Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
.\" $NetBSD: bus_space.9,v 1.9 1999/03/06 22:09:29 mycroft Exp $
.\"
.\" Copyright (c) 2005 M. Warner Losh.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\"    notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\"    notice, this list of conditions and the following disclaimer in the
.\"    documentation and/or other materials provided with the distribution.
.\" THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
.\" ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
.\" TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
.\" PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
.\" BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
.\" CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
.\" SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
.\" INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
.\" CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
.\" ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
.\" POSSIBILITY OF SUCH DAMAGE.
.\"
.\"
.\" Copyright (c) 1997 The NetBSD Foundation, Inc.
.\" All rights reserved.
.\"
.\" This code is derived from software contributed to The NetBSD Foundation
.\" by Christopher G. Demetriou.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\"    notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\"    notice, this list of conditions and the following disclaimer in the
.\"    documentation and/or other materials provided with the distribution.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
.\" ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
.\" TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
.\" PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
.\" BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
.\" CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
.\" SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
.\" INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
.\" CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
.\" ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
.\" POSSIBILITY OF SUCH DAMAGE.
.\"
.\" $FreeBSD$
.\"
.Dd January 15, 2017
.Dt BUS_SPACE 9
.Os
.Sh NAME
.Nm bus_space ,
.Nm bus_space_barrier ,
.Nm bus_space_copy_region_1 ,
.Nm bus_space_copy_region_2 ,
.Nm bus_space_copy_region_4 ,
.Nm bus_space_copy_region_8 ,
.Nm bus_space_copy_region_stream_1 ,
.Nm bus_space_copy_region_stream_2 ,
.Nm bus_space_copy_region_stream_4 ,
.Nm bus_space_copy_region_stream_8 ,
.Nm bus_space_free ,
.Nm bus_space_map ,
.Nm bus_space_read_1 ,
.Nm bus_space_read_2 ,
.Nm bus_space_read_4 ,
.Nm bus_space_read_8 ,
.Nm bus_space_read_multi_1 ,
.Nm bus_space_read_multi_2 ,
.Nm bus_space_read_multi_4 ,
.Nm bus_space_read_multi_8 ,
.Nm bus_space_read_multi_stream_1 ,
.Nm bus_space_read_multi_stream_2 ,
.Nm bus_space_read_multi_stream_4 ,
.Nm bus_space_read_multi_stream_8 ,
.Nm bus_space_read_region_1 ,
.Nm bus_space_read_region_2 ,
.Nm bus_space_read_region_4 ,
.Nm bus_space_read_region_8 ,
.Nm bus_space_read_region_stream_1 ,
.Nm bus_space_read_region_stream_2 ,
.Nm bus_space_read_region_stream_4 ,
.Nm bus_space_read_region_stream_8 ,
.Nm bus_space_read_stream_1 ,
.Nm bus_space_read_stream_2 ,
.Nm bus_space_read_stream_4 ,
.Nm bus_space_read_stream_8 ,
.Nm bus_space_set_multi_1 ,
.Nm bus_space_set_multi_2 ,
.Nm bus_space_set_multi_4 ,
.Nm bus_space_set_multi_8 ,
.Nm bus_space_set_multi_stream_1 ,
.Nm bus_space_set_multi_stream_2 ,
.Nm bus_space_set_multi_stream_4 ,
.Nm bus_space_set_multi_stream_8 ,
.Nm bus_space_set_region_1 ,
.Nm bus_space_set_region_2 ,
.Nm bus_space_set_region_4 ,
.Nm bus_space_set_region_8 ,
.Nm bus_space_set_region_stream_1 ,
.Nm bus_space_set_region_stream_2 ,
.Nm bus_space_set_region_stream_4 ,
.Nm bus_space_set_region_stream_8 ,
.Nm bus_space_subregion ,
.Nm bus_space_unmap ,
.Nm bus_space_write_1 ,
.Nm bus_space_write_2 ,
.Nm bus_space_write_4 ,
.Nm bus_space_write_8 ,
.Nm bus_space_write_multi_1 ,
.Nm bus_space_write_multi_2 ,
.Nm bus_space_write_multi_4 ,
.Nm bus_space_write_multi_8 ,
.Nm bus_space_write_multi_stream_1 ,
.Nm bus_space_write_multi_stream_2 ,
.Nm bus_space_write_multi_stream_4 ,
.Nm bus_space_write_multi_stream_8 ,
.Nm bus_space_write_region_1 ,
.Nm bus_space_write_region_2 ,
.Nm bus_space_write_region_4 ,
.Nm bus_space_write_region_8 ,
.Nm bus_space_write_region_stream_1 ,
.Nm bus_space_write_region_stream_2 ,
.Nm bus_space_write_region_stream_4 ,
.Nm bus_space_write_region_stream_8 ,
.Nm bus_space_write_stream_1 ,
.Nm bus_space_write_stream_2 ,
.Nm bus_space_write_stream_4 ,
.Nm bus_space_write_stream_8
.Nd "bus space manipulation functions"
.Sh SYNOPSIS
.In machine/bus.h
.Ft int
.Fo bus_space_map
.Fa "bus_space_tag_t space" "bus_addr_t address"
.Fa "bus_size_t size" "int flags" "bus_space_handle_t *handlep"
.Fc
.Ft void
.Fo bus_space_unmap
.Fa "bus_space_tag_t space" "bus_space_handle_t handle" "bus_size_t size"
.Fc
.Ft int
.Fo bus_space_subregion
.Fa "bus_space_tag_t space" "bus_space_handle_t handle"
.Fa "bus_size_t offset" "bus_size_t size" "bus_space_handle_t *nhandlep"
.Fc
.Ft int
.Fo bus_space_alloc
.Fa "bus_space_tag_t space" "bus_addr_t reg_start" "bus_addr_t reg_end"
.Fa "bus_size_t size" "bus_size_t alignment" "bus_size_t boundary"
.Fa "int flags" "bus_addr_t *addrp" "bus_space_handle_t *handlep"
.Fc
.Ft void
.Fo bus_space_free
.Fa "bus_space_tag_t space" "bus_space_handle_t handle" "bus_size_t size"
.Fc
.Ft uint8_t
.Fo bus_space_read_1
.Fa "bus_space_tag_t space" "bus_space_handle_t handle" "bus_size_t offset"
.Fc
.Ft uint16_t
.Fo bus_space_read_2
.Fa "bus_space_tag_t space" "bus_space_handle_t handle" "bus_size_t offset"
.Fc
.Ft uint32_t
.Fo bus_space_read_4
.Fa "bus_space_tag_t space" "bus_space_handle_t handle" "bus_size_t offset"
.Fc
.Ft uint64_t
.Fo bus_space_read_8
.Fa "bus_space_tag_t space" "bus_space_handle_t handle" "bus_size_t offset"
.Fc
.Ft uint8_t
.Fo bus_space_read_stream_1
.Fa "bus_space_tag_t space" "bus_space_handle_t handle" "bus_size_t offset"
.Fc
.Ft uint16_t
.Fo bus_space_read_stream_2
.Fa "bus_space_tag_t space" "bus_space_handle_t handle" "bus_size_t offset"
.Fc
.Ft uint32_t
.Fo bus_space_read_stream_4
.Fa "bus_space_tag_t space" "bus_space_handle_t handle" "bus_size_t offset"
.Fc
.Ft uint64_t
.Fo bus_space_read_stream_8
.Fa "bus_space_tag_t space" "bus_space_handle_t handle" "bus_size_t offset"
.Fc
.Ft void
.Fo bus_space_write_1
.Fa "bus_space_tag_t space" "bus_space_handle_t handle"
.Fa "bus_size_t offset" "uint8_t value"
.Fc
.Ft void
.Fo bus_space_write_2
.Fa "bus_space_tag_t space" "bus_space_handle_t handle"
.Fa "bus_size_t offset" "uint16_t value"
.Fc
.Ft void
.Fo bus_space_write_4
.Fa "bus_space_tag_t space" "bus_space_handle_t handle"
.Fa "bus_size_t offset" "uint32_t value"
.Fc
.Ft void
.Fo bus_space_write_8
.Fa "bus_space_tag_t space" "bus_space_handle_t handle"
.Fa "bus_size_t offset" "uint64_t value"
.Fc
.Ft void
.Fo bus_space_write_stream_1
.Fa "bus_space_tag_t space" "bus_space_handle_t handle"
.Fa "bus_size_t offset" "uint8_t value"
.Fc
.Ft void
.Fo bus_space_write_stream_2
.Fa "bus_space_tag_t space" "bus_space_handle_t handle"
.Fa "bus_size_t offset" "uint16_t value"
.Fc
.Ft void
.Fo bus_space_write_stream_4
.Fa "bus_space_tag_t space" "bus_space_handle_t handle"
.Fa "bus_size_t offset" "uint32_t value"
.Fc
.Ft void
.Fo bus_space_write_stream_8
.Fa "bus_space_tag_t space" "bus_space_handle_t handle"
.Fa "bus_size_t offset" "uint64_t value"
.Fc
.Ft void
.Fo bus_space_barrier
.Fa "bus_space_tag_t space" "bus_space_handle_t handle"
.Fa "bus_size_t offset" "bus_size_t length" "int flags"
.Fc
.Ft void
.Fo bus_space_read_region_1
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint8_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_read_region_2
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint16_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_read_region_4
