Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
/*-
 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
 *
 * Copyright (c) 2005-2006 Robert N. M. Watson
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * $FreeBSD$
 */

#include <sys/param.h>
#include <sys/counter.h>
#include <sys/cpuset.h>
#include <sys/sysctl.h>

#include <vm/uma.h>
#include <vm/uma_int.h>

#include <err.h>
#include <errno.h>
#include <kvm.h>
#include <nlist.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include "memstat.h"
#include "memstat_internal.h"

static struct nlist namelist[] = {
#define	X_UMA_KEGS	0
	{ .n_name = "_uma_kegs" },
#define	X_MP_MAXID	1
	{ .n_name = "_mp_maxid" },
#define	X_ALL_CPUS	2
	{ .n_name = "_all_cpus" },
#define	X_VM_NDOMAINS	3
	{ .n_name = "_vm_ndomains" },
	{ .n_name = "" },
};

/*
 * Extract uma(9) statistics from the running kernel, and store all memory
 * type information in the passed list.  For each type, check the list for an
 * existing entry with the right name/allocator -- if present, update that
 * entry.  Otherwise, add a new entry.  On error, the entire list will be
 * cleared, as entries will be in an inconsistent state.
 *
 * To reduce the level of work for a list that starts empty, we keep around a
 * hint as to whether it was empty when we began, so we can avoid searching
 * the list for entries to update.  Updates are O(n^2) due to searching for
 * each entry before adding it.
 */
int
memstat_sysctl_uma(struct memory_type_list *list, int flags)
{
	struct uma_stream_header *ushp;
	struct uma_type_header *uthp;
	struct uma_percpu_stat *upsp;
	struct memory_type *mtp;
	int count, hint_dontsearch, i, j, maxcpus, maxid;
	char *buffer, *p;
	size_t size;

	hint_dontsearch = LIST_EMPTY(&list->mtl_list);

	/*
	 * Query the number of CPUs, number of malloc types so that we can
	 * guess an initial buffer size.  We loop until we succeed or really
	 * fail.  Note that the value of maxcpus we query using sysctl is not
	 * the version we use when processing the real data -- that is read
	 * from the header.
	 */
retry:
	size = sizeof(maxid);
	if (sysctlbyname("kern.smp.maxid", &maxid, &size, NULL, 0) < 0) {
		if (errno == EACCES || errno == EPERM)
			list->mtl_error = MEMSTAT_ERROR_PERMISSION;
		else
			list->mtl_error = MEMSTAT_ERROR_DATAERROR;
		return (-1);
	}
	if (size != sizeof(maxid)) {
		list->mtl_error = MEMSTAT_ERROR_DATAERROR;
		return (-1);
	}

	size = sizeof(count);
	if (sysctlbyname("vm.zone_count", &count, &size, NULL, 0) < 0) {
		if (errno == EACCES || errno == EPERM)
			list->mtl_error = MEMSTAT_ERROR_PERMISSION;
		else
			list->mtl_error = MEMSTAT_ERROR_VERSION;
		return (-1);
	}
	if (size != sizeof(count)) {
		list->mtl_error = MEMSTAT_ERROR_DATAERROR;
		return (-1);
	}

	size = sizeof(*uthp) + count * (sizeof(*uthp) + sizeof(*upsp) *
	    (maxid + 1));

	buffer = malloc(size);
	if (buffer == NULL) {
		list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
		return (-1);
	}

	if (sysctlbyname("vm.zone_stats", buffer, &size, NULL, 0) < 0) {
		/*
		 * XXXRW: ENOMEM is an ambiguous return, we should bound the
		 * number of loops, perhaps.
		 */
		if (errno == ENOMEM) {
			free(buffer);
			goto retry;
		}
		if (errno == EACCES || errno == EPERM)
			list->mtl_error = MEMSTAT_ERROR_PERMISSION;
		else
			list->mtl_error = MEMSTAT_ERROR_VERSION;
		free(buffer);
		return (-1);
	}

	if (size == 0) {
		free(buffer);
		return (0);
	}

	if (size < sizeof(*ushp)) {
		list->mtl_error = MEMSTAT_ERROR_VERSION;
		free(buffer);
		return (-1);
	}
	p = buffer;
	ushp = (struct uma_stream_header *)p;
	p += sizeof(*ushp);

	if (ushp->ush_version != UMA_STREAM_VERSION) {
		list->mtl_error = MEMSTAT_ERROR_VERSION;
		free(buffer);
		return (-1);
	}

