Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
.\"	$OpenBSD: crypto.9,v 1.19 2002/07/16 06:31:57 angelos Exp $
.\"
.\" The author of this manual page is Angelos D. Keromytis (angelos@cis.upenn.edu)
.\"
.\" Copyright (c) 2000, 2001 Angelos D. Keromytis
.\"
.\" Permission to use, copy, and modify this software with or without fee
.\" is hereby granted, provided that this entire notice is included in
.\" all source code copies of any software which is or includes a copy or
.\" modification of this software.
.\"
.\" THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
.\" IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
.\" REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
.\" MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
.\" PURPOSE.
.\"
.\" $FreeBSD$
.\"
.Dd July 17, 2018
.Dt CRYPTO 9
.Os
.Sh NAME
.Nm crypto
.Nd API for cryptographic services in the kernel
.Sh SYNOPSIS
.In opencrypto/cryptodev.h
.Ft int32_t
.Fn crypto_get_driverid device_t size_t int
.Ft int
.Fn crypto_register uint32_t int uint16_t uint32_t "int \*[lp]*\*[rp]\*[lp]void *, uint32_t *, struct cryptoini *\*[rp]" "int \*[lp]*\*[rp]\*[lp]void *, uint64_t\*[rp]" "int \*[lp]*\*[rp]\*[lp]void *, struct cryptop *\*[rp]" "void *"
.Ft int
.Fn crypto_kregister uint32_t int uint32_t "int \*[lp]*\*[rp]\*[lp]void *, struct cryptkop *\*[rp]" "void *"
.Ft int
.Fn crypto_unregister uint32_t int
.Ft int
.Fn crypto_unregister_all uint32_t
.Ft void
.Fn crypto_done "struct cryptop *"
.Ft void
.Fn crypto_kdone "struct cryptkop *"
.Ft int
.Fn crypto_find_driver "const char *"
.Ft int
.Fn crypto_newsession "crypto_session_t *" "struct cryptoini *" int
.Ft int
.Fn crypto_freesession crypto_session_t
.Ft int
.Fn crypto_dispatch "struct cryptop *"
.Ft int
.Fn crypto_kdispatch "struct cryptkop *"
.Ft int
.Fn crypto_unblock uint32_t int
.Ft "struct cryptop *"
.Fn crypto_getreq int
.Ft void
.Fn crypto_freereq void
.Bd -literal
#define	CRYPTO_SYMQ	0x1
#define	CRYPTO_ASYMQ	0x2

#define EALG_MAX_BLOCK_LEN      16

struct cryptoini {
	int                cri_alg;
	int                cri_klen;
	int                cri_mlen;
	caddr_t            cri_key;
	uint8_t            cri_iv[EALG_MAX_BLOCK_LEN];
	struct cryptoini  *cri_next;
};

struct cryptodesc {
	int                crd_skip;
	int                crd_len;
	int                crd_inject;
	int                crd_flags;
	struct cryptoini   CRD_INI;
#define crd_iv          CRD_INI.cri_iv
#define crd_key         CRD_INI.cri_key
#define crd_alg         CRD_INI.cri_alg
#define crd_klen        CRD_INI.cri_klen
	struct cryptodesc *crd_next;
};

struct cryptop {
	TAILQ_ENTRY(cryptop) crp_next;
	crypto_session_t   crp_session;
	int                crp_ilen;
	int                crp_olen;
	int                crp_etype;
	int                crp_flags;
	caddr_t            crp_buf;
	caddr_t            crp_opaque;
	struct cryptodesc *crp_desc;
	int              (*crp_callback) (struct cryptop *);
	caddr_t            crp_mac;
};

struct crparam {
        caddr_t         crp_p;
        u_int           crp_nbits;
};

#define CRK_MAXPARAM    8

struct cryptkop {
        TAILQ_ENTRY(cryptkop) krp_next;
        u_int              krp_op;         /* ie. CRK_MOD_EXP or other */
        u_int              krp_status;     /* return status */
        u_short            krp_iparams;    /* # of input parameters */
        u_short            krp_oparams;    /* # of output parameters */
        uint32_t           krp_hid;
        struct crparam     krp_param[CRK_MAXPARAM];
        int               (*krp_callback)(struct cryptkop *);
};
.Ed
.Sh DESCRIPTION
.Nm
is a framework for drivers of cryptographic hardware to register with
the kernel so
.Dq consumers
(other kernel subsystems, and
users through the
.Pa /dev/crypto
device) are able to make use of it.
