Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License, Version 1.0 only
 * (the "License").  You may not use this file except in compliance
 * with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 *
 * $FreeBSD$
 *
 */
/*
 * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

/*
 * Copyright (c) 2011, Joyent, Inc. All rights reserved.
 */

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/kmem.h>
#include <sys/smp.h>
#include <sys/dtrace_impl.h>
#include <sys/dtrace_bsd.h>
#include <machine/clock.h>
#include <machine/cpufunc.h>
#include <machine/frame.h>
#include <machine/psl.h>
#include <machine/trap.h>
#include <vm/pmap.h>

extern void dtrace_getnanotime(struct timespec *tsp);

int dtrace_invop(uintptr_t, struct trapframe *, uintptr_t);

typedef struct dtrace_invop_hdlr {
	int (*dtih_func)(uintptr_t, struct trapframe *, uintptr_t);
	struct dtrace_invop_hdlr *dtih_next;
} dtrace_invop_hdlr_t;

dtrace_invop_hdlr_t *dtrace_invop_hdlr;

int
dtrace_invop(uintptr_t addr, struct trapframe *frame, uintptr_t eax)
{
	dtrace_invop_hdlr_t *hdlr;
	int rval;

	for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next)
		if ((rval = hdlr->dtih_func(addr, frame, eax)) != 0)
			return (rval);

	return (0);
}

void
dtrace_invop_add(int (*func)(uintptr_t, struct trapframe *, uintptr_t))
{
	dtrace_invop_hdlr_t *hdlr;

	hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP);
	hdlr->dtih_func = func;
	hdlr->dtih_next = dtrace_invop_hdlr;
	dtrace_invop_hdlr = hdlr;
}

void
dtrace_invop_remove(int (*func)(uintptr_t, struct trapframe *, uintptr_t))
{
	dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL;

	for (;;) {
		if (hdlr == NULL)
			panic("attempt to remove non-existent invop handler");

		if (hdlr->dtih_func == func)
			break;

		prev = hdlr;
		hdlr = hdlr->dtih_next;
	}

	if (prev == NULL) {
		ASSERT(dtrace_invop_hdlr == hdlr);
		dtrace_invop_hdlr = hdlr->dtih_next;
	} else {
		ASSERT(dtrace_invop_hdlr != hdlr);
		prev->dtih_next = hdlr->dtih_next;
	}

	kmem_free(hdlr, 0);
}

/*ARGSUSED*/
void
dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit))
{
	(*func)(0, (uintptr_t) addr_PTmap);
}

void
dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg)
{
	cpuset_t cpus;

	if (cpu == DTRACE_CPUALL)
		cpus = all_cpus;
	else
		CPU_SETOF(cpu, &cpus);

	smp_rendezvous_cpus(cpus, smp_no_rendezvous_barrier, func,
	    smp_no_rendezvous_barrier, arg);
}

static void
dtrace_sync_func(void)
{
}

void
dtrace_sync(void)
{
        dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL);
}

#ifdef notyet
void
dtrace_safe_synchronous_signal(void)
{
	kthread_t *t = curthread;
	struct regs *rp = lwptoregs(ttolwp(t));
	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;

	ASSERT(t->t_dtrace_on);

	/*
	 * If we're not in the range of scratch addresses, we're not actually
	 * tracing user instructions so turn off the flags. If the instruction
	 * we copied out caused a synchonous trap, reset the pc back to its
	 * original value and turn off the flags.
	 */
	if (rp->r_pc < t->t_dtrace_scrpc ||
	    rp->r_pc > t->t_dtrace_astpc + isz) {
		t->t_dtrace_ft = 0;
	} else if (rp->r_pc == t->t_dtrace_scrpc ||
	    rp->r_pc == t->t_dtrace_astpc) {
		rp->r_pc = t->t_dtrace_pc;
		t->t_dtrace_ft = 0;
	}
}

int
dtrace_safe_defer_signal(void)
{
	kthread_t *t = curthread;
	struct regs *rp = lwptoregs(ttolwp(t));
	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;

	ASSERT(t->t_dtrace_on);