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint32_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_read_region_8
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint64_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_read_region_stream_1
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint8_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_read_region_stream_2
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint16_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_read_region_stream_4
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint32_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_read_region_stream_8
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint64_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_write_region_1
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint8_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_write_region_2
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint16_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_write_region_4
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint32_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_write_region_8
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint64_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_write_region_stream_1
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint8_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_write_region_stream_2
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint16_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_write_region_stream_4
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint32_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_write_region_stream_8
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint64_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_copy_region_1
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t srchandle" "bus_size_t srcoffset"
.Fa "bus_space_handle_t dsthandle" "bus_size_t dstoffset" "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_copy_region_2
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t srchandle" "bus_size_t srcoffset"
.Fa "bus_space_handle_t dsthandle" "bus_size_t dstoffset" "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_copy_region_4
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t srchandle" "bus_size_t srcoffset"
.Fa "bus_space_handle_t dsthandle" "bus_size_t dstoffset" "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_copy_region_8
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t srchandle" "bus_size_t srcoffset"
.Fa "bus_space_handle_t dsthandle" "bus_size_t dstoffset" "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_copy_region_stream_1
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t srchandle" "bus_size_t srcoffset"
.Fa "bus_space_handle_t dsthandle" "bus_size_t dstoffset" "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_copy_region_stream_2
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t srchandle" "bus_size_t srcoffset"
.Fa "bus_space_handle_t dsthandle" "bus_size_t dstoffset" "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_copy_region_stream_4
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t srchandle" "bus_size_t srcoffset"
.Fa "bus_space_handle_t dsthandle" "bus_size_t dstoffset" "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_copy_region_stream_8
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t srchandle" "bus_size_t srcoffset"
.Fa "bus_space_handle_t dsthandle" "bus_size_t dstoffset" "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_set_region_1
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint8_t value"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_set_region_2
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint16_t value"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_set_region_4
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint32_t value"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_set_region_8
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint64_t value"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_set_region_stream_1
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint8_t value"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_set_region_stream_2
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint16_t value"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_set_region_stream_4
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint32_t value"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_set_region_stream_8
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint64_t value"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_read_multi_1
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint8_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_read_multi_2
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint16_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_read_multi_4
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint32_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_read_multi_8
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint64_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_read_multi_stream_1
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint8_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_read_multi_stream_2
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint16_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_read_multi_stream_4
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint32_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_read_multi_stream_8
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint64_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_write_multi_1
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint8_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_write_multi_2
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint16_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_write_multi_4
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint32_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_write_multi_8
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint64_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_write_multi_stream_1
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint8_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_write_multi_stream_2
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint16_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_write_multi_stream_4
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint32_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_write_multi_stream_8
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint64_t *datap"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_set_multi_1
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint8_t value"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_set_multi_2
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint16_t value"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_set_multi_4
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint32_t value"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_set_multi_8
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint64_t value"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_set_multi_stream_1
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint8_t value"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_set_multi_stream_2
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint16_t value"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_set_multi_stream_4
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint32_t value"
.Fa "bus_size_t count"
.Fc
.Ft void
.Fo bus_space_set_multi_stream_8
.Fa "bus_space_tag_t space"
.Fa "bus_space_handle_t handle" "bus_size_t offset" "uint64_t value"
.Fa "bus_size_t count"
.Fc
.Sh DESCRIPTION
The
.Nm
functions exist to allow device drivers
machine-independent access to bus memory and register areas.
