Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
.\"	$OpenBSD: tree.3,v 1.7 2002/06/12 01:09:20 provos Exp $
.\"
.\" Copyright 2002 Niels Provos <provos@citi.umich.edu>
.\" All rights reserved.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\"    notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\"    notice, this list of conditions and the following disclaimer in the
.\"    documentation and/or other materials provided with the distribution.
.\" 3. All advertising materials mentioning features or use of this software
.\"    must display the following acknowledgement:
.\"      This product includes software developed by Niels Provos.
.\" 4. The name of the author may not be used to endorse or promote products
.\"    derived from this software without specific prior written permission.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
.\" IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
.\" OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
.\" IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
.\" INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
.\" NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
.\" DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
.\" THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
.\" (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
.\" THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
.\"
.\" $FreeBSD$
.\"
.Dd May 8, 2019
.Dt TREE 3
.Os
.Sh NAME
.Nm SPLAY_PROTOTYPE ,
.Nm SPLAY_GENERATE ,
.Nm SPLAY_ENTRY ,
.Nm SPLAY_HEAD ,
.Nm SPLAY_INITIALIZER ,
.Nm SPLAY_ROOT ,
.Nm SPLAY_EMPTY ,
.Nm SPLAY_NEXT ,
.Nm SPLAY_MIN ,
.Nm SPLAY_MAX ,
.Nm SPLAY_FIND ,
.Nm SPLAY_LEFT ,
.Nm SPLAY_RIGHT ,
.Nm SPLAY_FOREACH ,
.Nm SPLAY_INIT ,
.Nm SPLAY_INSERT ,
.Nm SPLAY_REMOVE ,
.Nm RB_PROTOTYPE ,
.Nm RB_PROTOTYPE_STATIC ,
.Nm RB_PROTOTYPE_INSERT ,
.Nm RB_PROTOTYPE_INSERT_COLOR ,
.Nm RB_PROTOTYPE_REMOVE ,
.Nm RB_PROTOTYPE_REMOVE_COLOR ,
.Nm RB_PROTOTYPE_FIND ,
.Nm RB_PROTOTYPE_NFIND ,
.Nm RB_PROTOTYPE_NEXT ,
.Nm RB_PROTOTYPE_PREV ,
.Nm RB_PROTOTYPE_MINMAX ,
.Nm RB_GENERATE ,
.Nm RB_GENERATE_STATIC ,
.Nm RB_GENERATE_INSERT ,
.Nm RB_GENERATE_INSERT_COLOR ,
.Nm RB_GENERATE_REMOVE ,
.Nm RB_GENERATE_REMOVE_COLOR ,
.Nm RB_GENERATE_FIND ,
.Nm RB_GENERATE_NFIND ,
.Nm RB_GENERATE_NEXT ,
.Nm RB_GENERATE_PREV ,
.Nm RB_GENERATE_MINMAX ,
.Nm RB_ENTRY ,
.Nm RB_HEAD ,
.Nm RB_INITIALIZER ,
.Nm RB_ROOT ,
.Nm RB_EMPTY ,
.Nm RB_NEXT ,
.Nm RB_PREV ,
.Nm RB_MIN ,
.Nm RB_MAX ,
.Nm RB_FIND ,
.Nm RB_NFIND ,