	/*
	 * If we're not in the range of scratch addresses, we're not actually
	 * tracing user instructions so turn off the flags.
	 */
	if (rp->r_pc < t->t_dtrace_scrpc ||
	    rp->r_pc > t->t_dtrace_astpc + isz) {
		t->t_dtrace_ft = 0;
		return (0);
	}

	/*
	 * If we have executed the original instruction, but we have performed
	 * neither the jmp back to t->t_dtrace_npc nor the clean up of any
	 * registers used to emulate %rip-relative instructions in 64-bit mode,
	 * we'll save ourselves some effort by doing that here and taking the
	 * signal right away.  We detect this condition by seeing if the program
	 * counter is the range [scrpc + isz, astpc).
	 */
	if (rp->r_pc >= t->t_dtrace_scrpc + isz &&
	    rp->r_pc < t->t_dtrace_astpc) {
#ifdef __amd64
		/*
		 * If there is a scratch register and we're on the
		 * instruction immediately after the modified instruction,
		 * restore the value of that scratch register.
		 */
		if (t->t_dtrace_reg != 0 &&
		    rp->r_pc == t->t_dtrace_scrpc + isz) {
			switch (t->t_dtrace_reg) {
			case REG_RAX:
				rp->r_rax = t->t_dtrace_regv;
				break;
			case REG_RCX:
				rp->r_rcx = t->t_dtrace_regv;
				break;
			case REG_R8:
				rp->r_r8 = t->t_dtrace_regv;
				break;
			case REG_R9:
				rp->r_r9 = t->t_dtrace_regv;
				break;
			}
		}
#endif
		rp->r_pc = t->t_dtrace_npc;
		t->t_dtrace_ft = 0;
		return (0);
	}

	/*
	 * Otherwise, make sure we'll return to the kernel after executing
	 * the copied out instruction and defer the signal.
	 */
	if (!t->t_dtrace_step) {
		ASSERT(rp->r_pc < t->t_dtrace_astpc);
		rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc;
		t->t_dtrace_step = 1;
	}

	t->t_dtrace_ast = 1;

	return (1);
}
#endif

static int64_t	tgt_cpu_tsc;
static int64_t	hst_cpu_tsc;
static int64_t	tsc_skew[MAXCPU];
static uint64_t	nsec_scale;

/* See below for the explanation of this macro. */
#define SCALE_SHIFT	28

static void
dtrace_gethrtime_init_cpu(void *arg)
{
	uintptr_t cpu = (uintptr_t) arg;

	if (cpu == curcpu)
		tgt_cpu_tsc = rdtsc();
	else
		hst_cpu_tsc = rdtsc();
}

#ifdef EARLY_AP_STARTUP
static void
dtrace_gethrtime_init(void *arg)
{
	struct pcpu *pc;
	uint64_t tsc_f;
	cpuset_t map;
	int i;
#else
/*
 * Get the frequency and scale factor as early as possible so that they can be
 * used for boot-time tracing.
 */
static void
dtrace_gethrtime_init_early(void *arg)
{
	uint64_t tsc_f;
#endif

	/*
	 * Get TSC frequency known at this moment.
	 * This should be constant if TSC is invariant.
	 * Otherwise tick->time conversion will be inaccurate, but
	 * will preserve monotonic property of TSC.
	 */
	tsc_f = atomic_load_acq_64(&tsc_freq);

	/*
	 * The following line checks that nsec_scale calculated below
	 * doesn't overflow 32-bit unsigned integer, so that it can multiply
	 * another 32-bit integer without overflowing 64-bit.
	 * Thus minimum supported TSC frequency is 62.5MHz.
	 */
	KASSERT(tsc_f > (NANOSEC >> (32 - SCALE_SHIFT)),
	    ("TSC frequency is too low"));