All of the
functions and types described in this document can be used by including
the
.In machine/bus.h
header file.
.Pp
Many common devices are used on multiple architectures, but are accessed
differently on each because of architectural constraints.
For instance, a device which is mapped in one system's I/O space may be
mapped in memory space on a second system.
On a third system, architectural
limitations might change the way registers need to be accessed (e.g.\&
creating a non-linear register space).
In some cases, a single
driver may need to access the same type of device in multiple ways in a
single system or architecture.
The goal of the
.Nm
functions is to allow a single driver source file to manipulate a set
of devices on different system architectures, and to allow a single driver
object file to manipulate a set of devices on multiple bus types on a
single architecture.
.Pp
Not all buses have to implement all functions described in this
document, though that is encouraged if the operations are logically
supported by the bus.
Unimplemented functions should cause
compile-time errors if possible.
.Pp
All of the interface definitions described in this document are shown as
function prototypes and discussed as if they were required to be
functions.
Implementations are encouraged to implement prototyped
(type-checked) versions of these interfaces, but may implement them as
macros if appropriate.
Machine-dependent types, variables, and functions
should be marked clearly in
.In machine/bus.h
to avoid confusion with the
machine-independent types and functions, and, if possible, should be
given names which make the machine-dependence clear.
.Sh CONCEPTS AND GUIDELINES
Bus spaces are described by bus space tags, which can be created only by
machine-dependent code.
A given machine may have several different types
of bus space (e.g.\& memory space and I/O space), and thus may provide
multiple different bus space tags.
Individual buses or devices on a machine may use more than one bus space
tag.
For instance, ISA devices are
given an ISA memory space tag and an ISA I/O space tag.
Architectures
may have several different tags which represent the same type of
space, for instance because of multiple different host bus interface
chipsets.
.Pp
A range in bus space is described by a bus address and a bus size.
The
bus address describes the start of the range in bus space.
The bus
size describes the size of the range in bytes.
Buses which are not byte
addressable may require use of bus space ranges with appropriately
aligned addresses and properly rounded sizes.
.Pp
Access to regions of bus space is facilitated by use of bus space handles,
which are usually created by mapping a specific range of a bus space.
Handles may also be created by allocating
and mapping a range of bus space, the actual location of which is picked
by the implementation within bounds specified by the caller of the
allocation function.
.Pp
All of the bus space access functions require one bus space tag
argument, at least one handle argument, and at least one offset argument
(a bus size).
The bus space tag specifies the space, each handle specifies a region in
the space, and each offset specifies the offset into the region of the
actual location(s) to be accessed.
Offsets are given in bytes, though buses
may impose alignment constraints.
The offset used to access data
relative to a given handle must be such that all of the data being
accessed is in the mapped region that the handle describes.
Trying to
access data outside that region is an error.
.Pp
Because some architectures' memory systems use buffering to improve
memory and device access performance, there is a mechanism which can be
used to create
.Dq barriers
in the bus space read and write stream.
There
are three types of barriers: read, write, and read/write.
All reads
started to the region before a read barrier must complete before any reads
after the read barrier are started.
(The analogous requirement is true for
write barriers.)
Read/write barriers force all reads and writes started
before the barrier to complete before any reads or writes after the
barrier are started.
Correctly-written drivers will include all
appropriate barriers, and assume only the read/write ordering imposed by
the barrier operations.
.Pp
People trying to write portable drivers with the
.Nm
functions should
try to make minimal assumptions about what the system allows.
In particular,
they should expect that the system requires bus space addresses being
accessed to be naturally aligned (i.e., base address of handle added to
offset is a multiple of the access size), and that the system does
alignment checking on pointers (i.e., pointer to objects being read and
written must point to properly-aligned data).
.Pp
The descriptions of the
.Nm
functions given below all assume that
they are called with proper arguments.
If called with invalid arguments
or arguments that are out of range (e.g.\& trying to access data outside of
the region mapped when a given handle was created), undefined behaviour
results.
In that case, they may cause the
system to halt, either intentionally (via panic) or unintentionally (by
causing a fatal trap of by some other means) or may cause improper
operation which is not immediately fatal.
Functions which return
.Ft void
or which return data read from bus space (i.e., functions which
do not obviously return an error code) do not fail.
They could only fail
if given invalid arguments, and in that case their behaviour is undefined.
Functions which take a count of bytes have undefined results if the specified
.Fa count
is zero.
.Sh TYPES
Several types are defined in
.In machine/bus.h
to facilitate use of the
.Nm
functions by drivers.
.Ss Vt bus_addr_t
The
.Vt bus_addr_t
type is used to describe bus addresses.
It must be an
unsigned integral type
capable of holding the largest bus address usable by the architecture.