	/*
	 * For the remainder of this function, we are quite trusting about
	 * the layout of structures and sizes, since we've determined we have
	 * a matching version and acceptable CPU count.
	 */
	maxcpus = ushp->ush_maxcpus;
	count = ushp->ush_count;
	for (i = 0; i < count; i++) {
		uthp = (struct uma_type_header *)p;
		p += sizeof(*uthp);

		if (hint_dontsearch == 0) {
			mtp = memstat_mtl_find(list, ALLOCATOR_UMA,
			    uthp->uth_name);
		} else
			mtp = NULL;
		if (mtp == NULL)
			mtp = _memstat_mt_allocate(list, ALLOCATOR_UMA,
			    uthp->uth_name, maxid + 1);
		if (mtp == NULL) {
			_memstat_mtl_empty(list);
			free(buffer);
			list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
			return (-1);
		}

		/*
		 * Reset the statistics on a current node.
		 */
		_memstat_mt_reset_stats(mtp, maxid + 1);

		mtp->mt_numallocs = uthp->uth_allocs;
		mtp->mt_numfrees = uthp->uth_frees;
		mtp->mt_failures = uthp->uth_fails;
		mtp->mt_sleeps = uthp->uth_sleeps;

		for (j = 0; j < maxcpus; j++) {
			upsp = (struct uma_percpu_stat *)p;
			p += sizeof(*upsp);

			mtp->mt_percpu_cache[j].mtp_free =
			    upsp->ups_cache_free;
			mtp->mt_free += upsp->ups_cache_free;
			mtp->mt_numallocs += upsp->ups_allocs;
			mtp->mt_numfrees += upsp->ups_frees;
		}

		/*
		 * Values for uth_allocs and uth_frees frees are snap.
		 * It may happen that kernel reports that number of frees
		 * is greater than number of allocs. See counter(9) for
		 * details.
		 */
		if (mtp->mt_numallocs < mtp->mt_numfrees)
			mtp->mt_numallocs = mtp->mt_numfrees;

		mtp->mt_size = uthp->uth_size;
		mtp->mt_rsize = uthp->uth_rsize;
		mtp->mt_memalloced = mtp->mt_numallocs * uthp->uth_size;
		mtp->mt_memfreed = mtp->mt_numfrees * uthp->uth_size;
		mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed;
		mtp->mt_countlimit = uthp->uth_limit;
		mtp->mt_byteslimit = uthp->uth_limit * uthp->uth_size;

		mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees;
		mtp->mt_zonefree = uthp->uth_zone_free;

		/*
		 * UMA secondary zones share a keg with the primary zone.  To
		 * avoid double-reporting of free items, report keg free
		 * items only in the primary zone.
		 */
		if (!(uthp->uth_zone_flags & UTH_ZONE_SECONDARY)) {
			mtp->mt_kegfree = uthp->uth_keg_free;
			mtp->mt_free += mtp->mt_kegfree;
		}
		mtp->mt_free += mtp->mt_zonefree;
	}

	free(buffer);

	return (0);
}

static int
kread(kvm_t *kvm, void *kvm_pointer, void *address, size_t size,
    size_t offset)
{
	ssize_t ret;

	ret = kvm_read(kvm, (unsigned long)kvm_pointer + offset, address,
	    size);
	if (ret < 0)
		return (MEMSTAT_ERROR_KVM);
	if ((size_t)ret != size)
		return (MEMSTAT_ERROR_KVM_SHORTREAD);
	return (0);
}

static int
kread_string(kvm_t *kvm, const void *kvm_pointer, char *buffer, int buflen)
{
	ssize_t ret;
	int i;

