Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
 * Copyright (c) 2013 Steven Hartland. All rights reserved.
 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
 * Copyright (c) 2014 Integros [integros.com]
 * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
 */

#include <sys/dsl_pool.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_synctask.h>
#include <sys/dsl_scan.h>
#include <sys/dnode.h>
#include <sys/dmu_tx.h>
#include <sys/dmu_objset.h>
#include <sys/arc.h>
#include <sys/zap.h>
#include <sys/zio.h>
#include <sys/zfs_context.h>
#include <sys/fs/zfs.h>
#include <sys/zfs_znode.h>
#include <sys/spa_impl.h>
#include <sys/dsl_deadlist.h>
#include <sys/vdev_impl.h>
#include <sys/metaslab_impl.h>
#include <sys/bptree.h>
#include <sys/zfeature.h>
#include <sys/zil_impl.h>
#include <sys/dsl_userhold.h>

#if defined(__FreeBSD__) && defined(_KERNEL)
#include <sys/types.h>
#include <sys/sysctl.h>
#endif

/*
 * ZFS Write Throttle
 * ------------------
 *
 * ZFS must limit the rate of incoming writes to the rate at which it is able
 * to sync data modifications to the backend storage. Throttling by too much
 * creates an artificial limit; throttling by too little can only be sustained
 * for short periods and would lead to highly lumpy performance. On a per-pool
 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
 * of dirty data decreases. When the amount of dirty data exceeds a
 * predetermined threshold further modifications are blocked until the amount
 * of dirty data decreases (as data is synced out).
 *
 * The limit on dirty data is tunable, and should be adjusted according to
 * both the IO capacity and available memory of the system. The larger the
 * window, the more ZFS is able to aggregate and amortize metadata (and data)
 * changes. However, memory is a limited resource, and allowing for more dirty
 * data comes at the cost of keeping other useful data in memory (for example
 * ZFS data cached by the ARC).
 *
 * Implementation
 *
 * As buffers are modified dsl_pool_willuse_space() increments both the per-
 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
 * dirty space used; dsl_pool_dirty_space() decrements those values as data
 * is synced out from dsl_pool_sync(). While only the poolwide value is
 * relevant, the per-txg value is useful for debugging. The tunable
 * zfs_dirty_data_max determines the dirty space limit. Once that value is
 * exceeded, new writes are halted until space frees up.
 *
 * The zfs_dirty_data_sync tunable dictates the threshold at which we
 * ensure that there is a txg syncing (see the comment in txg.c for a full
 * description of transaction group stages).
 *
 * The IO scheduler uses both the dirty space limit and current amount of
 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
 *
 * The delay is also calculated based on the amount of dirty data.  See the
 * comment above dmu_tx_delay() for details.
 */

/*
 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
 * capped at zfs_dirty_data_max_max.  It can also be overridden in /etc/system.
 */
uint64_t zfs_dirty_data_max;
uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
int zfs_dirty_data_max_percent = 10;

/*
 * If there is at least this much dirty data, push out a txg.
 */
uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;

/*
 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
 * and delay each transaction.
 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
 */
int zfs_delay_min_dirty_percent = 60;

/*
 * This controls how quickly the delay approaches infinity.
 * Larger values cause it to delay more for a given amount of dirty data.
 * Therefore larger values will cause there to be less dirty data for a
 * given throughput.
 *
 * For the smoothest delay, this value should be about 1 billion divided
 * by the maximum number of operations per second.  This will smoothly
 * handle between 10x and 1/10th this number.
 *
 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
 * multiply in dmu_tx_delay().
 */
uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;

/*
 * This determines the number of threads used by the dp_sync_taskq.
 */
int zfs_sync_taskq_batch_pct = 75;

/*
 * These tunables determine the behavior of how zil_itxg_clean() is
 * called via zil_clean() in the context of spa_sync(). When an itxg
 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
 * If the dispatch fails, the call to zil_itxg_clean() will occur
 * synchronously in the context of spa_sync(), which can negatively
 * impact the performance of spa_sync() (e.g. in the case of the itxg
 * list having a large number of itxs that needs to be cleaned).
 *
 * Thus, these tunables can be used to manipulate the behavior of the
 * taskq used by zil_clean(); they determine the number of taskq entries
 * that are pre-populated when the taskq is first created (via the
 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
 * taskq entries that are cached after an on-demand allocation (via the
 * "zfs_zil_clean_taskq_maxalloc").
 *
 * The idea being, we want to try reasonably hard to ensure there will
 * already be a taskq entry pre-allocated by the time that it is needed
 * by zil_clean(). This way, we can avoid the possibility of an
 * on-demand allocation of a new taskq entry from failing, which would
 * result in zil_itxg_clean() being called synchronously from zil_clean()
 * (which can adversely affect performance of spa_sync()).
 *
 * Additionally, the number of threads used by the taskq can be
 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
 */
int zfs_zil_clean_taskq_nthr_pct = 100;
int zfs_zil_clean_taskq_minalloc = 1024;
int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;