This
type is primarily used when mapping and unmapping bus space.
.Ss Vt bus_size_t
The
.Vt bus_size_t
type is used to describe sizes of ranges in bus space.
It must be an
unsigned integral type capable of holding the size of the largest bus
address range usable on the architecture.
This type is used by virtually all
of the
.Nm
functions, describing sizes when mapping regions and
offsets into regions when performing space access operations.
.Ss Vt bus_space_tag_t
The
.Vt bus_space_tag_t
type is used to describe a particular bus space on a machine.
Its
contents are machine-dependent and should be considered opaque by
machine-independent code.
This type is used by all
.Nm
functions to name the space on which they are operating.
.Ss Vt bus_space_handle_t
The
.Vt bus_space_handle_t
type is used to describe a mapping of a range of bus space.
Its
contents are machine-dependent and should be considered opaque by
machine-independent code.
This type is used when performing bus space
access operations.
.Sh MAPPING AND UNMAPPING BUS SPACE
This section is specific to the
.Nx
version of these functions and may or may not apply to the
.Fx
version.
.Pp
Bus space must be mapped before it can be used, and should be
unmapped when it is no longer needed.
The
.Fn bus_space_map
and
.Fn bus_space_unmap
functions provide these capabilities.
.Pp
Some drivers need to be able to pass a subregion of already-mapped bus
space to another driver or module within a driver.
The
.Fn bus_space_subregion
function allows such subregions to be created.
.Ss Fn bus_space_map space address size flags handlep
The
.Fn bus_space_map
function maps the region of bus space named by the
.Fa space , address ,
and
.Fa size
arguments.
If successful, it returns zero
and fills in the bus space handle pointed to by
.Fa handlep
with the handle
that can be used to access the mapped region.
If unsuccessful,
it will return non-zero and leave the bus space handle pointed
to by
.Fa handlep
in an undefined state.
.Pp
The
.Fa flags
argument controls how the space is to be mapped.
Supported flags include:
.Bl -tag -width ".Dv BUS_SPACE_MAP_CACHEABLE"
.It Dv BUS_SPACE_MAP_CACHEABLE
Try to map the space so that accesses can be cached and/or
prefetched by the system.
If this flag is not specified, the
implementation should map the space so that it will not be cached or
prefetched.
.Pp
This flag must have a value of 1 on all implementations for backward
compatibility.
.It Dv BUS_SPACE_MAP_LINEAR
Try to map the space so that its contents can be accessed linearly via
normal memory access methods (e.g.\& pointer dereferencing and structure
accesses).
This is useful when software wants to do direct access to a memory
device, e.g.\& a frame buffer.
If this flag is specified and linear
mapping is not possible, the
.Fn bus_space_map
call should fail.
If this
flag is not specified, the system may map the space in whatever way is
most convenient.
.El
.Pp
Not all combinations of flags make sense or are supported with all
spaces.
For instance,
.Dv BUS_SPACE_MAP_CACHEABLE
may be meaningless when
used on many systems' I/O port spaces, and on some systems
.Dv BUS_SPACE_MAP_LINEAR
without
.Dv BUS_SPACE_MAP_CACHEABLE
may never work.
When the system hardware or firmware provides hints as to how spaces should be
mapped (e.g.\& the PCI memory mapping registers'
.Dq prefetchable
bit), those
hints should be followed for maximum compatibility.
On some systems,
requesting a mapping that cannot be satisfied (e.g.\& requesting a
non-cacheable mapping when the system can only provide a cacheable one)
will cause the request to fail.
.Pp
Some implementations may keep track of use of bus space for some or all
bus spaces and refuse to allow duplicate allocations.
This is encouraged
for bus spaces which have no notion of slot-specific space addressing,
such as ISA, and for spaces which coexist with those spaces
(e.g.\& PCI memory and I/O spaces co-existing with ISA memory and
I/O spaces).
.Pp
Mapped regions may contain areas for which there is no device on the
bus.
If space in those areas is accessed, the results are
bus-dependent.
.Ss Fn bus_space_unmap space handle size
The
.Fn bus_space_unmap
function unmaps a region of bus space mapped with
.Fn bus_space_map .
When unmapping a region, the
.Fa size
specified should be
the same as the size given to
.Fn bus_space_map
when mapping that region.
.Pp
After
.Fn bus_space_unmap
is called on a handle, that handle is no longer
valid.
(If copies were made of the handle they are no longer valid,
either.)
.Pp
This function will never fail.
If it would fail (e.g.\& because of an
argument error), that indicates a software bug which should cause a
panic.
In that case,
.Fn bus_space_unmap
will never return.
.Ss Fn bus_space_subregion space handle offset size nhandlep
The
.Fn bus_space_subregion
function is a convenience function which makes a
new handle to some subregion of an already-mapped region of bus space.
The subregion described by the new handle starts at byte offset
.Fa offset
into the region described by
.Fa handle ,
with the size give by
.Fa size ,
and must be wholly contained within the original region.
.Pp
If successful,
.Fn bus_space_subregion
returns zero and fills in the bus
space handle pointed to by
.Fa nhandlep .
If unsuccessful, it returns non-zero and leaves the bus space handle
pointed to by
.Fa nhandlep
in an
undefined state.
In either case, the handle described by
.Fa handle
remains valid and is unmodified.
.Pp
When done with a handle created by
.Fn bus_space_subregion ,
the handle should
be thrown away.
Under no circumstances should
.Fn bus_space_unmap
be used on the handle.
Doing so may confuse any resource management
being done on the space, and will result in undefined behaviour.
When
.Fn bus_space_unmap
or
.Fn bus_space_free
is called on a handle, all subregions of that handle become invalid.
.Sh ALLOCATING AND FREEING BUS SPACE
This section is specific to the
.Nx
version of these functions and may or may not apply to the
.Fx
version.
.Pp
Some devices require or allow bus space to be allocated by the operating
system for device use.
