Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
/*
 * Copyright (c) 2004-2009 Voltaire, Inc. All rights reserved.
 * Copyright (c) 2002-2005 Mellanox Technologies LTD. All rights reserved.
 * Copyright (c) 1996-2003 Intel Corporation. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */

/*
 * Abstract:
 *	Implementation of the grow pools.  The grow pools manage a pool of objects.
 *	The pools can grow to meet demand, limited only by system memory.
 *
 */

#if HAVE_CONFIG_H
#  include <config.h>
#endif				/* HAVE_CONFIG_H */

#include <stdlib.h>
#include <string.h>
#include <complib/cl_qcomppool.h>
#include <complib/cl_comppool.h>
#include <complib/cl_qpool.h>
#include <complib/cl_pool.h>
#include <complib/cl_math.h>

/*
 * IMPLEMENTATION OF QUICK COMPOSITE POOL
 */
void cl_qcpool_construct(IN cl_qcpool_t * const p_pool)
{
	CL_ASSERT(p_pool);

	memset(p_pool, 0, sizeof(cl_qcpool_t));

	p_pool->state = CL_UNINITIALIZED;
}

cl_status_t cl_qcpool_init(IN cl_qcpool_t * const p_pool,
			   IN const size_t min_size, IN const size_t max_size,
			   IN const size_t grow_size,
			   IN const size_t * const component_sizes,
			   IN const uint32_t num_components,
			   IN cl_pfn_qcpool_init_t pfn_initializer OPTIONAL,
			   IN cl_pfn_qcpool_dtor_t pfn_destructor OPTIONAL,
			   IN const void *const context)
{
	cl_status_t status;
	uint32_t i;

	CL_ASSERT(p_pool);
	/* Must have a minimum of 1 component. */
	CL_ASSERT(num_components);
	/* A component size array is required. */
	CL_ASSERT(component_sizes);
	/*
	 * If no initializer is provided, the first component must be large
	 * enough to hold a pool item.
	 */
	CL_ASSERT(pfn_initializer ||
		  (component_sizes[0] >= sizeof(cl_pool_item_t)));

	cl_qcpool_construct(p_pool);

	if (num_components > 1 && !pfn_initializer)
		return (CL_INVALID_SETTING);

	if (max_size && max_size < min_size)
		return (CL_INVALID_SETTING);

	/*
	 * Allocate the array of component sizes and component pointers all
	 * in one allocation.
	 */
	p_pool->component_sizes = (size_t *) malloc((sizeof(size_t) +
						     sizeof(void *)) *
						    num_components);

	if (!p_pool->component_sizes)
		return (CL_INSUFFICIENT_MEMORY);
	else
		memset(p_pool->component_sizes, 0,
		       (sizeof(size_t) + sizeof(void *)) * num_components);

	/* Calculate the pointer to the array of pointers, used for callbacks. */
	p_pool->p_components =
	    (void **)(p_pool->component_sizes + num_components);

	/* Copy the user's sizes into our array for future use. */
	memcpy(p_pool->component_sizes, component_sizes,
	       sizeof(component_sizes[0]) * num_components);

	/* Store the number of components per object. */
	p_pool->num_components = num_components;

	/* Round up and store the size of the components. */
	for (i = 0; i < num_components; i++) {
		/*
		 * We roundup each component size so that all components
		 * are aligned on a natural boundary.
		 */
		p_pool->component_sizes[i] =
		    ROUNDUP(p_pool->component_sizes[i], sizeof(uintptr_t));
	}

	p_pool->max_objects = max_size ? max_size : ~(size_t) 0;
	p_pool->grow_size = grow_size;

	/* Store callback function pointers. */
	p_pool->pfn_init = pfn_initializer;	/* may be NULL */
	p_pool->pfn_dtor = pfn_destructor;	/* may be NULL */
	p_pool->context = context;

	cl_qlist_init(&p_pool->alloc_list);

	cl_qlist_init(&p_pool->free_list);

	/*
	 * We are now initialized.  We change the initialized flag before
	 * growing since the grow function asserts that we are initialized.
	 */
	p_pool->state = CL_INITIALIZED;