Drivers register with the framework the algorithms they support,
and provide entry points (functions) the framework may call to
establish, use, and tear down sessions.
Sessions are used to cache cryptographic information in a particular driver
(or associated hardware), so initialization is not needed with every request.
Consumers of cryptographic services pass a set of
descriptors that instruct the framework (and the drivers registered
with it) of the operations that should be applied on the data (more
than one cryptographic operation can be requested).
.Pp
Keying operations are supported as well.
Unlike the symmetric operators described above,
these sessionless commands perform mathematical operations using
input and output parameters.
.Pp
Since the consumers may not be associated with a process, drivers may
not
.Xr sleep 9 .
The same holds for the framework.
Thus, a callback mechanism is used
to notify a consumer that a request has been completed (the
callback is specified by the consumer on a per-request basis).
The callback is invoked by the framework whether the request was
successfully completed or not.
An error indication is provided in the latter case.
A specific error code,
.Er EAGAIN ,
is used to indicate that a session handle has changed and that the
request may be re-submitted immediately with the new session.
Errors are only returned to the invoking function if not
enough information to call the callback is available (meaning, there
was a fatal error in verifying the arguments).
For session initialization and teardown no callback mechanism is used.
.Pp
The
.Fn crypto_find_driver
function may be called to return the specific id of the provided name.
If the specified driver could not be found, the returned id is -1.
.Pp
The
.Fn crypto_newsession
routine is called by consumers of cryptographic services (such as the
.Xr ipsec 4
stack) that wish to establish a new session with the framework.
The second argument contains all the necessary information for
the driver to establish the session.
The third argument is either a specific driver id, or one or both
of
.Dv CRYPTOCAP_F_HARDWARE ,
to select hardware devices,
or
.Dv CRYPTOCAP_F_SOFTWARE ,
to select software devices.
If both are specified, a hardware device will be returned
before a software device will be.
On success, the value pointed to by the first argument will be the opaque
session handle.
The various fields in the
.Vt cryptoini
structure are:
.Bl -tag -width ".Va cri_next"
.It Va cri_alg
Contains an algorithm identifier.
Currently supported algorithms are:
.Pp
.Bl -tag -width ".Dv CRYPTO_RIPEMD160_HMAC" -compact
.It Dv CRYPTO_AES_128_NIST_GMAC
.It Dv CRYPTO_AES_192_NIST_GMAC
.It Dv CRYPTO_AES_256_NIST_GMAC
.It Dv CRYPTO_AES_CBC
.It Dv CRYPTO_AES_ICM
.It Dv CRYPTO_AES_NIST_GCM_16
.It Dv CRYPTO_AES_NIST_GMAC
.It Dv CRYPTO_AES_XTS
.It Dv CRYPTO_ARC4
.It Dv CRYPTO_BLF_CBC
.It Dv CRYPTO_CAMELLIA_CBC
.It Dv CRYPTO_CAST_CBC
.It Dv CRYPTO_DEFLATE_COMP
.It Dv CRYPTO_DES_CBC
.It Dv CRYPTO_3DES_CBC
.It Dv CRYPTO_MD5
.It Dv CRYPTO_MD5_HMAC
.It Dv CRYPTO_MD5_KPDK
.It Dv CRYPTO_NULL_HMAC
.It Dv CRYPTO_NULL_CBC
.It Dv CRYPTO_RIPEMD160_HMAC
.It Dv CRYPTO_SHA1
.It Dv CRYPTO_SHA1_HMAC
.It Dv CRYPTO_SHA1_KPDK
.It Dv CRYPTO_SHA2_256_HMAC
.It Dv CRYPTO_SHA2_384_HMAC
.It Dv CRYPTO_SHA2_512_HMAC
.It Dv CRYPTO_SKIPJACK_CBC
.El
.It Va cri_klen
Specifies the length of the key in bits, for variable-size key
algorithms.
