Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
/******************************************************************************

 © 1995-2003, 2004, 2005-2011 Freescale Semiconductor, Inc.
 All rights reserved.

 This is proprietary source code of Freescale Semiconductor Inc.,
 and its use is subject to the NetComm Device Drivers EULA.
 The copyright notice above does not evidence any actual or intended
 publication of such source code.

 ALTERNATIVELY, redistribution and use in source and binary forms, with
 or without modification, are permitted provided that the following
 conditions are met:
     * Redistributions of source code must retain the above copyright
       notice, this list of conditions and the following disclaimer.
     * Redistributions in binary form must reproduce the above copyright
       notice, this list of conditions and the following disclaimer in the
       documentation and/or other materials provided with the distribution.
     * Neither the name of Freescale Semiconductor nor the
       names of its contributors may be used to endorse or promote products
       derived from this software without specific prior written permission.

 THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
 EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
 DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *

 **************************************************************************/
#include "error_ext.h"
#include "part_ext.h"
#include "std_ext.h"
#include "string_ext.h"
#include "mem_ext.h"
#include "mem.h"
#include "xx_ext.h"


#if 0
#define PAD_ALIGNMENT(align, x) (((x)%(align)) ? ((align)-((x)%(align))) : 0)

#define ALIGN_BLOCK(p_Block, prefixSize, alignment)                 \
    do {                                                            \
        p_Block += (prefixSize);                                    \
        p_Block += PAD_ALIGNMENT((alignment), (uintptr_t)(p_Block)); \
    } while (0)

#if defined(__GNUC__)
#define GET_CALLER_ADDR \
    __asm__ ("mflr  %0" : "=r" (callerAddr))
#elif defined(__MWERKS__)
/* NOTE: This implementation is only valid for CodeWarrior for PowerPC */
#define GET_CALLER_ADDR \
    __asm__("add  %0, 0, %0" : : "r" (callerAddr))
#endif /* defined(__GNUC__) */


/*****************************************************************************/
static __inline__ void * MemGet(t_MemorySegment *p_Mem)
{
    uint8_t *p_Block;

    /* check if there is an available block */
    if (p_Mem->current == p_Mem->num)
    {
        p_Mem->getFailures++;
        return NULL;
    }

    /* get the block */
    p_Block = p_Mem->p_BlocksStack[p_Mem->current];
#ifdef DEBUG
    p_Mem->p_BlocksStack[p_Mem->current] = NULL;
#endif /* DEBUG */
    /* advance current index */
    p_Mem->current++;

    return (void *)p_Block;
}

/*****************************************************************************/
static __inline__ t_Error MemPut(t_MemorySegment *p_Mem, void *p_Block)
{
    /* check if blocks stack is full */
    if (p_Mem->current > 0)
    {
        /* decrease current index */
        p_Mem->current--;
        /* put the block */
        p_Mem->p_BlocksStack[p_Mem->current] = (uint8_t *)p_Block;
        return E_OK;
    }

    RETURN_ERROR(MAJOR, E_FULL, NO_MSG);
}


#ifdef DEBUG_MEM_LEAKS

/*****************************************************************************/
static t_Error InitMemDebugDatabase(t_MemorySegment *p_Mem)
{
    p_Mem->p_MemDbg = (void *)XX_Malloc(sizeof(t_MemDbg) * p_Mem->num);
    if (!p_Mem->p_MemDbg)
    {
        RETURN_ERROR(MAJOR, E_NO_MEMORY, ("Memory debug object"));
    }

    memset(p_Mem->p_MemDbg, ILLEGAL_BASE, sizeof(t_MemDbg) * p_Mem->num);

    return E_OK;
}


/*****************************************************************************/
static t_Error DebugMemGet(t_Handle h_Mem, void *p_Block, uintptr_t ownerAddress)
{
    t_MemorySegment *p_Mem = (t_MemorySegment *)h_Mem;
    t_MemDbg        *p_MemDbg = (t_MemDbg *)p_Mem->p_MemDbg;
    uint32_t        blockIndex;