#if defined(__FreeBSD__) && defined(_KERNEL)

extern int zfs_vdev_async_write_active_max_dirty_percent;

SYSCTL_DECL(_vfs_zfs);

SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_max, CTLFLAG_RWTUN,
    &zfs_dirty_data_max, 0,
    "The maximum amount of dirty data in bytes after which new writes are "
    "halted until space becomes available");

SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_max_max, CTLFLAG_RDTUN,
    &zfs_dirty_data_max_max, 0,
    "The absolute cap on dirty_data_max when auto calculating");

static int sysctl_zfs_dirty_data_max_percent(SYSCTL_HANDLER_ARGS);
SYSCTL_PROC(_vfs_zfs, OID_AUTO, dirty_data_max_percent,
    CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
    sysctl_zfs_dirty_data_max_percent, "I",
    "The percent of physical memory used to auto calculate dirty_data_max");

SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_sync, CTLFLAG_RWTUN,
    &zfs_dirty_data_sync, 0,
    "Force a txg if the number of dirty buffer bytes exceed this value");

static int sysctl_zfs_delay_min_dirty_percent(SYSCTL_HANDLER_ARGS);
/* No zfs_delay_min_dirty_percent tunable due to limit requirements */
SYSCTL_PROC(_vfs_zfs, OID_AUTO, delay_min_dirty_percent,
    CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(int),
    sysctl_zfs_delay_min_dirty_percent, "I",
    "The limit of outstanding dirty data before transactions are delayed");

static int sysctl_zfs_delay_scale(SYSCTL_HANDLER_ARGS);
/* No zfs_delay_scale tunable due to limit requirements */
SYSCTL_PROC(_vfs_zfs, OID_AUTO, delay_scale,
    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
    sysctl_zfs_delay_scale, "QU",
    "Controls how quickly the delay approaches infinity");

static int
sysctl_zfs_dirty_data_max_percent(SYSCTL_HANDLER_ARGS)
{
	int val, err;

	val = zfs_dirty_data_max_percent;
	err = sysctl_handle_int(oidp, &val, 0, req);
	if (err != 0 || req->newptr == NULL)
		return (err);

	if (val < 0 || val > 100)
		return (EINVAL);

	zfs_dirty_data_max_percent = val;

	return (0);
}

static int
sysctl_zfs_delay_min_dirty_percent(SYSCTL_HANDLER_ARGS)
{
	int val, err;

	val = zfs_delay_min_dirty_percent;
	err = sysctl_handle_int(oidp, &val, 0, req);
	if (err != 0 || req->newptr == NULL)
		return (err);

	if (val < zfs_vdev_async_write_active_max_dirty_percent)
		return (EINVAL);

	zfs_delay_min_dirty_percent = val;

	return (0);
}

static int
sysctl_zfs_delay_scale(SYSCTL_HANDLER_ARGS)
{
	uint64_t val;
	int err;

	val = zfs_delay_scale;
	err = sysctl_handle_64(oidp, &val, 0, req);
	if (err != 0 || req->newptr == NULL)
		return (err);

	if (val > UINT64_MAX / zfs_dirty_data_max)
		return (EINVAL);

	zfs_delay_scale = val;

	return (0);
}
#endif

int
dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
{
	uint64_t obj;
	int err;

	err = zap_lookup(dp->dp_meta_objset,
	    dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
	    name, sizeof (obj), 1, &obj);
	if (err)
		return (err);

	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
}

static dsl_pool_t *
dsl_pool_open_impl(spa_t *spa, uint64_t txg)
{
	dsl_pool_t *dp;
	blkptr_t *bp = spa_get_rootblkptr(spa);

