Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
/*-
 * SPDX-License-Identifier: BSD-3-Clause
 *
 * Copyright (c) 2004 Tim J. Robbins
 * Copyright (c) 2002 Doug Rabson
 * Copyright (c) 2000 Marcel Moolenaar
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer
 *    in this position and unchanged.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_compat.h"

#include <sys/param.h>
#include <sys/capsicum.h>
#include <sys/clock.h>
#include <sys/fcntl.h>
#include <sys/file.h>
#include <sys/imgact.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mman.h>
#include <sys/mutex.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/resource.h>
#include <sys/resourcevar.h>
#include <sys/syscallsubr.h>
#include <sys/sysproto.h>
#include <sys/systm.h>
#include <sys/unistd.h>
#include <sys/wait.h>

#include <machine/frame.h>
#include <machine/md_var.h>
#include <machine/pcb.h>
#include <machine/psl.h>
#include <machine/segments.h>
#include <machine/specialreg.h>
#include <x86/ifunc.h>

#include <vm/pmap.h>
#include <vm/vm.h>
#include <vm/vm_map.h>

#include <compat/freebsd32/freebsd32_util.h>
#include <amd64/linux32/linux.h>
#include <amd64/linux32/linux32_proto.h>
#include <compat/linux/linux_emul.h>
#include <compat/linux/linux_ipc.h>
#include <compat/linux/linux_misc.h>
#include <compat/linux/linux_mmap.h>
#include <compat/linux/linux_signal.h>
#include <compat/linux/linux_util.h>

static void	bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru);

struct l_old_select_argv {
	l_int		nfds;
	l_uintptr_t	readfds;
	l_uintptr_t	writefds;
	l_uintptr_t	exceptfds;
	l_uintptr_t	timeout;
} __packed;


static void
bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru)
{

	lru->ru_utime.tv_sec = ru->ru_utime.tv_sec;
	lru->ru_utime.tv_usec = ru->ru_utime.tv_usec;
	lru->ru_stime.tv_sec = ru->ru_stime.tv_sec;
	lru->ru_stime.tv_usec = ru->ru_stime.tv_usec;
	lru->ru_maxrss = ru->ru_maxrss;
	lru->ru_ixrss = ru->ru_ixrss;
	lru->ru_idrss = ru->ru_idrss;
	lru->ru_isrss = ru->ru_isrss;
	lru->ru_minflt = ru->ru_minflt;
	lru->ru_majflt = ru->ru_majflt;
	lru->ru_nswap = ru->ru_nswap;
	lru->ru_inblock = ru->ru_inblock;
	lru->ru_oublock = ru->ru_oublock;
	lru->ru_msgsnd = ru->ru_msgsnd;
	lru->ru_msgrcv = ru->ru_msgrcv;
	lru->ru_nsignals = ru->ru_nsignals;
	lru->ru_nvcsw = ru->ru_nvcsw;
	lru->ru_nivcsw = ru->ru_nivcsw;
}

int
linux_copyout_rusage(struct rusage *ru, void *uaddr)
{
	struct l_rusage lru;

	bsd_to_linux_rusage(ru, &lru);

	return (copyout(&lru, uaddr, sizeof(struct l_rusage)));
}

int
linux_execve(struct thread *td, struct linux_execve_args *args)
{
	struct image_args eargs;
	char *path;
	int error;

	LCONVPATHEXIST(td, args->path, &path);

	error = freebsd32_exec_copyin_args(&eargs, path, UIO_SYSSPACE,
	    args->argp, args->envp);
	free(path, M_TEMP);
	if (error == 0)
		error = linux_common_execve(td, &eargs);
	return (error);
}

CTASSERT(sizeof(struct l_iovec32) == 8);

int
linux32_copyinuio(struct l_iovec32 *iovp, l_ulong iovcnt, struct uio **uiop)
{
	struct l_iovec32 iov32;
	struct iovec *iov;
	struct uio *uio;
	uint32_t iovlen;
	int error, i;