When the devices no longer need the space, the
operating system should free it for use by other devices.
The
.Fn bus_space_alloc
and
.Fn bus_space_free
functions provide these capabilities.
.Ss Fn bus_space_alloc space reg_start reg_end size alignment boundary \
flags addrp handlep
The
.Fn bus_space_alloc
function allocates and maps a region of bus space with the size given by
.Fa size ,
corresponding to the given constraints.
If successful, it returns
zero, fills in the bus address pointed to by
.Fa addrp
with the bus space address of the allocated region, and fills in
the bus space handle pointed to by
.Fa handlep
with the handle that can be used to access that region.
If unsuccessful, it returns non-zero and leaves the bus address pointed to by
.Fa addrp
and the bus space handle pointed to by
.Fa handlep
in an undefined state.
.Pp
Constraints on the allocation are given by the
.Fa reg_start , reg_end , alignment ,
and
.Fa boundary
parameters.
The allocated region will start at or after
.Fa reg_start
and end before or at
.Fa reg_end .
The
.Fa alignment
constraint must be a power of two, and the allocated region will start at
an address that is an even multiple of that power of two.
The
.Fa boundary
constraint, if non-zero, ensures that the region is allocated so that
.Fa "first address in region"
/
.Fa boundary
has the same value as
.Fa "last address in region"
/
.Fa boundary .
If the constraints cannot be met,
.Fn bus_space_alloc
will fail.
It is an error to specify a set of
constraints that can never be met
(for example,
.Fa size
greater than
.Fa boundary ) .
.Pp
The
.Fa flags
parameter is the same as the like-named parameter to
.Fn bus_space_map ,
the same flag values should be used, and they have the
same meanings.
.Pp
Handles created by
.Fn bus_space_alloc
should only be freed with
.Fn bus_space_free .
Trying to use
.Fn bus_space_unmap
on them causes undefined behaviour.
The
.Fn bus_space_subregion
function can be used on
handles created by
.Fn bus_space_alloc .
.Ss Fn bus_space_free space handle size
The
.Fn bus_space_free
function unmaps and frees a region of bus space mapped
and allocated with
.Fn bus_space_alloc .
When unmapping a region, the
.Fa size
specified should be the same as the size given to
.Fn bus_space_alloc
when allocating the region.
.Pp
After
.Fn bus_space_free
is called on a handle, that handle is no longer valid.
(If copies were
made of the handle, they are no longer valid, either.)
.Pp
This function will never fail.
If it would fail (e.g.\& because of an
argument error), that indicates a software bug which should cause a
panic.
In that case,
.Fn bus_space_free
will never return.
.Sh READING AND WRITING SINGLE DATA ITEMS
The simplest way to access bus space is to read or write a single data
item.
The
.Fn bus_space_read_N
and
.Fn bus_space_write_N
families of functions provide
the ability to read and write 1, 2, 4, and 8 byte data items on buses
which support those access sizes.
.Ss Fn bus_space_read_1 space handle offset
.Ss Fn bus_space_read_2 space handle offset
.Ss Fn bus_space_read_4 space handle offset
.Ss Fn bus_space_read_8 space handle offset
The
.Fn bus_space_read_N
family of functions reads a 1, 2, 4, or 8 byte data item from
the offset specified by
.Fa offset
into the region specified by
.Fa handle
of the bus space specified by
.Fa space .
The location being read must lie within the bus space region specified by
.Fa handle .
.Pp
For portability, the starting address of the region specified by
.Fa handle
plus the offset should be a multiple of the size of data item being read.
On some systems, not obeying this requirement may cause incorrect data to
be read, on others it may cause a system crash.
.Pp
Read operations done by the
.Fn bus_space_read_N
functions may be executed out
of order with respect to other pending read and write operations unless
order is enforced by use of the
.Fn bus_space_barrier
function.
.Pp
These functions will never fail.
If they would fail (e.g.\& because of an
argument error), that indicates a software bug which should cause a
panic.
In that case, they will never return.
.Ss Fn bus_space_write_1 space handle offset value
.Ss Fn bus_space_write_2 space handle offset value
.Ss Fn bus_space_write_4 space handle offset value
.Ss Fn bus_space_write_8 space handle offset value
The
.Fn bus_space_write_N
family of functions writes a 1, 2, 4, or 8 byte data item to the offset
specified by
.Fa offset
into the region specified by
.Fa handle
of the bus space specified by
.Fa space .
The location being written must lie within
the bus space region specified by
.Fa handle .
.Pp
For portability, the starting address of the region specified by
.Fa handle
plus the offset should be a multiple of the size of data item being
written.
On some systems, not obeying this requirement may cause
incorrect data to be written, on others it may cause a system crash.
.Pp
Write operations done by the
.Fn bus_space_write_N
functions may be executed
out of order with respect to other pending read and write operations
unless order is enforced by use of the
.Fn bus_space_barrier
function.
.Pp
These functions will never fail.
If they would fail (e.g.\& because of an
argument error), that indicates a software bug which should cause a
panic.
In that case, they will never return.
.Sh BARRIERS
In order to allow high-performance buffering implementations to avoid bus
activity on every operation, read and write ordering should be specified
explicitly by drivers when necessary.
The
.Fn bus_space_barrier
function provides that ability.
.Ss Fn bus_space_barrier space handle offset length flags
The
.Fn bus_space_barrier
function enforces ordering of bus space read and write operations
for the specified subregion (described by the
.Fa offset
and
.Fa length
parameters) of the region named by
.Fa handle
in the space named by
.Fa space .
.Pp
The
.Fa flags
argument controls what types of operations are to be ordered.
Supported flags are:
.Bl -tag -width ".Dv BUS_SPACE_BARRIER_WRITE"
.It Dv BUS_SPACE_BARRIER_READ
Synchronize read operations.