	for (i = 0; i < buflen; i++) {
		ret = kvm_read(kvm, (unsigned long)kvm_pointer + i,
		    &(buffer[i]), sizeof(char));
		if (ret < 0)
			return (MEMSTAT_ERROR_KVM);
		if ((size_t)ret != sizeof(char))
			return (MEMSTAT_ERROR_KVM_SHORTREAD);
		if (buffer[i] == '\0')
			return (0);
	}
	/* Truncate. */
	buffer[i-1] = '\0';
	return (0);
}

static int
kread_symbol(kvm_t *kvm, int index, void *address, size_t size,
    size_t offset)
{
	ssize_t ret;

	ret = kvm_read(kvm, namelist[index].n_value + offset, address, size);
	if (ret < 0)
		return (MEMSTAT_ERROR_KVM);
	if ((size_t)ret != size)
		return (MEMSTAT_ERROR_KVM_SHORTREAD);
	return (0);
}

/*
 * memstat_kvm_uma() is similar to memstat_sysctl_uma(), only it extracts
 * UMA(9) statistics from a kernel core/memory file.
 */
int
memstat_kvm_uma(struct memory_type_list *list, void *kvm_handle)
{
	LIST_HEAD(, uma_keg) uma_kegs;
	struct memory_type *mtp;
	struct uma_zone_domain uzd;
	struct uma_bucket *ubp, ub;
	struct uma_cache *ucp, *ucp_array;
	struct uma_zone *uzp, uz;
	struct uma_keg *kzp, kz;
	int hint_dontsearch, i, mp_maxid, ndomains, ret;
	char name[MEMTYPE_MAXNAME];
	cpuset_t all_cpus;
	long cpusetsize;
	kvm_t *kvm;

	kvm = (kvm_t *)kvm_handle;
	hint_dontsearch = LIST_EMPTY(&list->mtl_list);
	if (kvm_nlist(kvm, namelist) != 0) {
		list->mtl_error = MEMSTAT_ERROR_KVM;
		return (-1);
	}
	if (namelist[X_UMA_KEGS].n_type == 0 ||
	    namelist[X_UMA_KEGS].n_value == 0) {
		list->mtl_error = MEMSTAT_ERROR_KVM_NOSYMBOL;
		return (-1);
	}
	ret = kread_symbol(kvm, X_MP_MAXID, &mp_maxid, sizeof(mp_maxid), 0);
	if (ret != 0) {
		list->mtl_error = ret;
		return (-1);
	}
	ret = kread_symbol(kvm, X_VM_NDOMAINS, &ndomains,
	    sizeof(ndomains), 0);
	if (ret != 0) {
		list->mtl_error = ret;
		return (-1);
	}
	ret = kread_symbol(kvm, X_UMA_KEGS, &uma_kegs, sizeof(uma_kegs), 0);
	if (ret != 0) {
		list->mtl_error = ret;
		return (-1);
	}
	cpusetsize = sysconf(_SC_CPUSET_SIZE);
	if (cpusetsize == -1 || (u_long)cpusetsize > sizeof(cpuset_t)) {
		list->mtl_error = MEMSTAT_ERROR_KVM_NOSYMBOL;
		return (-1);
	}
	CPU_ZERO(&all_cpus);
	ret = kread_symbol(kvm, X_ALL_CPUS, &all_cpus, cpusetsize, 0);
	if (ret != 0) {
		list->mtl_error = ret;
		return (-1);
	}
	ucp_array = malloc(sizeof(struct uma_cache) * (mp_maxid + 1));
	if (ucp_array == NULL) {
		list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
		return (-1);
	}
	for (kzp = LIST_FIRST(&uma_kegs); kzp != NULL; kzp =
	    LIST_NEXT(&kz, uk_link)) {
		ret = kread(kvm, kzp, &kz, sizeof(kz), 0);
		if (ret != 0) {
			free(ucp_array);
			_memstat_mtl_empty(list);
			list->mtl_error = ret;
			return (-1);
		}
		for (uzp = LIST_FIRST(&kz.uk_zones); uzp != NULL; uzp =
		    LIST_NEXT(&uz, uz_link)) {
			ret = kread(kvm, uzp, &uz, sizeof(uz), 0);
			if (ret != 0) {
				free(ucp_array);
				_memstat_mtl_empty(list);
				list->mtl_error = ret;
				return (-1);
			}
			ret = kread(kvm, uzp, ucp_array,
			    sizeof(struct uma_cache) * (mp_maxid + 1),
			    offsetof(struct uma_zone, uz_cpu[0]));
			if (ret != 0) {
				free(ucp_array);
				_memstat_mtl_empty(list);
				list->mtl_error = ret;
				return (-1);
			}
			ret = kread_string(kvm, uz.uz_name, name,
			    MEMTYPE_MAXNAME);
			if (ret != 0) {
				free(ucp_array);
				_memstat_mtl_empty(list);
				list->mtl_error = ret;
				return (-1);
			}
			if (hint_dontsearch == 0) {
				mtp = memstat_mtl_find(list, ALLOCATOR_UMA,
				    name);
			} else
				mtp = NULL;
			if (mtp == NULL)
				mtp = _memstat_mt_allocate(list, ALLOCATOR_UMA,
				    name, mp_maxid + 1);
			if (mtp == NULL) {
				free(ucp_array);
				_memstat_mtl_empty(list);
				list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
				return (-1);
			}
			/*
			 * Reset the statistics on a current node.
			 */
			_memstat_mt_reset_stats(mtp, mp_maxid + 1);
			mtp->mt_numallocs = kvm_counter_u64_fetch(kvm,
			    (unsigned long )uz.uz_allocs);
			mtp->mt_numfrees = kvm_counter_u64_fetch(kvm,
			    (unsigned long )uz.uz_frees);
			mtp->mt_failures = kvm_counter_u64_fetch(kvm,
			    (unsigned long )uz.uz_fails);
			mtp->mt_sleeps = uz.uz_sleeps;
			if (kz.uk_flags & UMA_ZFLAG_INTERNAL)
				goto skip_percpu;
			for (i = 0; i < mp_maxid + 1; i++) {
				if (!CPU_ISSET(i, &all_cpus))
					continue;
				ucp = &ucp_array[i];
				mtp->mt_numallocs += ucp->uc_allocs;
				mtp->mt_numfrees += ucp->uc_frees;