	*uiop = NULL;
	if (iovcnt > UIO_MAXIOV)
		return (EINVAL);
	iovlen = iovcnt * sizeof(struct iovec);
	uio = malloc(iovlen + sizeof(*uio), M_IOV, M_WAITOK);
	iov = (struct iovec *)(uio + 1);
	for (i = 0; i < iovcnt; i++) {
		error = copyin(&iovp[i], &iov32, sizeof(struct l_iovec32));
		if (error) {
			free(uio, M_IOV);
			return (error);
		}
		iov[i].iov_base = PTRIN(iov32.iov_base);
		iov[i].iov_len = iov32.iov_len;
	}
	uio->uio_iov = iov;
	uio->uio_iovcnt = iovcnt;
	uio->uio_segflg = UIO_USERSPACE;
	uio->uio_offset = -1;
	uio->uio_resid = 0;
	for (i = 0; i < iovcnt; i++) {
		if (iov->iov_len > INT_MAX - uio->uio_resid) {
			free(uio, M_IOV);
			return (EINVAL);
		}
		uio->uio_resid += iov->iov_len;
		iov++;
	}
	*uiop = uio;
	return (0);
}

int
linux32_copyiniov(struct l_iovec32 *iovp32, l_ulong iovcnt, struct iovec **iovp,
    int error)
{
	struct l_iovec32 iov32;
	struct iovec *iov;
	uint32_t iovlen;
	int i;

	*iovp = NULL;
	if (iovcnt > UIO_MAXIOV)
		return (error);
	iovlen = iovcnt * sizeof(struct iovec);
	iov = malloc(iovlen, M_IOV, M_WAITOK);
	for (i = 0; i < iovcnt; i++) {
		error = copyin(&iovp32[i], &iov32, sizeof(struct l_iovec32));
		if (error) {
			free(iov, M_IOV);
			return (error);
		}
		iov[i].iov_base = PTRIN(iov32.iov_base);
		iov[i].iov_len = iov32.iov_len;
	}
	*iovp = iov;
	return(0);

}

int
linux_readv(struct thread *td, struct linux_readv_args *uap)
{
	struct uio *auio;
	int error;

	error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
	if (error)
		return (error);
	error = kern_readv(td, uap->fd, auio);
	free(auio, M_IOV);
	return (error);
}

int
linux_writev(struct thread *td, struct linux_writev_args *uap)
{
	struct uio *auio;
	int error;

	error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
	if (error)
		return (error);
	error = kern_writev(td, uap->fd, auio);
	free(auio, M_IOV);
	return (error);
}

struct l_ipc_kludge {
	l_uintptr_t msgp;
	l_long msgtyp;
} __packed;

int
linux_ipc(struct thread *td, struct linux_ipc_args *args)
{

	switch (args->what & 0xFFFF) {
	case LINUX_SEMOP: {
		struct linux_semop_args a;

		a.semid = args->arg1;
		a.tsops = PTRIN(args->ptr);
		a.nsops = args->arg2;
		return (linux_semop(td, &a));
	}
	case LINUX_SEMGET: {
		struct linux_semget_args a;

		a.key = args->arg1;
		a.nsems = args->arg2;
		a.semflg = args->arg3;
		return (linux_semget(td, &a));
	}
	case LINUX_SEMCTL: {
		struct linux_semctl_args a;
		int error;

		a.semid = args->arg1;
		a.semnum = args->arg2;
		a.cmd = args->arg3;
		error = copyin(PTRIN(args->ptr), &a.arg, sizeof(a.arg));
		if (error)
			return (error);
		return (linux_semctl(td, &a));
	}
	case LINUX_MSGSND: {
		struct linux_msgsnd_args a;

		a.msqid = args->arg1;
		a.msgp = PTRIN(args->ptr);
		a.msgsz = args->arg2;
		a.msgflg = args->arg3;
		return (linux_msgsnd(td, &a));
	}
	case LINUX_MSGRCV: {
		struct linux_msgrcv_args a;

		a.msqid = args->arg1;
		a.msgsz = args->arg2;
		a.msgflg = args->arg3;
		if ((args->what >> 16) == 0) {
			struct l_ipc_kludge tmp;
			int error;

			if (args->ptr == 0)
				return (EINVAL);
			error = copyin(PTRIN(args->ptr), &tmp, sizeof(tmp));
			if (error)
				return (error);
			a.msgp = PTRIN(tmp.msgp);
			a.msgtyp = tmp.msgtyp;
		} else {
			a.msgp = PTRIN(args->ptr);
			a.msgtyp = args->arg5;
		}
		return (linux_msgrcv(td, &a));
	}
	case LINUX_MSGGET: {
		struct linux_msgget_args a;