.It Va cri_mlen
Specifies how many bytes from the calculated hash should be copied back.
0 means entire hash.
.It Va cri_key
Contains the key to be used with the algorithm.
.It Va cri_iv
Contains an explicit initialization vector (IV), if it does not prefix
the data.
This field is ignored during initialization
.Pq Nm crypto_newsession .
If no IV is explicitly passed (see below on details), a random IV is used
by the device driver processing the request.
.It Va cri_next
Contains a pointer to another
.Vt cryptoini
structure.
Multiple such structures may be linked to establish multi-algorithm sessions
.Xr ( ipsec 4
is an example consumer of such a feature).
.El
.Pp
The
.Vt cryptoini
structure and its contents will not be modified by the framework (or
the drivers used).
.Pp
.Fn crypto_freesession
is called with the session handle returned by
.Fn crypto_newsession
to free the session.
.Pp
.Fn crypto_dispatch
is called to process a request.
The various fields in the
.Vt cryptop
structure are:
.Bl -tag -width ".Va crp_callback"
.It Va crp_session
Contains the session handle.
.It Va crp_ilen
Indicates the total length in bytes of the buffer to be processed.
.It Va crp_olen
On return, contains the total length of the result.
For symmetric crypto operations, this will be the same as the input length.
This will be used if the framework needs to allocate a new
buffer for the result (or for re-formatting the input).
.It Va crp_callback
This routine is invoked upon completion of the request, whether
successful or not.
It is invoked through the
.Fn crypto_done
routine.
If the request was not successful, an error code is set in the
.Va crp_etype
field.
It is the responsibility of the callback routine to set the appropriate
.Xr spl 9
level.
.It Va crp_etype
Contains the error type, if any errors were encountered, or zero if
the request was successfully processed.
If the
.Er EAGAIN
error code is returned, the session handle has changed (and has been recorded
in the
.Va crp_session
field).
The consumer should record the new session handle and use it in all subsequent
requests.
In this case, the request may be re-submitted immediately.
This mechanism is used by the framework to perform
session migration (move a session from one driver to another, because
of availability, performance, or other considerations).
.Pp
Note that this field only makes sense when examined by
the callback routine specified in
.Va crp_callback .
Errors are returned to the invoker of
.Fn crypto_process
only when enough information is not present to call the callback
routine (i.e., if the pointer passed is
.Dv NULL
or if no callback routine was specified).
.It Va crp_flags
Is a bitmask of flags associated with this request.
Currently defined flags are:
.Bl -tag -width ".Dv CRYPTO_F_CBIFSYNC"
.It Dv CRYPTO_F_IMBUF
The buffer pointed to by
.Va crp_buf
is an mbuf chain.
.It Dv CRYPTO_F_IOV
The buffer pointed to by
.Va crp_buf
is an
.Vt uio
structure.
.It Dv CRYPTO_F_BATCH
Batch operation if possible.
.It Dv CRYPTO_F_CBIMM
Do callback immediately instead of doing it from a dedicated kernel thread.
.It Dv CRYPTO_F_DONE
Operation completed.
.It Dv CRYPTO_F_CBIFSYNC
Do callback immediately if operation is synchronous (that the driver
specified the
.Dv CRYPTOCAP_F_SYNC
flag).
.It Dv CRYPTO_F_ASYNC
Try to do the crypto operation in a pool of workers
if the operation is synchronous (that is, if the driver specified the
.Dv CRYPTOCAP_F_SYNC
flag).
It aims to speed up processing by dispatching crypto operations
on different processors.