				if (ucp->uc_allocbucket != NULL) {
					ret = kread(kvm, ucp->uc_allocbucket,
					    &ub, sizeof(ub), 0);
					if (ret != 0) {
						free(ucp_array);
						_memstat_mtl_empty(list);
						list->mtl_error = ret;
						return (-1);
					}
					mtp->mt_free += ub.ub_cnt;
				}
				if (ucp->uc_freebucket != NULL) {
					ret = kread(kvm, ucp->uc_freebucket,
					    &ub, sizeof(ub), 0);
					if (ret != 0) {
						free(ucp_array);
						_memstat_mtl_empty(list);
						list->mtl_error = ret;
						return (-1);
					}
					mtp->mt_free += ub.ub_cnt;
				}
			}
skip_percpu:
			mtp->mt_size = kz.uk_size;
			mtp->mt_rsize = kz.uk_rsize;
			mtp->mt_memalloced = mtp->mt_numallocs * mtp->mt_size;
			mtp->mt_memfreed = mtp->mt_numfrees * mtp->mt_size;
			mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed;
			mtp->mt_countlimit = uz.uz_max_items;
			mtp->mt_byteslimit = mtp->mt_countlimit * mtp->mt_size;
			mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees;
			for (i = 0; i < ndomains; i++) {
				ret = kread(kvm, &uz.uz_domain[i], &uzd,
				   sizeof(uzd), 0);
				for (ubp =
				    LIST_FIRST(&uzd.uzd_buckets);
				    ubp != NULL;
				    ubp = LIST_NEXT(&ub, ub_link)) {
					ret = kread(kvm, ubp, &ub,
					   sizeof(ub), 0);
					mtp->mt_zonefree += ub.ub_cnt;
				}
			}
			if (!((kz.uk_flags & UMA_ZONE_SECONDARY) &&
			    LIST_FIRST(&kz.uk_zones) != uzp)) {
				mtp->mt_kegfree = kz.uk_free;
				mtp->mt_free += mtp->mt_kegfree;
			}
			mtp->mt_free += mtp->mt_zonefree;
		}
	}
	free(ucp_array);
	return (0);
}