		a.key = args->arg1;
		a.msgflg = args->arg2;
		return (linux_msgget(td, &a));
	}
	case LINUX_MSGCTL: {
		struct linux_msgctl_args a;

		a.msqid = args->arg1;
		a.cmd = args->arg2;
		a.buf = PTRIN(args->ptr);
		return (linux_msgctl(td, &a));
	}
	case LINUX_SHMAT: {
		struct linux_shmat_args a;
		l_uintptr_t addr;
		int error;

		a.shmid = args->arg1;
		a.shmaddr = PTRIN(args->ptr);
		a.shmflg = args->arg2;
		error = linux_shmat(td, &a);
		if (error != 0)
			return (error);
		addr = td->td_retval[0];
		error = copyout(&addr, PTRIN(args->arg3), sizeof(addr));
		td->td_retval[0] = 0;
		return (error);
	}
	case LINUX_SHMDT: {
		struct linux_shmdt_args a;

		a.shmaddr = PTRIN(args->ptr);
		return (linux_shmdt(td, &a));
	}
	case LINUX_SHMGET: {
		struct linux_shmget_args a;

		a.key = args->arg1;
		a.size = args->arg2;
		a.shmflg = args->arg3;
		return (linux_shmget(td, &a));
	}
	case LINUX_SHMCTL: {
		struct linux_shmctl_args a;

		a.shmid = args->arg1;
		a.cmd = args->arg2;
		a.buf = PTRIN(args->ptr);
		return (linux_shmctl(td, &a));
	}
	default:
		break;
	}

	return (EINVAL);
}

int
linux_old_select(struct thread *td, struct linux_old_select_args *args)
{
	struct l_old_select_argv linux_args;
	struct linux_select_args newsel;
	int error;

	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
	if (error)
		return (error);

	newsel.nfds = linux_args.nfds;
	newsel.readfds = PTRIN(linux_args.readfds);
	newsel.writefds = PTRIN(linux_args.writefds);
	newsel.exceptfds = PTRIN(linux_args.exceptfds);
	newsel.timeout = PTRIN(linux_args.timeout);
	return (linux_select(td, &newsel));
}

int
linux_set_cloned_tls(struct thread *td, void *desc)
{
	struct user_segment_descriptor sd;
	struct l_user_desc info;
	struct pcb *pcb;
	int error;
	int a[2];

	error = copyin(desc, &info, sizeof(struct l_user_desc));
	if (error) {
		linux_msg(td, "set_cloned_tls copyin info failed!");
	} else {

		/* We might copy out the entry_number as GUGS32_SEL. */
		info.entry_number = GUGS32_SEL;
		error = copyout(&info, desc, sizeof(struct l_user_desc));
		if (error)
			linux_msg(td, "set_cloned_tls copyout info failed!");

		a[0] = LINUX_LDT_entry_a(&info);
		a[1] = LINUX_LDT_entry_b(&info);

		memcpy(&sd, &a, sizeof(a));
		pcb = td->td_pcb;
		pcb->pcb_gsbase = (register_t)info.base_addr;
		td->td_frame->tf_gs = GSEL(GUGS32_SEL, SEL_UPL);
		set_pcb_flags(pcb, PCB_32BIT);
	}

	return (error);
}

int
linux_set_upcall_kse(struct thread *td, register_t stack)
{

	if (stack)
		td->td_frame->tf_rsp = stack;

	/*
	 * The newly created Linux thread returns
	 * to the user space by the same path that a parent do.
	 */
	td->td_frame->tf_rax = 0;
	return (0);
}

int
linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
{

	return (linux_mmap_common(td, PTROUT(args->addr), args->len, args->prot,
		args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff *
		PAGE_SIZE));
}

int
linux_mmap(struct thread *td, struct linux_mmap_args *args)
{
	int error;
	struct l_mmap_argv linux_args;

