/*
* lcs.c : routines for creating an lcs
*
* ====================================================================
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
* ====================================================================
*/
#include <apr.h>
#include <apr_pools.h>
#include <apr_general.h>
#include "diff.h"
/*
* Calculate the Longest Common Subsequence (LCS) between two datasources.
* This function is what makes the diff code tick.
*
* The LCS algorithm implemented here is based on the approach described
* by Sun Wu, Udi Manber and Gene Meyers in "An O(NP) Sequence Comparison
* Algorithm", but has been modified for better performance.
*
* Let M and N be the lengths (number of tokens) of the two sources
* ('files'). The goal is to reach the end of both sources (files) with the
* minimum number of insertions + deletions. Since there is a known length
* difference N-M between the files, that is equivalent to just the minimum
* number of deletions, or equivalently the minimum number of insertions.
* For symmetry, we use the lesser number - deletions if M<N, insertions if
* M>N.
*
* Let 'k' be the difference in remaining length between the files, i.e.
* if we're at the beginning of both files, k=N-M, whereas k=0 for the
* 'end state', at the end of both files. An insertion will increase k by
* one, while a deletion decreases k by one. If k<0, then insertions are
* 'free' - we need those to reach the end state k=0 anyway - but deletions
* are costly: Adding a deletion means that we will have to add an additional
* insertion later to reach the end state, so it doesn't matter if we count
* deletions or insertions. Similarly, deletions are free for k>0.
*
* Let a 'state' be a given position in each file {pos1, pos2}. An array
* 'fp' keeps track of the best possible state (largest values of
* {pos1, pos2}) that can be achieved for a given cost 'p' (# moves away
* from k=0), as well as a linked list of what matches were used to reach
* that state. For each new value of p, we find for each value of k the
* best achievable state for that k - either by doing a costly operation
* (deletion if k<0) from a state achieved at a lower p, or doing a free
* operation (insertion if k<0) from a state achieved at the same p -
* and in both cases advancing past any matching regions found. This is
* handled by running loops over k in order of descending absolute value.
*
* A recent improvement of the algorithm is to ignore tokens that are unique
* to one file or the other, as those are known from the start to be
* impossible to match.
*/
typedef struct svn_diff__snake_t svn_diff__snake_t;
struct svn_diff__snake_t
{
apr_off_t y;
svn_diff__lcs_t *lcs;
svn_diff__position_t *position[2];
};
static APR_INLINE void
svn_diff__snake(svn_diff__snake_t *fp_k,
svn_diff__token_index_t *token_counts[2],
svn_diff__lcs_t **freelist,
apr_pool_t *pool)
{
svn_diff__position_t *start_position[2];
svn_diff__position_t *position[2];
svn_diff__lcs_t *lcs;
svn_diff__lcs_t *previous_lcs;
/* The previous entry at fp[k] is going to be replaced. See if we
* can mark that lcs node for reuse, because the sequence up to this
* point was a dead end.
*/
lcs = fp_k[0].lcs;
while (lcs)
{
lcs->refcount--;
if (lcs->refcount)
break;
previous_lcs = lcs->next;
lcs->next = *freelist;
*freelist = lcs;
lcs = previous_lcs;
}
if (fp_k[-1].y >= fp_k[1].y)
{
start_position[0] = fp_k[-1].position[0];
start_position[1] = fp_k[-1].position[1]->next;
previous_lcs = fp_k[-1].lcs;
}
else
{
start_position[0] = fp_k[1].position[0]->next;
start_position[1] = fp_k[1].position[1];
previous_lcs = fp_k[1].lcs;
}
if (previous_lcs)
{
previous_lcs->refcount++;
}
/* ### Optimization, skip all positions that don't have matchpoints
* ### anyway. Beware of the sentinel, don't skip it!
*/
position[0] = start_position[0];
position[1] = start_position[1];
while (1)
{
while (position[0]->token_index == position[1]->token_index)
{
position[0] = position[0]->next;
position[1] = position[1]->next;
}
if (position[1] != start_position[1])
{
lcs = *freelist;
if (lcs)
{
*freelist = lcs->next;
}
else
{
lcs = apr_palloc(pool, sizeof(*lcs));
}
lcs->position[0] = start_position[0];
lcs->position[1] = start_position[1];
lcs->length = position[1]->offset - start_position[1]->offset;
lcs->next = previous_lcs;
lcs->refcount = 1;
previous_lcs = lcs;
start_position[0] = position[0];
start_position[1] = position[1];
}
/* Skip any and all tokens that only occur in one of the files */
if (position[0]->token_index >= 0
&& token_counts[1][position[0]->token_index] == 0)
start_position[0] = position[0] = position[0]->next;
else if (position[1]->token_index >= 0
&& token_counts[0][position[1]->token_index] == 0)
start_position[1] = position[1] = position[1]->next;
else
break;
}
fp_k[0].lcs = previous_lcs;
fp_k[0].position[0] = position[0];
fp_k[0].position[1] = position[1];
fp_k[0].y = position[1]->offset;
}
static svn_diff__lcs_t *
svn_diff__lcs_reverse(svn_diff__lcs_t *lcs)
{
svn_diff__lcs_t *next;
svn_diff__lcs_t *prev;
next = NULL;
while (lcs != NULL)
{
prev = lcs->next;
lcs->next = next;
next = lcs;
lcs = prev;
}
return next;
}
/* Prepends a new lcs chunk for the amount of LINES at the given positions
* POS0_OFFSET and POS1_OFFSET to the given LCS chain, and returns it.