	/* Allocate the minimum number of objects as requested. */
	if (!min_size)
		return (CL_SUCCESS);

	status = cl_qcpool_grow(p_pool, min_size);
	/* Trap for error and cleanup if necessary. */
	if (status != CL_SUCCESS)
		cl_qcpool_destroy(p_pool);

	return (status);
}

void cl_qcpool_destroy(IN cl_qcpool_t * const p_pool)
{
	/* CL_ASSERT that a non-NULL pointer was provided. */
	CL_ASSERT(p_pool);
	/* CL_ASSERT that we are in a valid state (not uninitialized memory). */
	CL_ASSERT(cl_is_state_valid(p_pool->state));

	if (p_pool->state == CL_INITIALIZED) {
		/*
		 * Assert if the user hasn't put everything back in the pool
		 * before destroying it
		 * if they haven't, then most likely they are still using memory
		 * that will be freed, and the destructor will not be called!
		 */
#ifdef _DEBUG_
		/* but we do not want "free" version to assert on this one */
		CL_ASSERT(cl_qcpool_count(p_pool) == p_pool->num_objects);
#endif
		/* call the user's destructor for each object in the pool */
		if (p_pool->pfn_dtor) {
			while (!cl_is_qlist_empty(&p_pool->free_list)) {
				p_pool->pfn_dtor((cl_pool_item_t *)
						 cl_qlist_remove_head(&p_pool->
								      free_list),
						 (void *)p_pool->context);
			}
		} else {
			cl_qlist_remove_all(&p_pool->free_list);
		}

		/* Free all allocated memory blocks. */
		while (!cl_is_qlist_empty(&p_pool->alloc_list))
			free(cl_qlist_remove_head(&p_pool->alloc_list));

		if (p_pool->component_sizes) {
			free(p_pool->component_sizes);
			p_pool->component_sizes = NULL;
		}
	}

	p_pool->state = CL_UNINITIALIZED;
}

cl_status_t cl_qcpool_grow(IN cl_qcpool_t * const p_pool, IN size_t obj_count)
{
	cl_status_t status = CL_SUCCESS;
	uint8_t *p_objects;
	cl_pool_item_t *p_pool_item;
	uint32_t i;
	size_t obj_size;

	CL_ASSERT(p_pool);
	CL_ASSERT(p_pool->state == CL_INITIALIZED);
	CL_ASSERT(obj_count);

	/* Validate that growth is possible. */
	if (p_pool->num_objects == p_pool->max_objects)
		return (CL_INSUFFICIENT_MEMORY);

	/* Cap the growth to the desired maximum. */
	if (obj_count > (p_pool->max_objects - p_pool->num_objects))
		obj_count = p_pool->max_objects - p_pool->num_objects;

	/* Calculate the size of an object. */
	obj_size = 0;
	for (i = 0; i < p_pool->num_components; i++)
		obj_size += p_pool->component_sizes[i];

	/* Allocate the buffer for the new objects. */
	p_objects = (uint8_t *)
	    malloc(sizeof(cl_list_item_t) + (obj_size * obj_count));

	/* Make sure the allocation succeeded. */
	if (!p_objects)
		return (CL_INSUFFICIENT_MEMORY);
	else
		memset(p_objects, 0,
		       sizeof(cl_list_item_t) + (obj_size * obj_count));

	/* Insert the allocation in our list. */
	cl_qlist_insert_tail(&p_pool->alloc_list, (cl_list_item_t *) p_objects);
	p_objects += sizeof(cl_list_item_t);

	/* initialize the new elements and add them to the free list */
	while (obj_count--) {
		/* Setup the array of components for the current object. */
		p_pool->p_components[0] = p_objects;
		for (i = 1; i < p_pool->num_components; i++) {
			/* Calculate the pointer to the next component. */
			p_pool->p_components[i] =
			    (uint8_t *) p_pool->p_components[i - 1] +
			    p_pool->component_sizes[i - 1];
		}

		/*
		 * call the user's initializer
		 * this can fail!
		 */
		if (p_pool->pfn_init) {
			p_pool_item = NULL;
			status = p_pool->pfn_init(p_pool->p_components,
						  p_pool->num_components,
						  (void *)p_pool->context,
						  &p_pool_item);
			if (status != CL_SUCCESS) {
				/*
				 * User initialization failed
				 * we may have only grown the pool by some partial amount
				 * Invoke the destructor for the object that failed
				 * initialization.
				 */
				if (p_pool->pfn_dtor)
					p_pool->pfn_dtor(p_pool_item,
							 (void *)p_pool->
							 context);