    ASSERT_COND(ownerAddress != ILLEGAL_BASE);

    /* Find block num */
    if (p_Mem->consecutiveMem)
    {
        blockIndex =
            (((uint8_t *)p_Block - (p_Mem->p_Bases[0] + p_Mem->blockOffset)) / p_Mem->blockSize);
    }
    else
    {
        blockIndex = *(uint32_t *)((uint8_t *)p_Block - 4);
    }

    ASSERT_COND(blockIndex < p_Mem->num);
    ASSERT_COND(p_MemDbg[blockIndex].ownerAddress == ILLEGAL_BASE);

    p_MemDbg[blockIndex].ownerAddress = ownerAddress;

    return E_OK;
}

/*****************************************************************************/
static t_Error DebugMemPut(t_Handle h_Mem, void *p_Block)
{
    t_MemorySegment *p_Mem = (t_MemorySegment *)h_Mem;
    t_MemDbg        *p_MemDbg = (t_MemDbg *)p_Mem->p_MemDbg;
    uint32_t        blockIndex;
    uint8_t         *p_Temp;

    /* Find block num */
    if (p_Mem->consecutiveMem)
    {
        blockIndex =
            (((uint8_t *)p_Block - (p_Mem->p_Bases[0] + p_Mem->blockOffset)) / p_Mem->blockSize);

        if (blockIndex >= p_Mem->num)
        {
            RETURN_ERROR(MAJOR, E_INVALID_ADDRESS,
                         ("Freed address (0x%08x) does not belong to this pool", p_Block));
        }
    }
    else
    {
        blockIndex = *(uint32_t *)((uint8_t *)p_Block - 4);

        if (blockIndex >= p_Mem->num)
        {
            RETURN_ERROR(MAJOR, E_INVALID_ADDRESS,
                         ("Freed address (0x%08x) does not belong to this pool", p_Block));
        }

        /* Verify that the block matches the corresponding base */
        p_Temp = p_Mem->p_Bases[blockIndex];

        ALIGN_BLOCK(p_Temp, p_Mem->prefixSize, p_Mem->alignment);

        if (p_Temp == p_Mem->p_Bases[blockIndex])
            p_Temp += p_Mem->alignment;

        if (p_Temp != p_Block)
        {
            RETURN_ERROR(MAJOR, E_INVALID_ADDRESS,
                         ("Freed address (0x%08x) does not belong to this pool", p_Block));
        }
    }

    if (p_MemDbg[blockIndex].ownerAddress == ILLEGAL_BASE)
    {
        RETURN_ERROR(MAJOR, E_ALREADY_FREE,
                     ("Attempt to free unallocated address (0x%08x)", p_Block));
    }

    p_MemDbg[blockIndex].ownerAddress = (uintptr_t)ILLEGAL_BASE;

    return E_OK;
}

#endif /* DEBUG_MEM_LEAKS */


/*****************************************************************************/
uint32_t MEM_ComputePartitionSize(uint32_t num,
                                  uint16_t dataSize,
                                  uint16_t prefixSize,
                                  uint16_t postfixSize,
                                  uint16_t alignment)
{
    uint32_t  blockSize = 0, pad1 = 0, pad2 = 0;