.Nm RB_LEFT ,
.Nm RB_RIGHT ,
.Nm RB_PARENT ,
.Nm RB_FOREACH ,
.Nm RB_FOREACH_FROM ,
.Nm RB_FOREACH_SAFE ,
.Nm RB_FOREACH_REVERSE ,
.Nm RB_FOREACH_REVERSE_FROM ,
.Nm RB_FOREACH_REVERSE_SAFE ,
.Nm RB_INIT ,
.Nm RB_INSERT ,
.Nm RB_REMOVE
.Nd "implementations of splay and red-black trees"
.Sh SYNOPSIS
.In sys/tree.h
.Fn SPLAY_PROTOTYPE NAME TYPE FIELD CMP
.Fn SPLAY_GENERATE NAME TYPE FIELD CMP
.Fn SPLAY_ENTRY TYPE
.Fn SPLAY_HEAD HEADNAME TYPE
.Ft "struct TYPE *"
.Fn SPLAY_INITIALIZER "SPLAY_HEAD *head"
.Fn SPLAY_ROOT "SPLAY_HEAD *head"
.Ft bool
.Fn SPLAY_EMPTY "SPLAY_HEAD *head"
.Ft "struct TYPE *"
.Fn SPLAY_NEXT NAME "SPLAY_HEAD *head" "struct TYPE *elm"
.Ft "struct TYPE *"
.Fn SPLAY_MIN NAME "SPLAY_HEAD *head"
.Ft "struct TYPE *"
.Fn SPLAY_MAX NAME "SPLAY_HEAD *head"
.Ft "struct TYPE *"
.Fn SPLAY_FIND NAME "SPLAY_HEAD *head" "struct TYPE *elm"
.Ft "struct TYPE *"
.Fn SPLAY_LEFT "struct TYPE *elm" "SPLAY_ENTRY NAME"
.Ft "struct TYPE *"
.Fn SPLAY_RIGHT "struct TYPE *elm" "SPLAY_ENTRY NAME"
.Fn SPLAY_FOREACH VARNAME NAME "SPLAY_HEAD *head"
.Ft void
.Fn SPLAY_INIT "SPLAY_HEAD *head"
.Ft "struct TYPE *"
.Fn SPLAY_INSERT NAME "SPLAY_HEAD *head" "struct TYPE *elm"
.Ft "struct TYPE *"
.Fn SPLAY_REMOVE NAME "SPLAY_HEAD *head" "struct TYPE *elm"
.Fn RB_PROTOTYPE NAME TYPE FIELD CMP
.Fn RB_PROTOTYPE_STATIC NAME TYPE FIELD CMP
.Fn RB_PROTOTYPE_INSERT NAME TYPE ATTR
.Fn RB_PROTOTYPE_INSERT_COLOR NAME TYPE ATTR
.Fn RB_PROTOTYPE_REMOVE NAME TYPE ATTR
.Fn RB_PROTOTYPE_REMOVE_COLOR NAME TYPE ATTR
.Fn RB_PROTOTYPE_FIND NAME TYPE ATTR
.Fn RB_PROTOTYPE_NFIND NAME TYPE ATTR
.Fn RB_PROTOTYPE_NEXT NAME TYPE ATTR
.Fn RB_PROTOTYPE_PREV NAME TYPE ATTR
.Fn RB_PROTOTYPE_MINMAX NAME TYPE ATTR
.Fn RB_GENERATE NAME TYPE FIELD CMP
.Fn RB_GENERATE_STATIC NAME TYPE FIELD CMP
.Fn RB_GENERATE_INSERT NAME TYPE FIELD CMP ATTR
.Fn RB_GENERATE_INSERT_COLOR NAME TYPE FIELD ATTR
.Fn RB_GENERATE_REMOVE NAME TYPE FIELD ATTR
.Fn RB_GENERATE_REMOVE_COLOR NAME TYPE FIELD ATTR
.Fn RB_GENERATE_FIND NAME TYPE FIELD CMP ATTR
.Fn RB_GENERATE_NFIND NAME TYPE FIELD CMP ATTR
.Fn RB_GENERATE_NEXT NAME TYPE FIELD ATTR
.Fn RB_GENERATE_PREV NAME TYPE FIELD ATTR
.Fn RB_GENERATE_MINMAX NAME TYPE FIELD ATTR
.Fn RB_ENTRY TYPE
.Fn RB_HEAD HEADNAME TYPE
.Fn RB_INITIALIZER "RB_HEAD *head"
.Ft "struct TYPE *"
.Fn RB_ROOT "RB_HEAD *head"
.Ft "bool"
.Fn RB_EMPTY "RB_HEAD *head"
.Ft "struct TYPE *"
.Fn RB_NEXT NAME "RB_HEAD *head" "struct TYPE *elm"
.Ft "struct TYPE *"
.Fn RB_PREV NAME "RB_HEAD *head" "struct TYPE *elm"