	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
	dp->dp_spa = spa;
	dp->dp_meta_rootbp = *bp;
	rrw_init(&dp->dp_config_rwlock, B_TRUE);
	txg_init(dp, txg);

	txg_list_create(&dp->dp_dirty_datasets, spa,
	    offsetof(dsl_dataset_t, ds_dirty_link));
	txg_list_create(&dp->dp_dirty_zilogs, spa,
	    offsetof(zilog_t, zl_dirty_link));
	txg_list_create(&dp->dp_dirty_dirs, spa,
	    offsetof(dsl_dir_t, dd_dirty_link));
	txg_list_create(&dp->dp_sync_tasks, spa,
	    offsetof(dsl_sync_task_t, dst_node));
	txg_list_create(&dp->dp_early_sync_tasks, spa,
	    offsetof(dsl_sync_task_t, dst_node));

	dp->dp_sync_taskq = taskq_create("dp_sync_taskq",
	    zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX,
	    TASKQ_THREADS_CPU_PCT);

	dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
	    zfs_zil_clean_taskq_nthr_pct, minclsyspri,
	    zfs_zil_clean_taskq_minalloc,
	    zfs_zil_clean_taskq_maxalloc,
	    TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);

	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);

	dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
	    1, 4, 0);

	return (dp);
}

int
dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
{
	int err;
	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);

	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
	    &dp->dp_meta_objset);
	if (err != 0)
		dsl_pool_close(dp);
	else
		*dpp = dp;

	return (err);
}

int
dsl_pool_open(dsl_pool_t *dp)
{
	int err;
	dsl_dir_t *dd;
	dsl_dataset_t *ds;
	uint64_t obj;

	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
	    &dp->dp_root_dir_obj);
	if (err)
		goto out;

	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
	    NULL, dp, &dp->dp_root_dir);
	if (err)
		goto out;

	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
	if (err)
		goto out;

	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
		if (err)
			goto out;
		err = dsl_dataset_hold_obj(dp,
		    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
		if (err == 0) {
			err = dsl_dataset_hold_obj(dp,
			    dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
			    &dp->dp_origin_snap);
			dsl_dataset_rele(ds, FTAG);
		}
		dsl_dir_rele(dd, dp);
		if (err)
			goto out;
	}

	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
		    &dp->dp_free_dir);
		if (err)
			goto out;

		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
		if (err)
			goto out;
		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
		    dp->dp_meta_objset, obj));
	}

	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
		    DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj);
		if (err == 0) {
			VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj,
			    dp->dp_meta_objset, obj));
		} else if (err == ENOENT) {
			/*
			 * We might not have created the remap bpobj yet.
			 */
			err = 0;
		} else {
			goto out;
		}
	}

	/*
	 * Note: errors ignored, because the these special dirs, used for
	 * space accounting, are only created on demand.
	 */
	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
	    &dp->dp_leak_dir);

	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
		    &dp->dp_bptree_obj);
		if (err != 0)
			goto out;
	}

	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
		    &dp->dp_empty_bpobj);
		if (err != 0)
			goto out;
	}

	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
	    &dp->dp_tmp_userrefs_obj);
	if (err == ENOENT)
		err = 0;
	if (err)
		goto out;

	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);

out:
	rrw_exit(&dp->dp_config_rwlock, FTAG);
	return (err);
}

void
dsl_pool_close(dsl_pool_t *dp)
{
	/*
	 * Drop our references from dsl_pool_open().
	 *
	 * Since we held the origin_snap from "syncing" context (which
	 * includes pool-opening context), it actually only got a "ref"
	 * and not a hold, so just drop that here.
	 */
	if (dp->dp_origin_snap != NULL)
		dsl_dataset_rele(dp->dp_origin_snap, dp);
	if (dp->dp_mos_dir != NULL)
		dsl_dir_rele(dp->dp_mos_dir, dp);
	if (dp->dp_free_dir != NULL)
		dsl_dir_rele(dp->dp_free_dir, dp);
	if (dp->dp_leak_dir != NULL)
		dsl_dir_rele(dp->dp_leak_dir, dp);
	if (dp->dp_root_dir != NULL)
		dsl_dir_rele(dp->dp_root_dir, dp);

	bpobj_close(&dp->dp_free_bpobj);
	bpobj_close(&dp->dp_obsolete_bpobj);

	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
	if (dp->dp_meta_objset != NULL)
		dmu_objset_evict(dp->dp_meta_objset);

	txg_list_destroy(&dp->dp_dirty_datasets);
	txg_list_destroy(&dp->dp_dirty_zilogs);
	txg_list_destroy(&dp->dp_sync_tasks);
	txg_list_destroy(&dp->dp_early_sync_tasks);
	txg_list_destroy(&dp->dp_dirty_dirs);

	taskq_destroy(dp->dp_zil_clean_taskq);
	taskq_destroy(dp->dp_sync_taskq);