* This function assumes LINES > 0. */
static svn_diff__lcs_t *
prepend_lcs(svn_diff__lcs_t *lcs, apr_off_t lines,
apr_off_t pos0_offset, apr_off_t pos1_offset,
apr_pool_t *pool)
{
svn_diff__lcs_t *new_lcs;
SVN_ERR_ASSERT_NO_RETURN(lines > 0);
new_lcs = apr_palloc(pool, sizeof(*new_lcs));
new_lcs->position[0] = apr_pcalloc(pool, sizeof(*new_lcs->position[0]));
new_lcs->position[0]->offset = pos0_offset;
new_lcs->position[1] = apr_pcalloc(pool, sizeof(*new_lcs->position[1]));
new_lcs->position[1]->offset = pos1_offset;
new_lcs->length = lines;
new_lcs->refcount = 1;
new_lcs->next = lcs;
return new_lcs;
}
svn_diff__lcs_t *
svn_diff__lcs(svn_diff__position_t *position_list1, /* pointer to tail (ring) */
svn_diff__position_t *position_list2, /* pointer to tail (ring) */
svn_diff__token_index_t *token_counts_list1, /* array of counts */
svn_diff__token_index_t *token_counts_list2, /* array of counts */
svn_diff__token_index_t num_tokens,
apr_off_t prefix_lines,
apr_off_t suffix_lines,
apr_pool_t *pool)
{
apr_off_t length[2];
svn_diff__token_index_t *token_counts[2];
svn_diff__token_index_t unique_count[2];
svn_diff__token_index_t token_index;
svn_diff__snake_t *fp;
apr_off_t d;
apr_off_t k;
apr_off_t p = 0;
svn_diff__lcs_t *lcs, *lcs_freelist = NULL;
svn_diff__position_t sentinel_position[2];
/* Since EOF is always a sync point we tack on an EOF link
* with sentinel positions
*/
lcs = apr_palloc(pool, sizeof(*lcs));
lcs->position[0] = apr_pcalloc(pool, sizeof(*lcs->position[0]));
lcs->position[0]->offset = position_list1
? position_list1->offset + suffix_lines + 1
: prefix_lines + suffix_lines + 1;
lcs->position[1] = apr_pcalloc(pool, sizeof(*lcs->position[1]));
lcs->position[1]->offset = position_list2
? position_list2->offset + suffix_lines + 1
: prefix_lines + suffix_lines + 1;
lcs->length = 0;
lcs->refcount = 1;
lcs->next = NULL;
if (position_list1 == NULL || position_list2 == NULL)
{
if (suffix_lines)
lcs = prepend_lcs(lcs, suffix_lines,
lcs->position[0]->offset - suffix_lines,
lcs->position[1]->offset - suffix_lines,
pool);
if (prefix_lines)
lcs = prepend_lcs(lcs, prefix_lines, 1, 1, pool);
return lcs;
}
unique_count[1] = unique_count[0] = 0;
for (token_index = 0; token_index < num_tokens; token_index++)
{
if (token_counts_list1[token_index] == 0)
unique_count[1] += token_counts_list2[token_index];
if (token_counts_list2[token_index] == 0)
unique_count[0] += token_counts_list1[token_index];
}
/* Calculate lengths M and N of the sequences to be compared. Do not
* count tokens unique to one file, as those are ignored in __snake.
*/
length[0] = position_list1->offset - position_list1->next->offset + 1
- unique_count[0];
length[1] = position_list2->offset - position_list2->next->offset + 1
- unique_count[1];
/* strikerXXX: here we allocate the furthest point array, which is
* strikerXXX: sized M + N + 3 (!)
*/
fp = apr_pcalloc(pool,
sizeof(*fp) * (apr_size_t)(length[0] + length[1] + 3));
/* The origo of fp corresponds to the end state, where we are
* at the end of both files. The valid states thus span from
* -N (at end of first file and at the beginning of the second
* file) to +M (the opposite :). Finally, svn_diff__snake needs
* 1 extra slot on each side to work.
*/
fp += length[1] + 1;
sentinel_position[0].next = position_list1->next;
position_list1->next = &sentinel_position[0];
sentinel_position[0].offset = position_list1->offset + 1;
token_counts[0] = token_counts_list1;
sentinel_position[1].next = position_list2->next;
position_list2->next = &sentinel_position[1];
sentinel_position[1].offset = position_list2->offset + 1;
token_counts[1] = token_counts_list2;
/* Negative indices will not be used elsewhere
*/
sentinel_position[0].token_index = -1;
sentinel_position[1].token_index = -2;
/* position d = M - N corresponds to the initial state, where
* we are at the beginning of both files.
*/
d = length[0] - length[1];
/* k = d - 1 will be the first to be used to get previous
* position information from, make sure it holds sane
* data
*/
fp[d - 1].position[0] = sentinel_position[0].next;
fp[d - 1].position[1] = &sentinel_position[1];
p = 0;
do
{
/* For k < 0, insertions are free */
for (k = (d < 0 ? d : 0) - p; k < 0; k++)
{
svn_diff__snake(fp + k, token_counts, &lcs_freelist, pool);
}
/* for k > 0, deletions are free */
for (k = (d > 0 ? d : 0) + p; k >= 0; k--)
{
svn_diff__snake(fp + k, token_counts, &lcs_freelist, pool);
}
p++;
}
while (fp[0].position[1] != &sentinel_position[1]);
if (suffix_lines)
lcs->next = prepend_lcs(fp[0].lcs, suffix_lines,
lcs->position[0]->offset - suffix_lines,
lcs->position[1]->offset - suffix_lines,
pool);
else
lcs->next = fp[0].lcs;
lcs = svn_diff__lcs_reverse(lcs);
position_list1->next = sentinel_position[0].next;
position_list2->next = sentinel_position[1].next;
if (prefix_lines)
return prepend_lcs(lcs, prefix_lines, 1, 1, pool);
else
return lcs;
}