.Ft "struct TYPE *"
.Fn RB_MIN NAME "RB_HEAD *head"
.Ft "struct TYPE *"
.Fn RB_MAX NAME "RB_HEAD *head"
.Ft "struct TYPE *"
.Fn RB_FIND NAME "RB_HEAD *head" "struct TYPE *elm"
.Ft "struct TYPE *"
.Fn RB_NFIND NAME "RB_HEAD *head" "struct TYPE *elm"
.Ft "struct TYPE *"
.Fn RB_LEFT "struct TYPE *elm" "RB_ENTRY NAME"
.Ft "struct TYPE *"
.Fn RB_RIGHT "struct TYPE *elm" "RB_ENTRY NAME"
.Ft "struct TYPE *"
.Fn RB_PARENT "struct TYPE *elm" "RB_ENTRY NAME"
.Fn RB_FOREACH VARNAME NAME "RB_HEAD *head"
.Fn RB_FOREACH_FROM "VARNAME" "NAME" "POS_VARNAME"
.Fn RB_FOREACH_SAFE "VARNAME" "NAME" "RB_HEAD *head" "TEMP_VARNAME"
.Fn RB_FOREACH_REVERSE VARNAME NAME "RB_HEAD *head"
.Fn RB_FOREACH_REVERSE_FROM "VARNAME" "NAME" "POS_VARNAME"
.Fn RB_FOREACH_REVERSE_SAFE "VARNAME" "NAME" "RB_HEAD *head" "TEMP_VARNAME"
.Ft void
.Fn RB_INIT "RB_HEAD *head"
.Ft "struct TYPE *"
.Fn RB_INSERT NAME "RB_HEAD *head" "struct TYPE *elm"
.Ft "struct TYPE *"
.Fn RB_REMOVE NAME "RB_HEAD *head" "struct TYPE *elm"
.Sh DESCRIPTION
These macros define data structures for different types of trees:
splay trees and red-black trees.
.Pp
In the macro definitions,
.Fa TYPE
is the name tag of a user defined structure that must contain a field of type
.Vt SPLAY_ENTRY ,
or
.Vt RB_ENTRY ,
named
.Fa ENTRYNAME .
The argument
.Fa HEADNAME
is the name tag of a user defined structure that must be declared
using the macros
.Fn SPLAY_HEAD ,
or
.Fn RB_HEAD .
The argument
.Fa NAME
has to be a unique name prefix for every tree that is defined.
.Pp
The function prototypes are declared with
.Fn SPLAY_PROTOTYPE ,
.Fn RB_PROTOTYPE ,
or
.Fn RB_PROTOTYPE_STATIC .
The function bodies are generated with
.Fn SPLAY_GENERATE ,
.Fn RB_GENERATE ,
or
.Fn RB_GENERATE_STATIC .
See the examples below for further explanation of how these macros are used.
.Sh SPLAY TREES
A splay tree is a self-organizing data structure.
Every operation on the tree causes a splay to happen.
The splay moves the requested
node to the root of the tree and partly rebalances it.
.Pp
This has the benefit that request locality causes faster lookups as
the requested nodes move to the top of the tree.
On the other hand, every lookup causes memory writes.
.Pp
The Balance Theorem bounds the total access time for
.Ar m
operations and
.Ar n
inserts on an initially empty tree as
.Fn O "\*[lp]m + n\*[rp]lg n" .
The
amortized cost for a sequence of
.Ar m
accesses to a splay tree is
.Fn O "lg n" .
.Pp
A splay tree is headed by a structure defined by the
.Fn SPLAY_HEAD
macro.