	/*
	 * We can't set retry to TRUE since we're explicitly specifying
	 * a spa to flush. This is good enough; any missed buffers for
	 * this spa won't cause trouble, and they'll eventually fall
	 * out of the ARC just like any other unused buffer.
	 */
	arc_flush(dp->dp_spa, FALSE);

	txg_fini(dp);
	dsl_scan_fini(dp);
	dmu_buf_user_evict_wait();

	rrw_destroy(&dp->dp_config_rwlock);
	mutex_destroy(&dp->dp_lock);
	taskq_destroy(dp->dp_vnrele_taskq);
	if (dp->dp_blkstats != NULL) {
		mutex_destroy(&dp->dp_blkstats->zab_lock);
		kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
	}
	kmem_free(dp, sizeof (dsl_pool_t));
}

void
dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
{
	uint64_t obj;
	/*
	 * Currently, we only create the obsolete_bpobj where there are
	 * indirect vdevs with referenced mappings.
	 */
	ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL));
	/* create and open the obsolete_bpobj */
	obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
	VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj));
	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
	    DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
	spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
}

void
dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
{
	spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
	VERIFY0(zap_remove(dp->dp_meta_objset,
	    DMU_POOL_DIRECTORY_OBJECT,
	    DMU_POOL_OBSOLETE_BPOBJ, tx));
	bpobj_free(dp->dp_meta_objset,
	    dp->dp_obsolete_bpobj.bpo_object, tx);
	bpobj_close(&dp->dp_obsolete_bpobj);
}

dsl_pool_t *
dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
{
	int err;
	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
	dsl_dataset_t *ds;
	uint64_t obj;

	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);

	/* create and open the MOS (meta-objset) */
	dp->dp_meta_objset = dmu_objset_create_impl(spa,
	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);

	/* create the pool directory */
	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
	ASSERT0(err);

	/* Initialize scan structures */
	VERIFY0(dsl_scan_init(dp, txg));

	/* create and open the root dir */
	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
	    NULL, dp, &dp->dp_root_dir));

	/* create and open the meta-objset dir */
	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
	VERIFY0(dsl_pool_open_special_dir(dp,
	    MOS_DIR_NAME, &dp->dp_mos_dir));

	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
		/* create and open the free dir */
		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
		    FREE_DIR_NAME, tx);
		VERIFY0(dsl_pool_open_special_dir(dp,
		    FREE_DIR_NAME, &dp->dp_free_dir));

		/* create and open the free_bplist */
		obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
		    dp->dp_meta_objset, obj));
	}

	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
		dsl_pool_create_origin(dp, tx);

	/* create the root dataset */
	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);

	/* create the root objset */
	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
#ifdef _KERNEL
	{
		objset_t *os;
		rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
		os = dmu_objset_create_impl(dp->dp_spa, ds,
		    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
		rrw_exit(&ds->ds_bp_rwlock, FTAG);
		zfs_create_fs(os, kcred, zplprops, tx);
	}
#endif
	dsl_dataset_rele(ds, FTAG);

	dmu_tx_commit(tx);

	rrw_exit(&dp->dp_config_rwlock, FTAG);

	return (dp);
}

/*
 * Account for the meta-objset space in its placeholder dsl_dir.
 */
void
dsl_pool_mos_diduse_space(dsl_pool_t *dp,
    int64_t used, int64_t comp, int64_t uncomp)
{
	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
	mutex_enter(&dp->dp_lock);
	dp->dp_mos_used_delta += used;
	dp->dp_mos_compressed_delta += comp;
	dp->dp_mos_uncompressed_delta += uncomp;
	mutex_exit(&dp->dp_lock);
}

static void
dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
{
	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
	VERIFY0(zio_wait(zio));
	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
}

static void
dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
{
	ASSERT(MUTEX_HELD(&dp->dp_lock));

	if (delta < 0)
		ASSERT3U(-delta, <=, dp->dp_dirty_total);

	dp->dp_dirty_total += delta;

	/*
	 * Note: we signal even when increasing dp_dirty_total.
	 * This ensures forward progress -- each thread wakes the next waiter.
	 */
	if (dp->dp_dirty_total < zfs_dirty_data_max)
		cv_signal(&dp->dp_spaceavail_cv);
}

static boolean_t
dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg)
{
	spa_t *spa = dp->dp_spa;
	vdev_t *rvd = spa->spa_root_vdev;