	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
	if (error)
		return (error);

	return (linux_mmap_common(td, linux_args.addr, linux_args.len,
	    linux_args.prot, linux_args.flags, linux_args.fd,
	    (uint32_t)linux_args.pgoff));
}

int
linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
{

	return (linux_mprotect_common(td, PTROUT(uap->addr), uap->len, uap->prot));
}

int
linux_iopl(struct thread *td, struct linux_iopl_args *args)
{
	int error;

	if (args->level < 0 || args->level > 3)
		return (EINVAL);
	if ((error = priv_check(td, PRIV_IO)) != 0)
		return (error);
	if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
		return (error);
	td->td_frame->tf_rflags = (td->td_frame->tf_rflags & ~PSL_IOPL) |
	    (args->level * (PSL_IOPL / 3));

	return (0);
}

int
linux_sigaction(struct thread *td, struct linux_sigaction_args *args)
{
	l_osigaction_t osa;
	l_sigaction_t act, oact;
	int error;

	if (args->nsa != NULL) {
		error = copyin(args->nsa, &osa, sizeof(l_osigaction_t));
		if (error)
			return (error);
		act.lsa_handler = osa.lsa_handler;
		act.lsa_flags = osa.lsa_flags;
		act.lsa_restorer = osa.lsa_restorer;
		LINUX_SIGEMPTYSET(act.lsa_mask);
		act.lsa_mask.__mask = osa.lsa_mask;
	}

	error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL,
	    args->osa ? &oact : NULL);

	if (args->osa != NULL && !error) {
		osa.lsa_handler = oact.lsa_handler;
		osa.lsa_flags = oact.lsa_flags;
		osa.lsa_restorer = oact.lsa_restorer;
		osa.lsa_mask = oact.lsa_mask.__mask;
		error = copyout(&osa, args->osa, sizeof(l_osigaction_t));
	}

	return (error);
}

/*
 * Linux has two extra args, restart and oldmask.  We don't use these,
 * but it seems that "restart" is actually a context pointer that
 * enables the signal to happen with a different register set.
 */
int
linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args)
{
	sigset_t sigmask;
	l_sigset_t mask;

	LINUX_SIGEMPTYSET(mask);
	mask.__mask = args->mask;
	linux_to_bsd_sigset(&mask, &sigmask);
	return (kern_sigsuspend(td, sigmask));
}

int
linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap)
{
	l_sigset_t lmask;
	sigset_t sigmask;
	int error;

	if (uap->sigsetsize != sizeof(l_sigset_t))
		return (EINVAL);

	error = copyin(uap->newset, &lmask, sizeof(l_sigset_t));
	if (error)
		return (error);

	linux_to_bsd_sigset(&lmask, &sigmask);
	return (kern_sigsuspend(td, sigmask));
}

int
linux_pause(struct thread *td, struct linux_pause_args *args)
{
	struct proc *p = td->td_proc;
	sigset_t sigmask;

	PROC_LOCK(p);
	sigmask = td->td_sigmask;
	PROC_UNLOCK(p);
	return (kern_sigsuspend(td, sigmask));
}

int
linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap)
{
	stack_t ss, oss;
	l_stack_t lss;
	int error;

	if (uap->uss != NULL) {
		error = copyin(uap->uss, &lss, sizeof(l_stack_t));
		if (error)
			return (error);

		ss.ss_sp = PTRIN(lss.ss_sp);
		ss.ss_size = lss.ss_size;
		ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags);
	}
	error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL,
	    (uap->uoss != NULL) ? &oss : NULL);
	if (!error && uap->uoss != NULL) {
		lss.ss_sp = PTROUT(oss.ss_sp);
		lss.ss_size = oss.ss_size;
		lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags);
		error = copyout(&lss, uap->uoss, sizeof(l_stack_t));
	}

	return (error);
}

int
linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args)
{

	return (kern_ftruncate(td, args->fd, args->length));
}

int
linux_gettimeofday(struct thread *td, struct linux_gettimeofday_args *uap)
{
	struct timeval atv;
	l_timeval atv32;
	struct timezone rtz;
	int error = 0;

	if (uap->tp) {
		microtime(&atv);
		atv32.tv_sec = atv.tv_sec;
		atv32.tv_usec = atv.tv_usec;
		error = copyout(&atv32, uap->tp, sizeof(atv32));
	}
	if (error == 0 && uap->tzp != NULL) {
		rtz.tz_minuteswest = 0;
		rtz.tz_dsttime = 0;
		error = copyout(&rtz, uap->tzp, sizeof(rtz));
	}
	return (error);
}

int
linux_settimeofday(struct thread *td, struct linux_settimeofday_args *uap)
{
	l_timeval atv32;
	struct timeval atv, *tvp;
	struct timezone atz, *tzp;
	int error;