.It Dv BUS_SPACE_BARRIER_WRITE
Synchronize write operations.
.El
.Pp
Those flags can be combined (or-ed together) to enforce ordering on both
read and write operations.
.Pp
All of the specified type(s) of operation which are done to the region
before the barrier operation are guaranteed to complete before any of the
specified type(s) of operation done after the barrier.
.Pp
Example: Consider a hypothetical device with two single-byte ports, one
write-only input port (at offset 0) and a read-only output port (at
offset 1).
Operation of the device is as follows: data bytes are written
to the input port, and are placed by the device on a stack, the top of
which is read by reading from the output port.
The sequence to correctly
write two data bytes to the device then read those two data bytes back
would be:
.Bd -literal
/*
 * t and h are the tag and handle for the mapped device's
 * space.
 */
bus_space_write_1(t, h, 0, data0);
bus_space_barrier(t, h, 0, 1, BUS_SPACE_BARRIER_WRITE);  /* 1 */
bus_space_write_1(t, h, 0, data1);
bus_space_barrier(t, h, 0, 2,
    BUS_SPACE_BARRIER_READ|BUS_SPACE_BARRIER_WRITE);     /* 2 */
ndata1 = bus_space_read_1(t, h, 1);
bus_space_barrier(t, h, 1, 1, BUS_SPACE_BARRIER_READ);   /* 3 */
ndata0 = bus_space_read_1(t, h, 1);
/* data0 == ndata0, data1 == ndata1 */
.Ed
.Pp
The first barrier makes sure that the first write finishes before the
second write is issued, so that two writes to the input port are done
in order and are not collapsed into a single write.
This ensures that
the data bytes are written to the device correctly and in order.
.Pp
The second barrier makes sure that the writes to the output port finish
before any of the reads to the input port are issued, thereby making sure
that all of the writes are finished before data is read.
This ensures
that the first byte read from the device really is the last one that was
written.
.Pp
The third barrier makes sure that the first read finishes before the
second read is issued, ensuring that data is read correctly and in order.
.Pp
The barriers in the example above are specified to cover the absolute
minimum number of bus space locations.
It is correct (and often
easier) to make barrier operations cover the device's whole range of bus
space, that is, to specify an offset of zero and the size of the
whole region.
.Sh REGION OPERATIONS
Some devices use buffers which are mapped as regions in bus space.
Often, drivers want to copy the contents of those buffers to or from
memory, e.g.\& into mbufs which can be passed to higher levels of the
system or from mbufs to be output to a network.
In order to allow
drivers to do this as efficiently as possible, the
.Fn bus_space_read_region_N
and
.Fn bus_space_write_region_N
families of functions are provided.
.Pp
Drivers occasionally need to copy one region of a bus space to another,
or to set all locations in a region of bus space to contain a single
value.
The
.Fn bus_space_copy_region_N
family of functions and the
.Fn bus_space_set_region_N
family of functions allow drivers to perform these operations.
.Ss Fn bus_space_read_region_1 space handle offset datap count
.Ss Fn bus_space_read_region_2 space handle offset datap count
.Ss Fn bus_space_read_region_4 space handle offset datap count
.Ss Fn bus_space_read_region_8 space handle offset datap count
The
.Fn bus_space_read_region_N
family of functions reads
.Fa count
1, 2, 4, or 8 byte data items from bus space
starting at byte offset
.Fa offset
in the region specified by
.Fa handle
of the bus space specified by
.Fa space
and writes them into the array specified by
.Fa datap .
Each successive data item is read from an offset
1, 2, 4, or 8 bytes after the previous data item (depending on which
function is used).
All locations being read must lie within the bus
space region specified by
.Fa handle .
.Pp
For portability, the starting address of the region specified by
.Fa handle
plus the offset should be a multiple of the size of data items being
read and the data array pointer should be properly aligned.
On some
systems, not obeying these requirements may cause incorrect data to be
read, on others it may cause a system crash.
.Pp
Read operations done by the
.Fn bus_space_read_region_N
functions may be executed in any order.
They may also be executed out
of order with respect to other pending read and write operations unless
order is enforced by use of the
.Fn bus_space_barrier
function.
There is no way to insert barriers between reads of
individual bus space locations executed by the
.Fn bus_space_read_region_N
functions.
.Pp
These functions will never fail.
If they would fail (e.g.\& because of an
argument error), that indicates a software bug which should cause a
panic.
In that case, they will never return.
.Ss Fn bus_space_write_region_1 space handle offset datap count
.Ss Fn bus_space_write_region_2 space handle offset datap count
.Ss Fn bus_space_write_region_4 space handle offset datap count
.Ss Fn bus_space_write_region_8 space handle offset datap count
The
.Fn bus_space_write_region_N
family of functions reads
.Fa count
1, 2, 4, or 8 byte data items from the array
specified by
.Fa datap
and writes them to bus space starting at byte offset
.Fa offset
in the region specified by
.Fa handle
of the bus space specified
by
.Fa space .
Each successive data item is written to an offset 1, 2, 4,
or 8 bytes after the previous data item (depending on which function is
used).
All locations being written must lie within the bus space region
specified by
.Fa handle .
.Pp
For portability, the starting address of the region specified by
.Fa handle
plus the offset should be a multiple of the size of data items being
written and the data array pointer should be properly aligned.
On some
systems, not obeying these requirements may cause incorrect data to be
written, on others it may cause a system crash.
.Pp
Write operations done by the
.Fn bus_space_write_region_N
functions may be
executed in any order.
They may also be executed out of order with
respect to other pending read and write operations unless order is
enforced by use of the
.Fn bus_space_barrier
function.
There is no way to insert barriers between writes of
individual bus space locations executed by the
.Fn bus_space_write_region_N
functions.
.Pp
These functions will never fail.
If they would fail (e.g.\& because of an
argument error), that indicates a software bug which should cause a
panic.