				/* Return the user's status. */
				return (status);
			}
			CL_ASSERT(p_pool_item);
		} else {
			/*
			 * If no initializer is provided, assume that the pool item
			 * is stored at the beginning of the first component.
			 */
			p_pool_item =
			    (cl_pool_item_t *) p_pool->p_components[0];
		}

#ifdef _DEBUG_
		/*
		 * Set the pool item's pool pointer to this pool so that we can
		 * check that items get returned to the correct pool.
		 */
		p_pool_item->p_pool = p_pool;
#endif

		/* Insert the new item in the free list, traping for failure. */
		cl_qlist_insert_head(&p_pool->free_list,
				     &p_pool_item->list_item);

		p_pool->num_objects++;

		/* move the pointer to the next item */
		p_objects += obj_size;
	}

	return (status);
}

cl_pool_item_t *cl_qcpool_get(IN cl_qcpool_t * const p_pool)
{
	cl_list_item_t *p_list_item;

	CL_ASSERT(p_pool);
	CL_ASSERT(p_pool->state == CL_INITIALIZED);

	if (cl_is_qlist_empty(&p_pool->free_list)) {
		/*
		 * No object is available.
		 * Return NULL if the user does not want automatic growth.
		 */
		if (!p_pool->grow_size)
			return (NULL);

		/* We ran out of elements.  Get more */
		cl_qcpool_grow(p_pool, p_pool->grow_size);
		/*
		 * We may not have gotten everything we wanted but we might have
		 * gotten something.
		 */
		if (cl_is_qlist_empty(&p_pool->free_list))
			return (NULL);
	}

	p_list_item = cl_qlist_remove_head(&p_pool->free_list);
	/* OK, at this point we have an object */
	CL_ASSERT(p_list_item != cl_qlist_end(&p_pool->free_list));
	return ((cl_pool_item_t *) p_list_item);
}

cl_pool_item_t *cl_qcpool_get_tail(IN cl_qcpool_t * const p_pool)
{
	cl_list_item_t *p_list_item;

	CL_ASSERT(p_pool);
	CL_ASSERT(p_pool->state == CL_INITIALIZED);

	if (cl_is_qlist_empty(&p_pool->free_list)) {
		/*
		 * No object is available.
		 * Return NULL if the user does not want automatic growth.
		 */
		if (!p_pool->grow_size)
			return (NULL);

		/* We ran out of elements.  Get more */
		cl_qcpool_grow(p_pool, p_pool->grow_size);
		/*
		 * We may not have gotten everything we wanted but we might have
		 * gotten something.
		 */
		if (cl_is_qlist_empty(&p_pool->free_list))
			return (NULL);
	}

	p_list_item = cl_qlist_remove_tail(&p_pool->free_list);
	/* OK, at this point we have an object */
	CL_ASSERT(p_list_item != cl_qlist_end(&p_pool->free_list));
	return ((cl_pool_item_t *) p_list_item);
}

/*
 * IMPLEMENTATION OF QUICK GROW POOL
 */

/*
 * Callback to translate quick composite to quick grow pool
 * initializer callback.
 */
static cl_status_t __cl_qpool_init_cb(IN void **const p_comp_array,
				      IN const uint32_t num_components,
				      IN void *const context,
				      OUT cl_pool_item_t ** const pp_pool_item)
{
	cl_qpool_t *p_pool = (cl_qpool_t *) context;

	CL_ASSERT(p_pool);
	CL_ASSERT(p_pool->pfn_init);
	CL_ASSERT(num_components == 1);

	UNUSED_PARAM(num_components);

	return (p_pool->pfn_init(p_comp_array[0], (void *)p_pool->context,
				 pp_pool_item));
}

/*
 * Callback to translate quick composite to quick grow pool
 * destructor callback.
 */
static void __cl_qpool_dtor_cb(IN const cl_pool_item_t * const p_pool_item,
			       IN void *const context)
{
	cl_qpool_t *p_pool = (cl_qpool_t *) context;