	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
		vdev_t *vd = rvd->vdev_child[c];
		txg_list_t *tl = &vd->vdev_ms_list;
		metaslab_t *ms;

		for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms;
		    ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) {
			VERIFY(range_tree_is_empty(ms->ms_freeing));
			VERIFY(range_tree_is_empty(ms->ms_checkpointing));
		}
	}

	return (B_TRUE);
}

void
dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
{
	zio_t *zio;
	dmu_tx_t *tx;
	dsl_dir_t *dd;
	dsl_dataset_t *ds;
	objset_t *mos = dp->dp_meta_objset;
	list_t synced_datasets;

	list_create(&synced_datasets, sizeof (dsl_dataset_t),
	    offsetof(dsl_dataset_t, ds_synced_link));

	tx = dmu_tx_create_assigned(dp, txg);

	/*
	 * Run all early sync tasks before writing out any dirty blocks.
	 * For more info on early sync tasks see block comment in
	 * dsl_early_sync_task().
	 */
	if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) {
		dsl_sync_task_t *dst;

		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
		while ((dst =
		    txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) {
			ASSERT(dsl_early_sync_task_verify(dp, txg));
			dsl_sync_task_sync(dst, tx);
		}
		ASSERT(dsl_early_sync_task_verify(dp, txg));
	}

	/*
	 * Write out all dirty blocks of dirty datasets.
	 */
	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
		/*
		 * We must not sync any non-MOS datasets twice, because
		 * we may have taken a snapshot of them.  However, we
		 * may sync newly-created datasets on pass 2.
		 */
		ASSERT(!list_link_active(&ds->ds_synced_link));
		list_insert_tail(&synced_datasets, ds);
		dsl_dataset_sync(ds, zio, tx);
	}
	VERIFY0(zio_wait(zio));

	/*
	 * We have written all of the accounted dirty data, so our
	 * dp_space_towrite should now be zero.  However, some seldom-used
	 * code paths do not adhere to this (e.g. dbuf_undirty(), also
	 * rounding error in dbuf_write_physdone).
	 * Shore up the accounting of any dirtied space now.
	 */
	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);

	/*
	 * Update the long range free counter after
	 * we're done syncing user data
	 */
	mutex_enter(&dp->dp_lock);
	ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
	    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
	dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
	mutex_exit(&dp->dp_lock);

	/*
	 * After the data blocks have been written (ensured by the zio_wait()
	 * above), update the user/group space accounting.  This happens
	 * in tasks dispatched to dp_sync_taskq, so wait for them before
	 * continuing.
	 */
	for (ds = list_head(&synced_datasets); ds != NULL;
	    ds = list_next(&synced_datasets, ds)) {
		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
	}
	taskq_wait(dp->dp_sync_taskq);

	/*
	 * Sync the datasets again to push out the changes due to
	 * userspace updates.  This must be done before we process the
	 * sync tasks, so that any snapshots will have the correct
	 * user accounting information (and we won't get confused
	 * about which blocks are part of the snapshot).
	 */
	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
		ASSERT(list_link_active(&ds->ds_synced_link));
		dmu_buf_rele(ds->ds_dbuf, ds);
		dsl_dataset_sync(ds, zio, tx);
	}
	VERIFY0(zio_wait(zio));

	/*
	 * Now that the datasets have been completely synced, we can
	 * clean up our in-memory structures accumulated while syncing:
	 *
	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
	 *  - release hold from dsl_dataset_dirty()
	 */
	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
		dsl_dataset_sync_done(ds, tx);
	}
	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
		dsl_dir_sync(dd, tx);
	}

	/*
	 * The MOS's space is accounted for in the pool/$MOS
	 * (dp_mos_dir).  We can't modify the mos while we're syncing
	 * it, so we remember the deltas and apply them here.
	 */
	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
	    dp->dp_mos_uncompressed_delta != 0) {
		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
		    dp->dp_mos_used_delta,
		    dp->dp_mos_compressed_delta,
		    dp->dp_mos_uncompressed_delta, tx);
		dp->dp_mos_used_delta = 0;
		dp->dp_mos_compressed_delta = 0;
		dp->dp_mos_uncompressed_delta = 0;
	}

	if (!multilist_is_empty(mos->os_dirty_dnodes[txg & TXG_MASK])) {
		dsl_pool_sync_mos(dp, tx);
	}