    /* Make sure that the alignment is at least 4 */
    if (alignment < 4)
    {
        alignment = 4;
    }

    pad1 = (uint32_t)PAD_ALIGNMENT(4, prefixSize);
    /* Block size not including 2nd padding */
    blockSize = pad1 + prefixSize + dataSize + postfixSize;
    pad2 = PAD_ALIGNMENT(alignment, blockSize);
    /* Block size including 2nd padding */
    blockSize += pad2;

    return ((num * blockSize) + alignment);
}

/*****************************************************************************/
t_Error MEM_Init(char       name[],
                 t_Handle   *p_Handle,
                 uint32_t   num,
                 uint16_t   dataSize,
                 uint16_t   prefixSize,
                 uint16_t   postfixSize,
                 uint16_t   alignment)
{
    uint8_t     *p_Memory;
    uint32_t    allocSize;
    t_Error     errCode;

    allocSize = MEM_ComputePartitionSize(num,
                                         dataSize,
                                         prefixSize,
                                         postfixSize,
                                         alignment);

    p_Memory = (uint8_t *)XX_Malloc(allocSize);
    if (!p_Memory)
    {
        RETURN_ERROR(MAJOR, E_NO_MEMORY, ("Memory segment"));
    }

    errCode = MEM_InitByAddress(name,
                                p_Handle,
                                num,
                                dataSize,
                                prefixSize,
                                postfixSize,
                                alignment,
                                p_Memory);
    if (errCode != E_OK)
    {
        RETURN_ERROR(MAJOR, errCode, NO_MSG);
    }

    ((t_MemorySegment *)(*p_Handle))->allocOwner = e_MEM_ALLOC_OWNER_LOCAL;

    return E_OK;
}


/*****************************************************************************/
t_Error MEM_InitByAddress(char      name[],
                          t_Handle  *p_Handle,
                          uint32_t  num,
                          uint16_t  dataSize,
                          uint16_t  prefixSize,
                          uint16_t  postfixSize,
                          uint16_t  alignment,
                          uint8_t   *p_Memory)
{
    t_MemorySegment *p_Mem;
    uint32_t        i, blockSize;
    uint16_t        alignPad, endPad;
    uint8_t         *p_Blocks;

     /* prepare in case of error */
    *p_Handle = NULL;

    if (!p_Memory)
    {
        RETURN_ERROR(MAJOR, E_NULL_POINTER, ("Memory blocks"));
    }

    p_Blocks = p_Memory;

    /* make sure that the alignment is at least 4 and power of 2 */
    if (alignment < 4)
    {
        alignment = 4;
    }
    else if (!POWER_OF_2(alignment))
    {
        RETURN_ERROR(MAJOR, E_INVALID_VALUE, ("Alignment (should be power of 2)"));
    }

    /* first allocate the segment descriptor */
    p_Mem = (t_MemorySegment *)XX_Malloc(sizeof(t_MemorySegment));
    if (!p_Mem)
    {
        RETURN_ERROR(MAJOR, E_NO_MEMORY, ("Memory segment structure"));
    }

    /* allocate the blocks stack */
    p_Mem->p_BlocksStack = (uint8_t **)XX_Malloc(num * sizeof(uint8_t*));
    if (!p_Mem->p_BlocksStack)
    {
        XX_Free(p_Mem);
        RETURN_ERROR(MAJOR, E_NO_MEMORY, ("Memory segment block pointers stack"));
    }

    /* allocate the blocks bases array */
    p_Mem->p_Bases = (uint8_t **)XX_Malloc(sizeof(uint8_t*));
    if (!p_Mem->p_Bases)
    {
        MEM_Free(p_Mem);
        RETURN_ERROR(MAJOR, E_NO_MEMORY, ("Memory segment base pointers array"));
    }
    memset(p_Mem->p_Bases, 0, sizeof(uint8_t*));