	/*
	 * We scale up NANOSEC/tsc_f ratio to preserve as much precision
	 * as possible.
	 * 2^28 factor was chosen quite arbitrarily from practical
	 * considerations:
	 * - it supports TSC frequencies as low as 62.5MHz (see above);
	 * - it provides quite good precision (e < 0.01%) up to THz
	 *   (terahertz) values;
	 */
	nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tsc_f;
#ifndef EARLY_AP_STARTUP
}
SYSINIT(dtrace_gethrtime_init_early, SI_SUB_CPU, SI_ORDER_ANY,
    dtrace_gethrtime_init_early, NULL);

static void
dtrace_gethrtime_init(void *arg)
{
	struct pcpu *pc;
	cpuset_t map;
	int i;
#endif

	if (vm_guest != VM_GUEST_NO)
		return;

	/* The current CPU is the reference one. */
	sched_pin();
	tsc_skew[curcpu] = 0;
	CPU_FOREACH(i) {
		if (i == curcpu)
			continue;

		pc = pcpu_find(i);
		CPU_SETOF(PCPU_GET(cpuid), &map);
		CPU_SET(pc->pc_cpuid, &map);

		smp_rendezvous_cpus(map, NULL,
		    dtrace_gethrtime_init_cpu,
		    smp_no_rendezvous_barrier, (void *)(uintptr_t) i);

		tsc_skew[i] = tgt_cpu_tsc - hst_cpu_tsc;
	}
	sched_unpin();
}
#ifdef EARLY_AP_STARTUP
SYSINIT(dtrace_gethrtime_init, SI_SUB_DTRACE, SI_ORDER_ANY,
    dtrace_gethrtime_init, NULL);
#else
SYSINIT(dtrace_gethrtime_init, SI_SUB_SMP, SI_ORDER_ANY, dtrace_gethrtime_init,
    NULL);
#endif

/*
 * DTrace needs a high resolution time function which can
 * be called from a probe context and guaranteed not to have
 * instrumented with probes itself.
 *
 * Returns nanoseconds since boot.
 */
uint64_t
dtrace_gethrtime(void)
{
	uint64_t tsc;
	uint32_t lo, hi;
	register_t rflags;

	/*
	 * We split TSC value into lower and higher 32-bit halves and separately
	 * scale them with nsec_scale, then we scale them down by 2^28
	 * (see nsec_scale calculations) taking into account 32-bit shift of
	 * the higher half and finally add.
	 */
	rflags = intr_disable();
	tsc = rdtsc() - tsc_skew[curcpu];
	intr_restore(rflags);

	lo = tsc;
	hi = tsc >> 32;
	return (((lo * nsec_scale) >> SCALE_SHIFT) +
	    ((hi * nsec_scale) << (32 - SCALE_SHIFT)));
}

uint64_t
dtrace_gethrestime(void)
{
	struct timespec current_time;

	dtrace_getnanotime(&current_time);

	return (current_time.tv_sec * 1000000000ULL + current_time.tv_nsec);
}

/* Function to handle DTrace traps during probes. See amd64/amd64/trap.c. */
int
dtrace_trap(struct trapframe *frame, u_int type)
{
	uint16_t nofault;

	/*
	 * A trap can occur while DTrace executes a probe. Before
	 * executing the probe, DTrace blocks re-scheduling and sets
	 * a flag in its per-cpu flags to indicate that it doesn't
	 * want to fault. On returning from the probe, the no-fault
	 * flag is cleared and finally re-scheduling is enabled.
	 *
	 * Check if DTrace has enabled 'no-fault' mode:
	 */
	sched_pin();
	nofault = cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT;
	sched_unpin();
	if (nofault) {
		KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));

		/*
		 * There are only a couple of trap types that are expected.
		 * All the rest will be handled in the usual way.
		 */
		switch (type) {
		/* General protection fault. */
		case T_PROTFLT:
			/* Flag an illegal operation. */
			cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;

			/*
			 * Offset the instruction pointer to the instruction
			 * following the one causing the fault.
			 */
			frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip);
			return (1);
		/* Page fault. */
		case T_PAGEFLT:
			/* Flag a bad address. */
			cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR;
			cpu_core[curcpu].cpuc_dtrace_illval = frame->tf_addr;

			/*
			 * Offset the instruction pointer to the instruction
			 * following the one causing the fault.
			 */
			frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip);
			return (1);
		default:
			/* Handle all other traps in the usual way. */
			break;
		}
	}

	/* Handle the trap in the usual way. */
	return (0);
}