A
structure is declared as follows:
.Bd -ragged -offset indent
.Fn SPLAY_HEAD HEADNAME TYPE
.Va head ;
.Ed
.Pp
where
.Fa HEADNAME
is the name of the structure to be defined, and struct
.Fa TYPE
is the type of the elements to be inserted into the tree.
.Pp
The
.Fn SPLAY_ENTRY
macro declares a structure that allows elements to be connected in the tree.
.Pp
In order to use the functions that manipulate the tree structure,
their prototypes need to be declared with the
.Fn SPLAY_PROTOTYPE
macro,
where
.Fa NAME
is a unique identifier for this particular tree.
The
.Fa TYPE
argument is the type of the structure that is being managed
by the tree.
The
.Fa FIELD
argument is the name of the element defined by
.Fn SPLAY_ENTRY .
.Pp
The function bodies are generated with the
.Fn SPLAY_GENERATE
macro.
It takes the same arguments as the
.Fn SPLAY_PROTOTYPE
macro, but should be used only once.
.Pp
Finally,
the
.Fa CMP
argument is the name of a function used to compare tree nodes
with each other.
The function takes two arguments of type
.Vt "struct TYPE *" .
If the first argument is smaller than the second, the function returns a
value smaller than zero.
If they are equal, the function returns zero.
Otherwise, it should return a value greater than zero.
The compare
function defines the order of the tree elements.
.Pp
The
.Fn SPLAY_INIT
macro initializes the tree referenced by
.Fa head .
.Pp
The splay tree can also be initialized statically by using the
.Fn SPLAY_INITIALIZER
macro like this:
.Bd -ragged -offset indent
.Fn SPLAY_HEAD HEADNAME TYPE
.Va head
=
.Fn SPLAY_INITIALIZER &head ;
.Ed
.Pp
The
.Fn SPLAY_INSERT
macro inserts the new element
.Fa elm
into the tree.
.Pp
The
.Fn SPLAY_REMOVE
macro removes the element
.Fa elm
from the tree pointed by
.Fa head .
.Pp
The
.Fn SPLAY_FIND
macro can be used to find a particular element in the tree.
.Bd -literal -offset indent
struct TYPE find, *res;
find.key = 30;
res = SPLAY_FIND(NAME, head, &find);
.Ed
.Pp
The
.Fn SPLAY_ROOT ,
.Fn SPLAY_MIN ,
.Fn SPLAY_MAX ,
and
.Fn SPLAY_NEXT
macros can be used to traverse the tree:
.Bd -literal -offset indent
for (np = SPLAY_MIN(NAME, &head); np != NULL; np = SPLAY_NEXT(NAME, &head, np))
.Ed
.Pp
Or, for simplicity, one can use the
.Fn SPLAY_FOREACH
macro:
.Bd -ragged -offset indent
.Fn SPLAY_FOREACH np NAME head
.Ed
.Pp
The
.Fn SPLAY_EMPTY
macro should be used to check whether a splay tree is empty.
.Sh RED-BLACK TREES
A red-black tree is a binary search tree with the node color as an
extra attribute.
It fulfills a set of conditions:
.Bl -enum -offset indent
.It
Every search path from the root to a leaf consists of the same number of
black nodes.
.It
Each red node (except for the root) has a black parent.
.It
Each leaf node is black.
.El
.Pp
Every operation on a red-black tree is bounded as
.Fn O "lg n" .
The maximum height of a red-black tree is
.Fn 2lg "n + 1" .
.Pp
A red-black tree is headed by a structure defined by the
.Fn RB_HEAD
macro.
A
structure is declared as follows:
.Bd -ragged -offset indent
.Fn RB_HEAD HEADNAME TYPE
.Va head ;
.Ed
.Pp
where
.Fa HEADNAME
is the name of the structure to be defined, and struct
.Fa TYPE
is the type of the elements to be inserted into the tree.