	CL_ASSERT(p_pool);
	CL_ASSERT(p_pool->pfn_dtor);

	p_pool->pfn_dtor(p_pool_item, (void *)p_pool->context);
}

void cl_qpool_construct(IN cl_qpool_t * const p_pool)
{
	memset(p_pool, 0, sizeof(cl_qpool_t));

	cl_qcpool_construct(&p_pool->qcpool);
}

cl_status_t cl_qpool_init(IN cl_qpool_t * const p_pool,
			  IN const size_t min_size, IN const size_t max_size,
			  IN const size_t grow_size,
			  IN const size_t object_size,
			  IN cl_pfn_qpool_init_t pfn_initializer OPTIONAL,
			  IN cl_pfn_qpool_dtor_t pfn_destructor OPTIONAL,
			  IN const void *const context)
{
	cl_status_t status;

	CL_ASSERT(p_pool);

	p_pool->pfn_init = pfn_initializer;	/* may be NULL */
	p_pool->pfn_dtor = pfn_destructor;	/* may be NULL */
	p_pool->context = context;

	status = cl_qcpool_init(&p_pool->qcpool, min_size, max_size, grow_size,
				&object_size, 1,
				pfn_initializer ? __cl_qpool_init_cb : NULL,
				pfn_destructor ? __cl_qpool_dtor_cb : NULL,
				p_pool);

	return (status);
}

/*
 * IMPLEMENTATION OF COMPOSITE POOL
 */

/*
 * Callback to translate quick composite to compsite pool
 * initializer callback.
 */
static cl_status_t __cl_cpool_init_cb(IN void **const p_comp_array,
				      IN const uint32_t num_components,
				      IN void *const context,
				      OUT cl_pool_item_t ** const pp_pool_item)
{
	cl_cpool_t *p_pool = (cl_cpool_t *) context;
	cl_pool_obj_t *p_pool_obj;
	cl_status_t status = CL_SUCCESS;

	CL_ASSERT(p_pool);

	/*
	 * Set our pointer to the list item, which is stored at the beginning of
	 * the first component.
	 */
	p_pool_obj = (cl_pool_obj_t *) p_comp_array[0];
	/* Set the pool item pointer for the caller. */
	*pp_pool_item = &p_pool_obj->pool_item;

	/* Calculate the pointer to the user's first component. */
	p_comp_array[0] = ((uint8_t *) p_comp_array[0]) + sizeof(cl_pool_obj_t);

	/*
	 * Set the object pointer in the pool object to point to the first of the
	 * user's components.
	 */
	p_pool_obj->p_object = p_comp_array[0];

	/* Invoke the user's constructor callback. */
	if (p_pool->pfn_init) {
		status = p_pool->pfn_init(p_comp_array, num_components,
					  (void *)p_pool->context);
	}

	return (status);
}

/*
 * Callback to translate quick composite to composite pool
 * destructor callback.
 */
static void __cl_cpool_dtor_cb(IN const cl_pool_item_t * const p_pool_item,
			       IN void *const context)
{
	cl_cpool_t *p_pool = (cl_cpool_t *) context;

	CL_ASSERT(p_pool);
	CL_ASSERT(p_pool->pfn_dtor);
	CL_ASSERT(((cl_pool_obj_t *) p_pool_item)->p_object);

	/* Invoke the user's destructor callback. */
	p_pool->pfn_dtor((void *)((cl_pool_obj_t *) p_pool_item)->p_object,
			 (void *)p_pool->context);
}

void cl_cpool_construct(IN cl_cpool_t * const p_pool)
{
	CL_ASSERT(p_pool);

	memset(p_pool, 0, sizeof(cl_cpool_t));

	cl_qcpool_construct(&p_pool->qcpool);
}

cl_status_t cl_cpool_init(IN cl_cpool_t * const p_pool,
			  IN const size_t min_size, IN const size_t max_size,
			  IN const size_t grow_size,
			  IN size_t * const component_sizes,
			  IN const uint32_t num_components,
			  IN cl_pfn_cpool_init_t pfn_initializer OPTIONAL,
			  IN cl_pfn_cpool_dtor_t pfn_destructor OPTIONAL,
			  IN const void *const context)
{
	cl_status_t status;

	CL_ASSERT(p_pool);
	CL_ASSERT(num_components);
	CL_ASSERT(component_sizes);