	/*
	 * If we modify a dataset in the same txg that we want to destroy it,
	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
	 * and clearing the hold on it) before we process the sync_tasks.
	 * The MOS data dirtied by the sync_tasks will be synced on the next
	 * pass.
	 */
	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
		dsl_sync_task_t *dst;
		/*
		 * No more sync tasks should have been added while we
		 * were syncing.
		 */
		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
			dsl_sync_task_sync(dst, tx);
	}

	dmu_tx_commit(tx);

	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
}

void
dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
{
	zilog_t *zilog;

	while (zilog = txg_list_head(&dp->dp_dirty_zilogs, txg)) {
		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
		/*
		 * We don't remove the zilog from the dp_dirty_zilogs
		 * list until after we've cleaned it. This ensures that
		 * callers of zilog_is_dirty() receive an accurate
		 * answer when they are racing with the spa sync thread.
		 */
		zil_clean(zilog, txg);
		(void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
		dmu_buf_rele(ds->ds_dbuf, zilog);
	}
	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
}

/*
 * TRUE if the current thread is the tx_sync_thread or if we
 * are being called from SPA context during pool initialization.
 */
int
dsl_pool_sync_context(dsl_pool_t *dp)
{
	return (curthread == dp->dp_tx.tx_sync_thread ||
	    spa_is_initializing(dp->dp_spa) ||
	    taskq_member(dp->dp_sync_taskq, curthread));
}

/*
 * This function returns the amount of allocatable space in the pool
 * minus whatever space is currently reserved by ZFS for specific
 * purposes. Specifically:
 *
 * 1] Any reserved SLOP space
 * 2] Any space used by the checkpoint
 * 3] Any space used for deferred frees
 *
 * The latter 2 are especially important because they are needed to
 * rectify the SPA's and DMU's different understanding of how much space
 * is used. Now the DMU is aware of that extra space tracked by the SPA
 * without having to maintain a separate special dir (e.g similar to
 * $MOS, $FREEING, and $LEAKED).
 *
 * Note: By deferred frees here, we mean the frees that were deferred
 * in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the
 * segments placed in ms_defer trees during metaslab_sync_done().
 */
uint64_t
dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy)
{
	spa_t *spa = dp->dp_spa;
	uint64_t space, resv, adjustedsize;
	uint64_t spa_deferred_frees =
	    spa->spa_deferred_bpobj.bpo_phys->bpo_bytes;

	space = spa_get_dspace(spa)
	    - spa_get_checkpoint_space(spa) - spa_deferred_frees;
	resv = spa_get_slop_space(spa);

	switch (slop_policy) {
	case ZFS_SPACE_CHECK_NORMAL:
		break;
	case ZFS_SPACE_CHECK_RESERVED:
		resv >>= 1;
		break;
	case ZFS_SPACE_CHECK_EXTRA_RESERVED:
		resv >>= 2;
		break;
	case ZFS_SPACE_CHECK_NONE:
		resv = 0;
		break;
	default:
		panic("invalid slop policy value: %d", slop_policy);
		break;
	}
	adjustedsize = (space >= resv) ? (space - resv) : 0;

	return (adjustedsize);
}

uint64_t
dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy)
{
	uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy);
	uint64_t deferred =
	    metaslab_class_get_deferred(spa_normal_class(dp->dp_spa));
	uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0;
	return (quota);
}

boolean_t
dsl_pool_need_dirty_delay(dsl_pool_t *dp)
{
	uint64_t delay_min_bytes =
	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
	boolean_t rv;

	mutex_enter(&dp->dp_lock);
	if (dp->dp_dirty_total > zfs_dirty_data_sync)
		txg_kick(dp);
	rv = (dp->dp_dirty_total > delay_min_bytes);
	mutex_exit(&dp->dp_lock);
	return (rv);
}

void
dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
{
	if (space > 0) {
		mutex_enter(&dp->dp_lock);
		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
		dsl_pool_dirty_delta(dp, space);
		mutex_exit(&dp->dp_lock);
	}
}

void
dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
{
	ASSERT3S(space, >=, 0);
	if (space == 0)
		return;
	mutex_enter(&dp->dp_lock);
	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
		/* XXX writing something we didn't dirty? */
		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
	}
	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
	ASSERT3U(dp->dp_dirty_total, >=, space);
	dsl_pool_dirty_delta(dp, -space);
	mutex_exit(&dp->dp_lock);
}

/* ARGSUSED */
static int
upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
{
	dmu_tx_t *tx = arg;
	dsl_dataset_t *ds, *prev = NULL;
	int err;

	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
	if (err)
		return (err);

	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
		err = dsl_dataset_hold_obj(dp,
		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
		if (err) {
			dsl_dataset_rele(ds, FTAG);
			return (err);
		}