.Pp
The
.Fn RB_ENTRY
macro declares a structure that allows elements to be connected in the tree.
.Pp
In order to use the functions that manipulate the tree structure,
their prototypes need to be declared with the
.Fn RB_PROTOTYPE
or
.Fn RB_PROTOTYPE_STATIC
macro,
where
.Fa NAME
is a unique identifier for this particular tree.
The
.Fa TYPE
argument is the type of the structure that is being managed
by the tree.
The
.Fa FIELD
argument is the name of the element defined by
.Fn RB_ENTRY .
Individual prototypes can be declared with
.Fn RB_PROTOTYPE_INSERT ,
.Fn RB_PROTOTYPE_INSERT_COLOR ,
.Fn RB_PROTOTYPE_REMOVE ,
.Fn RB_PROTOTYPE_REMOVE_COLOR ,
.Fn RB_PROTOTYPE_FIND ,
.Fn RB_PROTOTYPE_NFIND ,
.Fn RB_PROTOTYPE_NEXT ,
.Fn RB_PROTOTYPE_PREV ,
and
.Fn RB_PROTOTYPE_MINMAX
in case not all functions are required.
The individual prototype macros expect
.Fa NAME ,
.Fa TYPE ,
and
.Fa ATTR
arguments.
The
.Fa ATTR
argument must be empty for global functions or
.Fa static
for static functions.
.Pp
The function bodies are generated with the
.Fn RB_GENERATE
or
.Fn RB_GENERATE_STATIC
macro.
These macros take the same arguments as the
.Fn RB_PROTOTYPE
and
.Fn RB_PROTOTYPE_STATIC
macros, but should be used only once.
As an alternative individual function bodies are generated with the
.Fn RB_GENERATE_INSERT ,
.Fn RB_GENERATE_INSERT_COLOR ,
.Fn RB_GENERATE_REMOVE ,
.Fn RB_GENERATE_REMOVE_COLOR ,
.Fn RB_GENERATE_FIND ,
.Fn RB_GENERATE_NFIND ,
.Fn RB_GENERATE_NEXT ,
.Fn RB_GENERATE_PREV ,
and
.Fn RB_GENERATE_MINMAX
macros.
.Pp
Finally,
the
.Fa CMP
argument is the name of a function used to compare tree nodes
with each other.
The function takes two arguments of type
.Vt "struct TYPE *" .
If the first argument is smaller than the second, the function returns a
value smaller than zero.
If they are equal, the function returns zero.
Otherwise, it should return a value greater than zero.
The compare
function defines the order of the tree elements.
.Pp
The
.Fn RB_INIT
macro initializes the tree referenced by
.Fa head .
.Pp
The red-black tree can also be initialized statically by using the
.Fn RB_INITIALIZER
macro like this:
.Bd -ragged -offset indent
.Fn RB_HEAD HEADNAME TYPE
.Va head
=
.Fn RB_INITIALIZER &head ;
.Ed
.Pp
The
.Fn RB_INSERT
macro inserts the new element
.Fa elm
into the tree.
.Pp
The
.Fn RB_REMOVE
macro removes the element
.Fa elm
from the tree pointed by
.Fa head .
.Pp
The
.Fn RB_FIND
and
.Fn RB_NFIND
macros can be used to find a particular element in the tree.
.Bd -literal -offset indent
struct TYPE find, *res;
find.key = 30;
res = RB_FIND(NAME, head, &find);
.Ed
.Pp
The
.Fn RB_ROOT ,
.Fn RB_MIN ,
.Fn RB_MAX ,
.Fn RB_NEXT ,
and
.Fn RB_PREV
macros can be used to traverse the tree:
.Pp
.Dl "for (np = RB_MIN(NAME, &head); np != NULL; np = RB_NEXT(NAME, &head, np))"
.Pp
Or, for simplicity, one can use the
.Fn RB_FOREACH
or
.Fn RB_FOREACH_REVERSE
macro:
.Bd -ragged -offset indent
.Fn RB_FOREACH np NAME head
.Ed
.Pp
The macros
.Fn RB_FOREACH_SAFE
and
.Fn RB_FOREACH_REVERSE_SAFE
traverse the tree referenced by head
in a forward or reverse direction respectively,
assigning each element in turn to np.