.It Dv CRYPTO_F_ASYNC_KEEPORDER
Dispatch callbacks in the same order they are posted.
Only relevant if the
.Dv CRYPTO_F_ASYNC
flag is set and if the operation is synchronous.
.El
.It Va crp_buf
Points to the input buffer.
On return (when the callback is invoked),
it contains the result of the request.
The input buffer may be an mbuf
chain or a contiguous buffer,
depending on
.Va crp_flags .
.It Va crp_opaque
This is passed through the crypto framework untouched and is
intended for the invoking application's use.
.It Va crp_desc
This is a linked list of descriptors.
Each descriptor provides
information about what type of cryptographic operation should be done
on the input buffer.
The various fields are:
.Bl -tag -width ".Va crd_inject"
.It Va crd_iv
When the flag
.Dv CRD_F_IV_EXPLICIT
is set, this field contains the IV.
.It Va crd_key
When the
.Dv CRD_F_KEY_EXPLICIT
flag is set, the
.Va crd_key
points to a buffer with encryption or authentication key.
.It Va crd_alg
An algorithm to use.
Must be the same as the one given at newsession time.
.It Va crd_klen
The
.Va crd_key
key length.
.It Va crd_skip
The offset in the input buffer where processing should start.
.It Va crd_len
How many bytes, after
.Va crd_skip ,
should be processed.
.It Va crd_inject
The
.Va crd_inject
field specifies an offset in bytes from the beginning of the buffer.
For encryption algorithms, this may be where the IV will be inserted
when encrypting or where the IV may be found for
decryption (subject to
.Va crd_flags ) .
For MAC algorithms, this is where the result of the keyed hash will be
inserted.
.It Va crd_flags
The following flags are defined:
.Bl -tag -width 3n
.It Dv CRD_F_ENCRYPT
For encryption algorithms, this bit is set when encryption is required
(when not set, decryption is performed).
.It Dv CRD_F_IV_PRESENT
.\" This flag name has nothing to do w/ it's behavior, fix the name.
For encryption, if this bit is not set the IV used to encrypt the packet
will be written at the location pointed to by
.Va crd_inject .
The IV length is assumed to be equal to the blocksize of the
encryption algorithm.
For encryption, if this bit is set, nothing is done.
For decryption, this flag has no meaning.
Applications that do special
.Dq "IV cooking" ,
such as the half-IV mode in
.Xr ipsec 4 ,
can use this flag to indicate that the IV should not be written on the packet.
This flag is typically used in conjunction with the
.Dv CRD_F_IV_EXPLICIT
flag.
.It Dv CRD_F_IV_EXPLICIT
This bit is set when the IV is explicitly
provided by the consumer in the
.Va crd_iv
field.
Otherwise, for encryption operations the IV is provided for by
the driver used to perform the operation, whereas for decryption
operations the offset of the IV is provided by the
.Va crd_inject
field.
This flag is typically used when the IV is calculated
.Dq "on the fly"
by the consumer, and does not precede the data (some
.Xr ipsec 4
configurations, and the encrypted swap are two such examples).
.It Dv CRD_F_KEY_EXPLICIT
For encryption and authentication (MAC) algorithms, this bit is set when the key
is explicitly provided by the consumer in the
.Va crd_key
field for the given operation.
Otherwise, the key is taken at newsession time from the
.Va cri_key
field.
As calculating the key schedule may take a while, it is recommended that often
used keys are given their own session.
.It Dv CRD_F_COMP
For compression algorithms, this bit is set when compression is required (when
not set, decompression is performed).
.El
.It Va CRD_INI
This
.Vt cryptoini
structure will not be modified by the framework or the device drivers.
Since this information accompanies every cryptographic
operation request, drivers may re-initialize state on-demand
(typically an expensive operation).
Furthermore, the cryptographic
framework may re-route requests as a result of full queues or hardware
failure, as described above.
.It Va crd_next
Point to the next descriptor.
Linked operations are useful in protocols such as
.Xr ipsec 4 ,
where multiple cryptographic transforms may be applied on the same
block of data.