In that case, they will never return.
.Ss Fn bus_space_copy_region_1 space srchandle srcoffset dsthandle \
dstoffset count
.Ss Fn bus_space_copy_region_2 space srchandle srcoffset dsthandle \
dstoffset count
.Ss Fn bus_space_copy_region_4 space srchandle srcoffset dsthandle \
dstoffset count
.Ss Fn bus_space_copy_region_8 space srchandle srcoffset dsthandle \
dstoffset count
The
.Fn bus_space_copy_region_N
family of functions copies
.Fa count
1, 2, 4, or 8 byte data items in bus space
from the area starting at byte offset
.Fa srcoffset
in the region specified by
.Fa srchandle
of the bus space specified by
.Fa space
to the area starting at byte offset
.Fa dstoffset
in the region specified by
.Fa dsthandle
in the same bus space.
Each successive data item read or written has
an offset 1, 2, 4, or 8 bytes after the previous data item (depending
on which function is used).
All locations being read and written must
lie within the bus space region specified by their respective handles.
.Pp
For portability, the starting addresses of the regions specified by the
each handle plus its respective offset should be a multiple of the size
of data items being copied.
On some systems, not obeying this
requirement may cause incorrect data to be copied, on others it may cause
a system crash.
.Pp
Read and write operations done by the
.Fn bus_space_copy_region_N
functions may be executed in any order.
They may also be executed out
of order with respect to other pending read and write operations unless
order is enforced by use of the
.Fn bus_space_barrier
function.
There is no way to insert barriers between reads or writes of
individual bus space locations executed by the
.Fn bus_space_copy_region_N
functions.
.Pp
Overlapping copies between different subregions of a single region
of bus space are handled correctly by the
.Fn bus_space_copy_region_N
functions.
.Pp
These functions will never fail.
If they would fail (e.g.\& because of an
argument error), that indicates a software bug which should cause a
panic.
In that case, they will never return.
.Ss Fn bus_space_set_region_1 space handle offset value count
.Ss Fn bus_space_set_region_2 space handle offset value count
.Ss Fn bus_space_set_region_4 space handle offset value count
.Ss Fn bus_space_set_region_8 space handle offset value count
The
.Fn bus_space_set_region_N
family of functions writes the given
.Fa value
to
.Fa count
1, 2, 4, or 8 byte
data items in bus space starting at byte offset
.Fa offset
in the region specified by
.Fa handle
of the bus space specified by
.Fa space .
Each successive data item has an offset 1, 2, 4, or 8 bytes after the
previous data item (depending on which function is used).
All
locations being written must lie within the bus space region specified
by
.Fa handle .
.Pp
For portability, the starting address of the region specified by
.Fa handle
plus the offset should be a multiple of the size of data items being
written.
On some systems, not obeying this requirement may cause
incorrect data to be written, on others it may cause a system crash.
.Pp
Write operations done by the
.Fn bus_space_set_region_N
functions may be
executed in any order.
They may also be executed out of order with
respect to other pending read and write operations unless order is
enforced by use of the
.Fn bus_space_barrier
function.
There is no way to insert barriers between writes of
individual bus space locations executed by the
.Fn bus_space_set_region_N
functions.
.Pp
These functions will never fail.
If they would fail (e.g.\& because of an
argument error), that indicates a software bug which should cause a
panic.
In that case, they will never return.
.Sh READING AND WRITING A SINGLE LOCATION MULTIPLE TIMES
Some devices implement single locations in bus space which are to be read
or written multiple times to communicate data, e.g.\& some ethernet
devices' packet buffer FIFOs.
In order to allow drivers to manipulate
these types of devices as efficiently as possible, the
.Fn bus_space_read_multi_N ,
.Fn bus_space_set_multi_N ,
and
.Fn bus_space_write_multi_N
families of functions are provided.
.Ss Fn bus_space_read_multi_1 space handle offset datap count
.Ss Fn bus_space_read_multi_2 space handle offset datap count
.Ss Fn bus_space_read_multi_4 space handle offset datap count
.Ss Fn bus_space_read_multi_8 space handle offset datap count
The
.Fn bus_space_read_multi_N
family of functions reads
.Fa count
1, 2, 4, or 8 byte data items from bus space
at byte offset
.Fa offset
in the region specified by
.Fa handle
of the bus space specified by
.Fa space
and writes them into the array specified by
.Fa datap .
Each successive data item is read from the same location in bus
space.
The location being read must lie within the bus space region
specified by
.Fa handle .
.Pp
For portability, the starting address of the region specified by
.Fa handle
plus the offset should be a multiple of the size of data items being
read and the data array pointer should be properly aligned.
On some
systems, not obeying these requirements may cause incorrect data to be
read, on others it may cause a system crash.
.Pp
Read operations done by the
.Fn bus_space_read_multi_N
functions may be
executed out of order with respect to other pending read and write
operations unless order is enforced by use of the
.Fn bus_space_barrier
function.
Because the
.Fn bus_space_read_multi_N
functions read the same bus space location multiple times, they
place an implicit read barrier between each successive read of that bus
space location.
.Pp
These functions will never fail.
If they would fail (e.g.\& because of an
argument error), that indicates a software bug which should cause a
panic.
In that case, they will never return.
.Ss Fn bus_space_write_multi_1 space handle offset datap count
.Ss Fn bus_space_write_multi_2 space handle offset datap count
.Ss Fn bus_space_write_multi_4 space handle offset datap count
.Ss Fn bus_space_write_multi_8 space handle offset datap count
The
.Fn bus_space_write_multi_N
family of functions reads
.Fa count
1, 2, 4, or 8 byte data items from the array
specified by
.Fa datap
and writes them into bus space at byte offset
.Fa offset
in the region specified by
.Fa handle
of the bus space specified by
.Fa space .
Each successive data item is written to the same location in
bus space.
The location being written must lie within the bus space
region specified by
.Fa handle .