However, unlike their unsafe counterparts,
they permit both the removal of np
as well as freeing it from within the loop safely
without interfering with the traversal.
.Pp
Both
.Fn RB_FOREACH_FROM
and
.Fn RB_FOREACH_REVERSE_FROM
may be used to continue an interrupted traversal
in a forward or reverse direction respectively.
The head pointer is not required.
The pointer to the node from where to resume the traversal
should be passed as their last argument,
and will be overwritten to provide safe traversal.
.Pp
The
.Fn RB_EMPTY
macro should be used to check whether a red-black tree is empty.
.Sh EXAMPLES
The following example demonstrates how to declare a red-black tree
holding integers.
Values are inserted into it and the contents of the tree are printed
in order.
Lastly, the internal structure of the tree is printed.
.Bd -literal -offset 3n
#include <sys/tree.h>
#include <err.h>
#include <stdio.h>
#include <stdlib.h>

struct node {
	RB_ENTRY(node) entry;
	int i;
};

int
intcmp(struct node *e1, struct node *e2)
{
	return (e1->i < e2->i ? -1 : e1->i > e2->i);
}

RB_HEAD(inttree, node) head = RB_INITIALIZER(&head);
RB_GENERATE(inttree, node, entry, intcmp)

int testdata[] = {
	20, 16, 17, 13, 3, 6, 1, 8, 2, 4, 10, 19, 5, 9, 12, 15, 18,
	7, 11, 14
};

void
print_tree(struct node *n)
{
	struct node *left, *right;

	if (n == NULL) {
		printf("nil");
		return;
	}
	left = RB_LEFT(n, entry);
	right = RB_RIGHT(n, entry);
	if (left == NULL && right == NULL)
		printf("%d", n->i);
	else {
		printf("%d(", n->i);
		print_tree(left);
		printf(",");
		print_tree(right);
		printf(")");
	}
}

int
main(void)
{
	int i;
	struct node *n;

	for (i = 0; i < sizeof(testdata) / sizeof(testdata[0]); i++) {
		if ((n = malloc(sizeof(struct node))) == NULL)
			err(1, NULL);
		n->i = testdata[i];
		RB_INSERT(inttree, &head, n);
	}

	RB_FOREACH(n, inttree, &head) {
		printf("%d\en", n->i);
	}
	print_tree(RB_ROOT(&head));
	printf("\en");
	return (0);
}
.Ed
.Sh NOTES
Trying to free a tree in the following way is a common error:
.Bd -literal -offset indent
SPLAY_FOREACH(var, NAME, head) {
	SPLAY_REMOVE(NAME, head, var);
	free(var);
}
free(head);
.Ed
.Pp
Since
.Va var
is freed, the
.Fn FOREACH
macro refers to a pointer that may have been reallocated already.
Proper code needs a second variable.
.Bd -literal -offset indent
for (var = SPLAY_MIN(NAME, head); var != NULL; var = nxt) {
	nxt = SPLAY_NEXT(NAME, head, var);
	SPLAY_REMOVE(NAME, head, var);
	free(var);
}
.Ed
.Pp
Both
.Fn RB_INSERT
and
.Fn SPLAY_INSERT
return
.Dv NULL
if the element was inserted in the tree successfully, otherwise they
return a pointer to the element with the colliding key.
.Pp
Accordingly,
.Fn RB_REMOVE
and
.Fn SPLAY_REMOVE
return the pointer to the removed element otherwise they return
.Dv NULL
to indicate an error.
.Sh SEE ALSO
.Xr queue 3
.Sh AUTHORS
The author of the tree macros is
.An Niels Provos .