	if (uap->tp) {
		error = copyin(uap->tp, &atv32, sizeof(atv32));
		if (error)
			return (error);
		atv.tv_sec = atv32.tv_sec;
		atv.tv_usec = atv32.tv_usec;
		tvp = &atv;
	} else
		tvp = NULL;
	if (uap->tzp) {
		error = copyin(uap->tzp, &atz, sizeof(atz));
		if (error)
			return (error);
		tzp = &atz;
	} else
		tzp = NULL;
	return (kern_settimeofday(td, tvp, tzp));
}

int
linux_getrusage(struct thread *td, struct linux_getrusage_args *uap)
{
	struct rusage s;
	int error;

	error = kern_getrusage(td, uap->who, &s);
	if (error != 0)
		return (error);
	if (uap->rusage != NULL)
		error = linux_copyout_rusage(&s, uap->rusage);
	return (error);
}

int
linux_set_thread_area(struct thread *td,
    struct linux_set_thread_area_args *args)
{
	struct l_user_desc info;
	struct user_segment_descriptor sd;
	struct pcb *pcb;
	int a[2];
	int error;

	error = copyin(args->desc, &info, sizeof(struct l_user_desc));
	if (error)
		return (error);

	/*
	 * Semantics of Linux version: every thread in the system has array
	 * of three TLS descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown.
	 * This syscall loads one of the selected TLS decriptors with a value
	 * and also loads GDT descriptors 6, 7 and 8 with the content of
	 * the per-thread descriptors.
	 *
	 * Semantics of FreeBSD version: I think we can ignore that Linux has
	 * three per-thread descriptors and use just the first one.
	 * The tls_array[] is used only in [gs]et_thread_area() syscalls and
	 * for loading the GDT descriptors. We use just one GDT descriptor
	 * for TLS, so we will load just one.
	 *
	 * XXX: This doesn't work when a user space process tries to use more
	 * than one TLS segment. Comment in the Linux source says wine might
	 * do this.
	 */

	/*
	 * GLIBC reads current %gs and call set_thread_area() with it.
	 * We should let GUDATA_SEL and GUGS32_SEL proceed as well because
	 * we use these segments.
	 */
	switch (info.entry_number) {
	case GUGS32_SEL:
	case GUDATA_SEL:
	case 6:
	case -1:
		info.entry_number = GUGS32_SEL;
		break;
	default:
		return (EINVAL);
	}

	/*
	 * We have to copy out the GDT entry we use.
	 *
	 * XXX: What if a user space program does not check the return value
	 * and tries to use 6, 7 or 8?
	 */
	error = copyout(&info, args->desc, sizeof(struct l_user_desc));
	if (error)
		return (error);

	if (LINUX_LDT_empty(&info)) {
		a[0] = 0;
		a[1] = 0;
	} else {
		a[0] = LINUX_LDT_entry_a(&info);
		a[1] = LINUX_LDT_entry_b(&info);
	}

	memcpy(&sd, &a, sizeof(a));
	pcb = td->td_pcb;
	pcb->pcb_gsbase = (register_t)info.base_addr;
	set_pcb_flags(pcb, PCB_32BIT);
	update_gdt_gsbase(td, info.base_addr);

	return (0);
}

int futex_xchgl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
int futex_xchgl_smap(int oparg, uint32_t *uaddr, int *oldval);
DEFINE_IFUNC(, int, futex_xchgl, (int, uint32_t *, int *))
{

	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
	    futex_xchgl_smap : futex_xchgl_nosmap);
}

int futex_addl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
int futex_addl_smap(int oparg, uint32_t *uaddr, int *oldval);
DEFINE_IFUNC(, int, futex_addl, (int, uint32_t *, int *))
{

	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
	    futex_addl_smap : futex_addl_nosmap);
}

int futex_orl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
int futex_orl_smap(int oparg, uint32_t *uaddr, int *oldval);
DEFINE_IFUNC(, int, futex_orl, (int, uint32_t *, int *))
{

	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
	    futex_orl_smap : futex_orl_nosmap);
}

int futex_andl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
int futex_andl_smap(int oparg, uint32_t *uaddr, int *oldval);
DEFINE_IFUNC(, int, futex_andl, (int, uint32_t *, int *))
{

	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
	    futex_andl_smap : futex_andl_nosmap);
}

int futex_xorl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
int futex_xorl_smap(int oparg, uint32_t *uaddr, int *oldval);
DEFINE_IFUNC(, int, futex_xorl, (int, uint32_t *, int *))
{

	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
	    futex_xorl_smap : futex_xorl_nosmap);
}