	/* Add the size of the pool object to the first component. */
	component_sizes[0] += sizeof(cl_pool_obj_t);

	/* Store callback function pointers. */
	p_pool->pfn_init = pfn_initializer;	/* may be NULL */
	p_pool->pfn_dtor = pfn_destructor;	/* may be NULL */
	p_pool->context = context;

	status = cl_qcpool_init(&p_pool->qcpool, min_size, max_size, grow_size,
				component_sizes, num_components,
				__cl_cpool_init_cb,
				pfn_destructor ? __cl_cpool_dtor_cb : NULL,
				p_pool);

	/* Restore the original value of the first component. */
	component_sizes[0] -= sizeof(cl_pool_obj_t);

	return (status);
}

/*
 * IMPLEMENTATION OF GROW POOL
 */

/*
 * Callback to translate quick composite to grow pool constructor callback.
 */
static cl_status_t __cl_pool_init_cb(IN void **const pp_obj,
				     IN const uint32_t count,
				     IN void *const context,
				     OUT cl_pool_item_t ** const pp_pool_item)
{
	cl_pool_t *p_pool = (cl_pool_t *) context;
	cl_pool_obj_t *p_pool_obj;
	cl_status_t status = CL_SUCCESS;

	CL_ASSERT(p_pool);
	CL_ASSERT(pp_obj);
	CL_ASSERT(count == 1);

	UNUSED_PARAM(count);

	/*
	 * Set our pointer to the list item, which is stored at the beginning of
	 * the first component.
	 */
	p_pool_obj = (cl_pool_obj_t *) * pp_obj;
	*pp_pool_item = &p_pool_obj->pool_item;

	/* Calculate the pointer to the user's first component. */
	*pp_obj = ((uint8_t *) * pp_obj) + sizeof(cl_pool_obj_t);

	/*
	 * Set the object pointer in the pool item to point to the first of the
	 * user's components.
	 */
	p_pool_obj->p_object = *pp_obj;

	/* Invoke the user's constructor callback. */
	if (p_pool->pfn_init)
		status = p_pool->pfn_init(*pp_obj, (void *)p_pool->context);

	return (status);
}

/*
 * Callback to translate quick composite to grow pool destructor callback.
 */
static void __cl_pool_dtor_cb(IN const cl_pool_item_t * const p_pool_item,
			      IN void *const context)
{
	cl_pool_t *p_pool = (cl_pool_t *) context;

	CL_ASSERT(p_pool);
	CL_ASSERT(p_pool->pfn_dtor);
	CL_ASSERT(((cl_pool_obj_t *) p_pool_item)->p_object);

	/* Invoke the user's destructor callback. */
	p_pool->pfn_dtor((void *)((cl_pool_obj_t *) p_pool_item)->p_object,
			 (void *)p_pool->context);
}

void cl_pool_construct(IN cl_pool_t * const p_pool)
{
	CL_ASSERT(p_pool);

	memset(p_pool, 0, sizeof(cl_pool_t));

	cl_qcpool_construct(&p_pool->qcpool);
}

cl_status_t cl_pool_init(IN cl_pool_t * const p_pool, IN const size_t min_size,
			 IN const size_t max_size, IN const size_t grow_size,
			 IN const size_t object_size,
			 IN cl_pfn_pool_init_t pfn_initializer OPTIONAL,
			 IN cl_pfn_pool_dtor_t pfn_destructor OPTIONAL,
			 IN const void *const context)
{
	cl_status_t status;
	size_t total_size;

	CL_ASSERT(p_pool);

	/* Add the size of the list item to the first component. */
	total_size = object_size + sizeof(cl_pool_obj_t);

	/* Store callback function pointers. */
	p_pool->pfn_init = pfn_initializer;	/* may be NULL */
	p_pool->pfn_dtor = pfn_destructor;	/* may be NULL */
	p_pool->context = context;

	/*
	 * We need an initializer in all cases for quick composite pool, since
	 * the user pointer must be manipulated to hide the prefixed cl_pool_obj_t.
	 */
	status = cl_qcpool_init(&p_pool->qcpool, min_size, max_size, grow_size,
				&total_size, 1, __cl_pool_init_cb,
				pfn_destructor ? __cl_pool_dtor_cb : NULL,
				p_pool);

	return (status);
}