.El
.El
.Pp
.Fn crypto_getreq
allocates a
.Vt cryptop
structure with a linked list of as many
.Vt cryptodesc
structures as were specified in the argument passed to it.
.Pp
.Fn crypto_freereq
deallocates a structure
.Vt cryptop
and any
.Vt cryptodesc
structures linked to it.
Note that it is the responsibility of the
callback routine to do the necessary cleanups associated with the
opaque field in the
.Vt cryptop
structure.
.Pp
.Fn crypto_kdispatch
is called to perform a keying operation.
The various fields in the
.Vt cryptkop
structure are:
.Bl -tag -width ".Va krp_callback"
.It Va krp_op
Operation code, such as
.Dv CRK_MOD_EXP .
.It Va krp_status
Return code.
This
.Va errno Ns -style
variable indicates whether lower level reasons
for operation failure.
.It Va krp_iparams
Number if input parameters to the specified operation.
Note that each operation has a (typically hardwired) number of such parameters.
.It Va krp_oparams
Number if output parameters from the specified operation.
Note that each operation has a (typically hardwired) number of such parameters.
.It Va krp_kvp
An array of kernel memory blocks containing the parameters.
.It Va krp_hid
Identifier specifying which low-level driver is being used.
.It Va krp_callback
Callback called on completion of a keying operation.
.El
.Sh DRIVER-SIDE API
The
.Fn crypto_get_driverid ,
.Fn crypto_get_driver_session ,
.Fn crypto_register ,
.Fn crypto_kregister ,
.Fn crypto_unregister ,
.Fn crypto_unblock ,
and
.Fn crypto_done
routines are used by drivers that provide support for cryptographic
primitives to register and unregister with the kernel crypto services
framework.
.Pp
Drivers must first use the
.Fn crypto_get_driverid
function to acquire a driver identifier, specifying the
.Fa flags
as an argument.
One of
.Dv CRYPTOCAP_F_SOFTWARE
or
.Dv CRYPTOCAP_F_HARDWARE
must be specified.
The
.Dv CRYPTOCAP_F_SYNC
may also be specified, and should be specified if the driver does all of
it's operations synchronously.
Drivers must pass the size of their session struct as the second argument.
An appropriately sized memory will be allocated by the framework, zeroed, and
passed to the driver's
.Fn newsession
method.
.Pp
For each algorithm the driver supports, it must then call
.Fn crypto_register .
The first two arguments are the driver and algorithm identifiers.
The next two arguments specify the largest possible operator length (in bits,
important for public key operations) and flags for this algorithm.
The last four arguments must be provided in the first call to
.Fn crypto_register
and are ignored in all subsequent calls.
They are pointers to three
driver-provided functions that the framework may call to establish new
cryptographic context with the driver, free already established
context, and ask for a request to be processed (encrypt, decrypt,
etc.); and an opaque parameter to pass when calling each of these routines.
.Pp
.Fn crypto_unregister
is called by drivers that wish to withdraw support for an algorithm.
The two arguments are the driver and algorithm identifiers, respectively.
Typically, drivers for
PCMCIA
crypto cards that are being ejected will invoke this routine for all
algorithms supported by the card.
.Fn crypto_unregister_all
will unregister all algorithms registered by a driver
and the driver will be disabled (no new sessions will be allocated on
that driver, and any existing sessions will be migrated to other
drivers).
The same will be done if all algorithms associated with a driver are
unregistered one by one.
After a call to
.Fn crypto_unregister_all
there will be no threads in either the newsession or freesession function
of the driver.
.Pp
The calling convention for the driver-supplied routines are:
.Pp
.Bl -item -compact
.It
.Ft int
.Fn \*[lp]*newsession\*[rp] "device_t" "crypto_session_t" "struct cryptoini *" ;
.It
.Ft void
.Fn \*[lp]*freesession\*[rp] "device_t" "crypto_session_t" ;
.It
.Ft int
.Fn \*[lp]*process\*[rp] "device_t" "struct cryptop *" "int" ;
.It
.Ft int
.Fn \*[lp]*kprocess\*[rp] "device_t" "struct cryptkop *" "int" ;
.El
.Pp
On invocation, the first argument to
all routines is the
.Fa device_t
that was provided to
.Fn crypto_get_driverid .