		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
			break;
		dsl_dataset_rele(ds, FTAG);
		ds = prev;
		prev = NULL;
	}

	if (prev == NULL) {
		prev = dp->dp_origin_snap;

		/*
		 * The $ORIGIN can't have any data, or the accounting
		 * will be wrong.
		 */
		rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
		ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
		rrw_exit(&ds->ds_bp_rwlock, FTAG);

		/* The origin doesn't get attached to itself */
		if (ds->ds_object == prev->ds_object) {
			dsl_dataset_rele(ds, FTAG);
			return (0);
		}

		dmu_buf_will_dirty(ds->ds_dbuf, tx);
		dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
		dsl_dataset_phys(ds)->ds_prev_snap_txg =
		    dsl_dataset_phys(prev)->ds_creation_txg;

		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
		dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;

		dmu_buf_will_dirty(prev->ds_dbuf, tx);
		dsl_dataset_phys(prev)->ds_num_children++;

		if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
			ASSERT(ds->ds_prev == NULL);
			VERIFY0(dsl_dataset_hold_obj(dp,
			    dsl_dataset_phys(ds)->ds_prev_snap_obj,
			    ds, &ds->ds_prev));
		}
	}

	ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
	ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);

	if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
		dmu_buf_will_dirty(prev->ds_dbuf, tx);
		dsl_dataset_phys(prev)->ds_next_clones_obj =
		    zap_create(dp->dp_meta_objset,
		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
	}
	VERIFY0(zap_add_int(dp->dp_meta_objset,
	    dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));

	dsl_dataset_rele(ds, FTAG);
	if (prev != dp->dp_origin_snap)
		dsl_dataset_rele(prev, FTAG);
	return (0);
}

void
dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
{
	ASSERT(dmu_tx_is_syncing(tx));
	ASSERT(dp->dp_origin_snap != NULL);

	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
	    tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
}

/* ARGSUSED */
static int
upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
{
	dmu_tx_t *tx = arg;
	objset_t *mos = dp->dp_meta_objset;

	if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
		dsl_dataset_t *origin;

		VERIFY0(dsl_dataset_hold_obj(dp,
		    dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));

		if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
			dsl_dir_phys(origin->ds_dir)->dd_clones =
			    zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
			    0, tx);
		}

		VERIFY0(zap_add_int(dp->dp_meta_objset,
		    dsl_dir_phys(origin->ds_dir)->dd_clones,
		    ds->ds_object, tx));

		dsl_dataset_rele(origin, FTAG);
	}
	return (0);
}

void
dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
{
	ASSERT(dmu_tx_is_syncing(tx));
	uint64_t obj;

	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
	VERIFY0(dsl_pool_open_special_dir(dp,
	    FREE_DIR_NAME, &dp->dp_free_dir));

	/*
	 * We can't use bpobj_alloc(), because spa_version() still
	 * returns the old version, and we need a new-version bpobj with
	 * subobj support.  So call dmu_object_alloc() directly.
	 */
	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
	    SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));

	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
}

void
dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
{
	uint64_t dsobj;
	dsl_dataset_t *ds;

	ASSERT(dmu_tx_is_syncing(tx));
	ASSERT(dp->dp_origin_snap == NULL);
	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));

	/* create the origin dir, ds, & snap-ds */
	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
	    NULL, 0, kcred, tx);
	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
	VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
	    dp, &dp->dp_origin_snap));
	dsl_dataset_rele(ds, FTAG);
}

taskq_t *
dsl_pool_vnrele_taskq(dsl_pool_t *dp)
{
	return (dp->dp_vnrele_taskq);
}

/*
 * Walk through the pool-wide zap object of temporary snapshot user holds
 * and release them.
 */
void
dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
{
	zap_attribute_t za;
	zap_cursor_t zc;
	objset_t *mos = dp->dp_meta_objset;
	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
	nvlist_t *holds;

	if (zapobj == 0)
		return;
	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);

	holds = fnvlist_alloc();

	for (zap_cursor_init(&zc, mos, zapobj);
	    zap_cursor_retrieve(&zc, &za) == 0;
	    zap_cursor_advance(&zc)) {
		char *htag;
		nvlist_t *tags;

		htag = strchr(za.za_name, '-');
		*htag = '\0';
		++htag;
		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
			tags = fnvlist_alloc();
			fnvlist_add_boolean(tags, htag);
			fnvlist_add_nvlist(holds, za.za_name, tags);
			fnvlist_free(tags);
		} else {
			fnvlist_add_boolean(tags, htag);
		}
	}
	dsl_dataset_user_release_tmp(dp, holds);
	fnvlist_free(holds);
	zap_cursor_fini(&zc);
}