    /* store info about this segment */
    p_Mem->num = num;
    p_Mem->current = 0;
    p_Mem->dataSize = dataSize;
    p_Mem->p_Bases[0] = p_Blocks;
    p_Mem->getFailures = 0;
    p_Mem->allocOwner = e_MEM_ALLOC_OWNER_EXTERNAL;
    p_Mem->consecutiveMem = TRUE;
    p_Mem->prefixSize = prefixSize;
    p_Mem->postfixSize = postfixSize;
    p_Mem->alignment = alignment;
    /* store name */
    strncpy(p_Mem->name, name, MEM_MAX_NAME_LENGTH-1);

    p_Mem->h_Spinlock = XX_InitSpinlock();
    if (!p_Mem->h_Spinlock)
    {
        MEM_Free(p_Mem);
        RETURN_ERROR(MAJOR, E_INVALID_STATE, ("Can't create spinlock!"));
    }

    alignPad = (uint16_t)PAD_ALIGNMENT(4, prefixSize);
    /* Make sure the entire size is a multiple of alignment */
    endPad = (uint16_t)PAD_ALIGNMENT(alignment, (alignPad + prefixSize + dataSize + postfixSize));

    /* The following manipulation places the data of block[0] in an aligned address,
       since block size is aligned the following block datas will all be aligned */
    ALIGN_BLOCK(p_Blocks, prefixSize, alignment);

    blockSize = (uint32_t)(alignPad + prefixSize + dataSize + postfixSize + endPad);

    /* initialize the blocks */
    for (i=0; i < num; i++)
    {
        p_Mem->p_BlocksStack[i] = p_Blocks;
        p_Blocks += blockSize;
    }

    /* return handle to caller */
    *p_Handle = (t_Handle)p_Mem;

#ifdef DEBUG_MEM_LEAKS
    {
        t_Error errCode = InitMemDebugDatabase(p_Mem);

        if (errCode != E_OK)
            RETURN_ERROR(MAJOR, errCode, NO_MSG);

        p_Mem->blockOffset = (uint32_t)(p_Mem->p_BlocksStack[0] - p_Mem->p_Bases[0]);
        p_Mem->blockSize = blockSize;
    }
#endif /* DEBUG_MEM_LEAKS */

    return E_OK;
}


/*****************************************************************************/
t_Error MEM_InitSmart(char      name[],
                      t_Handle  *p_Handle,
                      uint32_t  num,
                      uint16_t  dataSize,
                      uint16_t  prefixSize,
                      uint16_t  postfixSize,
                      uint16_t  alignment,
                      uint8_t   memPartitionId,
                      bool      consecutiveMem)
{
    t_MemorySegment *p_Mem;
    uint32_t        i, blockSize;
    uint16_t        alignPad, endPad;

    /* prepare in case of error */
    *p_Handle = NULL;

    /* make sure that size is always a multiple of 4 */
    if (dataSize & 3)
    {
        dataSize &= ~3;
        dataSize += 4;
    }

    /* make sure that the alignment is at least 4 and power of 2 */
    if (alignment < 4)
    {
        alignment = 4;
    }
    else if (!POWER_OF_2(alignment))
    {
        RETURN_ERROR(MAJOR, E_INVALID_VALUE, ("Alignment (should be power of 2)"));
    }

    /* first allocate the segment descriptor */
    p_Mem = (t_MemorySegment *)XX_Malloc(sizeof(t_MemorySegment));
    if (!p_Mem)
    {
        RETURN_ERROR(MAJOR, E_NO_MEMORY, ("Memory segment structure"));
    }

    /* allocate the blocks stack */
    p_Mem->p_BlocksStack = (uint8_t **)XX_Malloc(num * sizeof(uint8_t*));
    if (!p_Mem->p_BlocksStack)
    {
        MEM_Free(p_Mem);
        RETURN_ERROR(MAJOR, E_NO_MEMORY, ("Memory segment block pointers stack"));
    }

    /* allocate the blocks bases array */
    p_Mem->p_Bases = (uint8_t **)XX_Malloc((consecutiveMem ? 1 : num) * sizeof(uint8_t*));
    if (!p_Mem->p_Bases)
    {
        MEM_Free(p_Mem);
        RETURN_ERROR(MAJOR, E_NO_MEMORY, ("Memory segment base pointers array"));
    }
    memset(p_Mem->p_Bases, 0, (consecutiveMem ? 1 : num) * sizeof(uint8_t*));