The second argument to
.Fn newsession
is the opaque session handle for the new session.
The third argument is identical to that of
.Fn crypto_newsession .
.Pp
Drivers obtain a pointer to their session memory by invoking
.Fn crypto_get_driver_session
on the opaque
.Vt crypto_session_t
handle.
.Pp
The
.Fn freesession
routine takes as arguments the opaque data value and the session handle.
It should clear any context associated with the session (clear hardware
registers, memory, etc.).
If no resources need to be released other than the contents of session memory,
the method is optional.
The
.Nm
framework will zero and release the allocated session memory (after running the
.Fn freesession
method, if one exists).
.Pp
The
.Fn process
routine is invoked with a request to perform crypto processing.
This routine must not block or sleep, but should queue the request and return
immediately or process the request to completion.
In case of an unrecoverable error, the error indication must be placed in the
.Va crp_etype
field of the
.Vt cryptop
structure.
When the request is completed, or an error is detected, the
.Fn process
routine must invoke
.Fn crypto_done .
Session migration may be performed, as mentioned previously.
.Pp
In case of a temporary resource exhaustion, the
.Fn process
routine may return
.Er ERESTART
in which case the crypto services will requeue the request, mark the driver
as
.Dq blocked ,
and stop submitting requests for processing.
The driver is then responsible for notifying the crypto services
when it is again able to process requests through the
.Fn crypto_unblock
routine.
This simple flow control mechanism should only be used for short-lived
resource exhaustion as it causes operations to be queued in the crypto
layer.
Doing so is preferable to returning an error in such cases as
it can cause network protocols to degrade performance by treating the
failure much like a lost packet.
.Pp
The
.Fn kprocess
routine is invoked with a request to perform crypto key processing.
This routine must not block, but should queue the request and return
immediately.
Upon processing the request, the callback routine should be invoked.
In case of an unrecoverable error, the error indication must be placed in the
.Va krp_status
field of the
.Vt cryptkop
structure.
When the request is completed, or an error is detected, the
.Fn kprocess
routine should invoked
.Fn crypto_kdone .
.Sh RETURN VALUES
.Fn crypto_register ,
.Fn crypto_kregister ,
.Fn crypto_unregister ,
.Fn crypto_newsession ,
.Fn crypto_freesession ,
and
.Fn crypto_unblock
return 0 on success, or an error code on failure.
.Fn crypto_get_driverid
returns a non-negative value on error, and \-1 on failure.
.Fn crypto_getreq
returns a pointer to a
.Vt cryptop
structure and
.Dv NULL
on failure.
.Fn crypto_dispatch
returns
.Er EINVAL
if its argument or the callback function was
.Dv NULL ,
and 0 otherwise.
The callback is provided with an error code in case of failure, in the
.Va crp_etype
field.
.Sh FILES
.Bl -tag -width ".Pa sys/opencrypto/crypto.c"
.It Pa sys/opencrypto/crypto.c
most of the framework code
.El
.Sh SEE ALSO
.Xr crypto 4 ,
.Xr ipsec 4 ,
.Xr crypto 7 ,
.Xr malloc 9 ,
.Xr sleep 9
.Sh HISTORY
The cryptographic framework first appeared in
.Ox 2.7
and was written by
.An Angelos D. Keromytis Aq Mt angelos@openbsd.org .
.Sh BUGS
The framework currently assumes that all the algorithms in a
.Fn crypto_newsession
operation must be available by the same driver.
If that is not the case, session initialization will fail.
.Pp
The framework also needs a mechanism for determining which driver is
best for a specific set of algorithms associated with a session.
Some type of benchmarking is in order here.
.Pp
Multiple instances of the same algorithm in the same session are not
supported.