/*
 * Create the pool-wide zap object for storing temporary snapshot holds.
 */
void
dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
{
	objset_t *mos = dp->dp_meta_objset;

	ASSERT(dp->dp_tmp_userrefs_obj == 0);
	ASSERT(dmu_tx_is_syncing(tx));

	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
}

static int
dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
    const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
{
	objset_t *mos = dp->dp_meta_objset;
	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
	char *name;
	int error;

	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
	ASSERT(dmu_tx_is_syncing(tx));

	/*
	 * If the pool was created prior to SPA_VERSION_USERREFS, the
	 * zap object for temporary holds might not exist yet.
	 */
	if (zapobj == 0) {
		if (holding) {
			dsl_pool_user_hold_create_obj(dp, tx);
			zapobj = dp->dp_tmp_userrefs_obj;
		} else {
			return (SET_ERROR(ENOENT));
		}
	}

	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
	if (holding)
		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
	else
		error = zap_remove(mos, zapobj, name, tx);
	strfree(name);

	return (error);
}

/*
 * Add a temporary hold for the given dataset object and tag.
 */
int
dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
    uint64_t now, dmu_tx_t *tx)
{
	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
}

/*
 * Release a temporary hold for the given dataset object and tag.
 */
int
dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
    dmu_tx_t *tx)
{
	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
	    tx, B_FALSE));
}

/*
 * DSL Pool Configuration Lock
 *
 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
 * creation / destruction / rename / property setting).  It must be held for
 * read to hold a dataset or dsl_dir.  I.e. you must call
 * dsl_pool_config_enter() or dsl_pool_hold() before calling
 * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
 * must be held continuously until all datasets and dsl_dirs are released.
 *
 * The only exception to this rule is that if a "long hold" is placed on
 * a dataset, then the dp_config_rwlock may be dropped while the dataset
 * is still held.  The long hold will prevent the dataset from being
 * destroyed -- the destroy will fail with EBUSY.  A long hold can be
 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
 *
 * Legitimate long-holders (including owners) should be long-running, cancelable
 * tasks that should cause "zfs destroy" to fail.  This includes DMU
 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
 * "zfs send", and "zfs diff".  There are several other long-holders whose
 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
 *
 * The usual formula for long-holding would be:
 * dsl_pool_hold()
 * dsl_dataset_hold()
 * ... perform checks ...
 * dsl_dataset_long_hold()
 * dsl_pool_rele()
 * ... perform long-running task ...
 * dsl_dataset_long_rele()
 * dsl_dataset_rele()
 *
 * Note that when the long hold is released, the dataset is still held but
 * the pool is not held.  The dataset may change arbitrarily during this time
 * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
 * dataset except release it.
 *
 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
 * or modifying operations.
 *
 * Modifying operations should generally use dsl_sync_task().  The synctask
 * infrastructure enforces proper locking strategy with respect to the
 * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
 *
 * Read-only operations will manually hold the pool, then the dataset, obtain
 * information from the dataset, then release the pool and dataset.
 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
 * hold/rele.
 */

int
dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
{
	spa_t *spa;
	int error;

	error = spa_open(name, &spa, tag);
	if (error == 0) {
		*dp = spa_get_dsl(spa);
		dsl_pool_config_enter(*dp, tag);
	}
	return (error);
}

void
dsl_pool_rele(dsl_pool_t *dp, void *tag)
{
	dsl_pool_config_exit(dp, tag);
	spa_close(dp->dp_spa, tag);
}

void
dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
{
	/*
	 * We use a "reentrant" reader-writer lock, but not reentrantly.
	 *
	 * The rrwlock can (with the track_all flag) track all reading threads,
	 * which is very useful for debugging which code path failed to release
	 * the lock, and for verifying that the *current* thread does hold
	 * the lock.
	 *
	 * (Unlike a rwlock, which knows that N threads hold it for
	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
	 * if any thread holds it for read, even if this thread doesn't).
	 */
	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
}

void
dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
{
	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
	rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
}

void
dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
{
	rrw_exit(&dp->dp_config_rwlock, tag);
}

boolean_t
dsl_pool_config_held(dsl_pool_t *dp)
{
	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
}

boolean_t
dsl_pool_config_held_writer(dsl_pool_t *dp)
{
	return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
}