    /* store info about this segment */
    p_Mem->num = num;
    p_Mem->current = 0;
    p_Mem->dataSize = dataSize;
    p_Mem->getFailures = 0;
    p_Mem->allocOwner = e_MEM_ALLOC_OWNER_LOCAL_SMART;
    p_Mem->consecutiveMem = consecutiveMem;
    p_Mem->prefixSize = prefixSize;
    p_Mem->postfixSize = postfixSize;
    p_Mem->alignment = alignment;

    p_Mem->h_Spinlock = XX_InitSpinlock();
    if (!p_Mem->h_Spinlock)
    {
        MEM_Free(p_Mem);
        RETURN_ERROR(MAJOR, E_INVALID_STATE, ("Can't create spinlock!"));
    }

    alignPad = (uint16_t)PAD_ALIGNMENT(4, prefixSize);
    /* Make sure the entire size is a multiple of alignment */
    endPad = (uint16_t)PAD_ALIGNMENT(alignment, alignPad + prefixSize + dataSize + postfixSize);

    /* Calculate blockSize */
    blockSize = (uint32_t)(alignPad + prefixSize + dataSize + postfixSize + endPad);

    /* Now allocate the blocks */
    if (p_Mem->consecutiveMem)
    {
        /* |alignment - 1| bytes at most will be discarded in the beginning of the
           received segment for alignment reasons, therefore the allocation is of:
           (alignment + (num * block size)). */
        uint8_t *p_Blocks = (uint8_t *)
            XX_MallocSmart((uint32_t)((num * blockSize) + alignment), memPartitionId, 1);
        if (!p_Blocks)
        {
            MEM_Free(p_Mem);
            RETURN_ERROR(MAJOR, E_NO_MEMORY, ("Memory segment blocks"));
        }

        /* Store the memory segment address */
        p_Mem->p_Bases[0] = p_Blocks;

        /* The following manipulation places the data of block[0] in an aligned address,
           since block size is aligned the following block datas will all be aligned.*/
        ALIGN_BLOCK(p_Blocks, prefixSize, alignment);

        /* initialize the blocks */
        for (i = 0; i < num; i++)
        {
            p_Mem->p_BlocksStack[i] = p_Blocks;
            p_Blocks += blockSize;
        }

#ifdef DEBUG_MEM_LEAKS
        p_Mem->blockOffset = (uint32_t)(p_Mem->p_BlocksStack[0] - p_Mem->p_Bases[0]);
        p_Mem->blockSize = blockSize;
#endif /* DEBUG_MEM_LEAKS */
    }
    else
    {
        /* |alignment - 1| bytes at most will be discarded in the beginning of the
           received segment for alignment reasons, therefore the allocation is of:
           (alignment + block size). */
        for (i = 0; i < num; i++)
        {
            uint8_t *p_Block = (uint8_t *)
                XX_MallocSmart((uint32_t)(blockSize + alignment), memPartitionId, 1);
            if (!p_Block)
            {
                MEM_Free(p_Mem);
                RETURN_ERROR(MAJOR, E_NO_MEMORY, ("Memory segment blocks"));
            }

            /* Store the memory segment address */
            p_Mem->p_Bases[i] = p_Block;

            /* The following places the data of each block in an aligned address */
            ALIGN_BLOCK(p_Block, prefixSize, alignment);

#ifdef DEBUG_MEM_LEAKS
            /* Need 4 bytes before the meaningful bytes to store the block index.
               We know we have them because alignment is at least 4 bytes. */
            if (p_Block == p_Mem->p_Bases[i])
                p_Block += alignment;

            *(uint32_t *)(p_Block - 4) = i;
#endif /* DEBUG_MEM_LEAKS */

            p_Mem->p_BlocksStack[i] = p_Block;
        }
    }

    /* store name */
    strncpy(p_Mem->name, name, MEM_MAX_NAME_LENGTH-1);

