsFromBits(BitOffset).getQuantity();
      uint64_t Size = Context.getTypeSizeInChars(FieldQTy).getQuantity();
      Fields.push_back(llvm::MDBuilder::TBAAStructField(Offset, Size,
                                                        TypeNode));
    }

    SmallString<256> OutName;
    if (Features.CPlusPlus) {
      // Don't use the mangler for C code.
      llvm::raw_svector_ostream Out(OutName);
      MContext.mangleTypeName(QualType(Ty, 0), Out);
    } else {
      OutName = RD->getName();
    }

    if (CodeGenOpts.NewStructPathTBAA) {
      llvm::MDNode *Parent = getChar();
      uint64_t Size = Context.getTypeSizeInChars(Ty).getQuantity();
      llvm::Metadata *Id = MDHelper.createString(OutName);
      return MDHelper.createTBAATypeNode(Parent, Size, Id, Fields);
    }

    // Create the struct type node with a vector of pairs (offset, type).
    SmallVector<std::pair<llvm::MDNode*, uint64_t>, 4> OffsetsAndTypes;
    for (const auto &Field : Fields)
        OffsetsAndTypes.push_back(std::make_pair(Field.Type, Field.Offset));
    return MDHelper.createTBAAStructTypeNode(OutName, OffsetsAndTypes);
  }

  return nullptr;
}

llvm::MDNode *CodeGenTBAA::getBaseTypeInfo(QualType QTy) {
  if (!isValidBaseType(QTy))
    return nullptr;

  const Type *Ty = Context.getCanonicalType(QTy).getTypePtr();
  if (llvm::MDNode *N = BaseTypeMetadataCache[Ty])
    return N;

  // Note that the following helper call is allowed to add new nodes to the
  // cache, which invalidates all its previously obtained iterators. So we
  // first generate the node for the type and then add that node to the cache.
  llvm::MDNode *TypeNode = getBaseTypeInfoHelper(Ty);
  return BaseTypeMetadataCache[Ty] = TypeNode;
}

llvm::MDNode *CodeGenTBAA::getAccessTagInfo(TBAAAccessInfo Info) {
  assert(!Info.isIncomplete() && "Access to an object of an incomplete type!");

  if (Info.isMayAlias())
    Info = TBAAAccessInfo(getChar(), Info.Size);

  if (!Info.AccessType)
    return nullptr;

  if (!CodeGenOpts.StructPathTBAA)
    Info = TBAAAccessInfo(Info.AccessType, Info.Size);

  llvm::MDNode *&N = AccessTagMetadataCache[Info];
  if (N)
    return N;

  if (!Info.BaseType) {
    Info.BaseType = Info.AccessType;
    assert(!Info.Offset && "Nonzero offset for an access with no base type!");
  }
  if (CodeGenOpts.NewStructPathTBAA) {
    return N = MDHelper.createTBAAAccessTag(Info.BaseType, Info.AccessType,
                                            Info.Offset, Info.Size);
  }
  return N = MDHelper.createTBAAStructTagNode(Info.BaseType, Info.AccessType,
                                              Info.Offset);
}

TBAAAccessInfo CodeGenTBAA::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
                                                 TBAAAccessInfo TargetInfo) {
  if (SourceInfo.isMayAlias() || TargetInfo.isMayAlias())
    return TBAAAccessInfo::getMayAliasInfo();
  return TargetInfo;
}

TBAAAccessInfo
CodeGenTBAA::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
                                                 TBAAAccessInfo InfoB) {
  if (InfoA == InfoB)
    return InfoA;

  if (!InfoA || !InfoB)
    return TBAAAccessInfo();

  if (InfoA.isMayAlias() || InfoB.isMayAlias())
    return TBAAAccessInfo::getMayAliasInfo();

  // TODO: Implement the rest of the logic here. For example, two accesses
  // with same final access types result in an access to an object of that final
  // access type regardless of their base types.
  return TBAAAccessInfo::getMayAliasInfo();
}

TBAAAccessInfo
CodeGenTBAA::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
                                            TBAAAccessInfo SrcInfo) {
  if (DestInfo == SrcInfo)
    return DestInfo;

  if (!DestInfo || !SrcInfo)
    return TBAAAccessInfo();

  if (DestInfo.isMayAlias() || SrcInfo.isMayAlias())
    return TBAAAccessInfo::getMayAliasInfo();

  // TODO: Implement the rest of the logic here. For example, two accesses
  // with same final access types result in an access to an object of that final
  // access type regardless of their base types.
  return TBAAAccessInfo::getMayAliasInfo();
}