.Pp
For portability, the starting address of the region specified by
.Fa handle
plus the offset should be a multiple of the size of data items being
written and the data array pointer should be properly aligned.
On some
systems, not obeying these requirements may cause incorrect data to be
written, on others it may cause a system crash.
.Pp
Write operations done by the
.Fn bus_space_write_multi_N
functions may be executed out of order with respect to other pending
read and write operations unless order is enforced by use of the
.Fn bus_space_barrier
function.
Because the
.Fn bus_space_write_multi_N
functions write the same bus space location multiple times, they
place an implicit write barrier between each successive write of that
bus space location.
.Pp
These functions will never fail.
If they would fail (e.g.\& because of an
argument error), that indicates a software bug which should cause a
panic.
In that case, they will never return.
.Ss Fn bus_space_set_multi_1 space handle offset value count
.Ss Fn bus_space_set_multi_2 space handle offset value count
.Ss Fn bus_space_set_multi_4 space handle offset value count
.Ss Fn bus_space_set_multi_8 space handle offset value count
The
.Fn bus_space_set_multi_N
writes
.Fa value
into bus space at byte offset
.Fa offset
in the region specified by
.Fa handle
of the bus space specified by
.Fa space ,
.Fa count
times.
The location being written must lie within the bus space
region specified by
.Fa handle .
.Pp
For portability, the starting address of the region specified by
.Fa handle
plus the offset should be a multiple of the size of data items being
written and the data array pointer should be properly aligned.
On some
systems, not obeying these requirements may cause incorrect data to be
written, on others it may cause a system crash.
.Pp
Write operations done by the
.Fn bus_space_set_multi_N
functions may be executed out of order with respect to other pending
read and write operations unless order is enforced by use of the
.Fn bus_space_barrier
function.
Because the
.Fn bus_space_set_multi_N
functions write the same bus space location multiple times, they
place an implicit write barrier between each successive write of that
bus space location.
.Pp
These functions will never fail.
If they would fail (e.g.\& because of an
argument error), that indicates a software bug which should cause a
panic.
In that case, they will never return.
.Sh STREAM FUNCTIONS
Most of the
.Nm
functions imply a host byte-order and a bus byte-order and take care of
any translation for the caller.
In some cases, however, hardware may map a FIFO or some other memory region
for which the caller may want to use multi-word, yet untranslated access.
Access to these types of memory regions should be with the
.Fn bus_space_*_stream_N
functions.
.Pp
.Bl -tag -compact -width Fn
.It Fn bus_space_read_stream_1
.It Fn bus_space_read_stream_2
.It Fn bus_space_read_stream_4
.It Fn bus_space_read_stream_8
.It Fn bus_space_read_multi_stream_1
.It Fn bus_space_read_multi_stream_2
.It Fn bus_space_read_multi_stream_4
.It Fn bus_space_read_multi_stream_8
.It Fn bus_space_read_region_stream_1
.It Fn bus_space_read_region_stream_2
.It Fn bus_space_read_region_stream_4
.It Fn bus_space_read_region_stream_8
.It Fn bus_space_write_stream_1
.It Fn bus_space_write_stream_2
.It Fn bus_space_write_stream_4
.It Fn bus_space_write_stream_8
.It Fn bus_space_write_multi_stream_1
.It Fn bus_space_write_multi_stream_2
.It Fn bus_space_write_multi_stream_4
.It Fn bus_space_write_multi_stream_8
.It Fn bus_space_write_region_stream_1
.It Fn bus_space_write_region_stream_2
.It Fn bus_space_write_region_stream_4
.It Fn bus_space_write_region_stream_8
.It Fn bus_space_copy_region_stream_1
.It Fn bus_space_copy_region_stream_2
.It Fn bus_space_copy_region_stream_4
.It Fn bus_space_copy_region_stream_8
.It Fn bus_space_set_multi_stream_1
.It Fn bus_space_set_multi_stream_2
.It Fn bus_space_set_multi_stream_4
.It Fn bus_space_set_multi_stream_8
.It Fn bus_space_set_region_stream_1
.It Fn bus_space_set_region_stream_2
.It Fn bus_space_set_region_stream_4
.It Fn bus_space_set_region_stream_8
.El
.Pp
These functions are defined just as their non-stream counterparts,
except that they provide no byte-order translation.
.Sh COMPATIBILITY
The current
.Nx
version of the
.Nm
interface specification differs slightly from the original
specification that came into wide use and
.Fx
adopted.
A few of the function names and arguments have changed
for consistency and increased functionality.
.Sh SEE ALSO
.Xr bus_dma 9
.Sh HISTORY
The
.Nm
functions were introduced in a different form (memory and I/O spaces
were accessed via different sets of functions) in
.Nx 1.2 .
The functions were merged to work on generic
.Dq spaces
early in the
.Nx 1.3
development cycle, and many drivers were converted to use them.
This document was written later during the
.Nx 1.3
development cycle, and the specification was updated to fix some
consistency problems and to add some missing functionality.
.Pp
The manual page was then adapted to the version of the interface that
.Fx
imported for the CAM SCSI drivers, plus subsequent evolution.
The
.Fx
.Nm
version was imported in
.Fx 3.0 .
.Sh AUTHORS
.An -nosplit
The
.Nm
interfaces were designed and implemented by the
.Nx
developer
community.
Primary contributors and implementors were
.An Chris Demetriou ,
.An Jason Thorpe ,
and
.An Charles Hannum ,
but the rest of the
.Nx
developers and the user community played a significant role in development.
.Pp
.An Justin Gibbs
ported these interfaces to
.Fx .
.Pp
.An Chris Demetriou
wrote this manual page.
.Pp
.An Warner Losh
modified it for the
.Fx
implementation.
.Sh BUGS
This manual may not completely and accurately document the interface,
and many parts of the interface are unspecified.