    /* return handle to caller */
    *p_Handle = (t_Handle)p_Mem;

#ifdef DEBUG_MEM_LEAKS
    {
        t_Error errCode = InitMemDebugDatabase(p_Mem);

        if (errCode != E_OK)
            RETURN_ERROR(MAJOR, errCode, NO_MSG);
    }
#endif /* DEBUG_MEM_LEAKS */

    return E_OK;
}


/*****************************************************************************/
void MEM_Free(t_Handle h_Mem)
{
    t_MemorySegment *p_Mem = (t_MemorySegment*)h_Mem;
    uint32_t        num, i;

    /* Check MEM leaks */
    MEM_CheckLeaks(h_Mem);

    if (p_Mem)
    {
        num = p_Mem->consecutiveMem ? 1 : p_Mem->num;

        if (p_Mem->allocOwner == e_MEM_ALLOC_OWNER_LOCAL_SMART)
        {
            for (i=0; i < num; i++)
            {
                if (p_Mem->p_Bases[i])
                {
                    XX_FreeSmart(p_Mem->p_Bases[i]);
                }
            }
        }
        else if (p_Mem->allocOwner == e_MEM_ALLOC_OWNER_LOCAL)
        {
            for (i=0; i < num; i++)
            {
                if (p_Mem->p_Bases[i])
                {
                    XX_Free(p_Mem->p_Bases[i]);
                }
            }
        }

        if (p_Mem->h_Spinlock)
            XX_FreeSpinlock(p_Mem->h_Spinlock);

        if (p_Mem->p_Bases)
            XX_Free(p_Mem->p_Bases);

        if (p_Mem->p_BlocksStack)
            XX_Free(p_Mem->p_BlocksStack);

#ifdef DEBUG_MEM_LEAKS
        if (p_Mem->p_MemDbg)
            XX_Free(p_Mem->p_MemDbg);
#endif /* DEBUG_MEM_LEAKS */

       XX_Free(p_Mem);
    }
}


/*****************************************************************************/
void * MEM_Get(t_Handle h_Mem)
{
    t_MemorySegment *p_Mem = (t_MemorySegment *)h_Mem;
    uint8_t         *p_Block;
    uint32_t        intFlags;
#ifdef DEBUG_MEM_LEAKS
    uintptr_t       callerAddr = 0;

    GET_CALLER_ADDR;
#endif /* DEBUG_MEM_LEAKS */

    ASSERT_COND(h_Mem);

    intFlags = XX_LockIntrSpinlock(p_Mem->h_Spinlock);
    /* check if there is an available block */
    if ((p_Block = (uint8_t *)MemGet(p_Mem)) == NULL)
    {
        XX_UnlockIntrSpinlock(p_Mem->h_Spinlock, intFlags);
        return NULL;
    }

#ifdef DEBUG_MEM_LEAKS
    DebugMemGet(p_Mem, p_Block, callerAddr);
#endif /* DEBUG_MEM_LEAKS */
    XX_UnlockIntrSpinlock(p_Mem->h_Spinlock, intFlags);

    return (void *)p_Block;
}


/*****************************************************************************/
uint16_t MEM_GetN(t_Handle h_Mem, uint32_t num, void *array[])
{
    t_MemorySegment     *p_Mem = (t_MemorySegment *)h_Mem;
    uint32_t            availableBlocks;
    register uint32_t   i;
    uint32_t            intFlags;
#ifdef DEBUG_MEM_LEAKS
    uintptr_t           callerAddr = 0;

    GET_CALLER_ADDR;
#endif /* DEBUG_MEM_LEAKS */

    ASSERT_COND(h_Mem);

    intFlags = XX_LockIntrSpinlock(p_Mem->h_Spinlock);
    /* check how many blocks are available */
    availableBlocks = (uint32_t)(p_Mem->num - p_Mem->current);
    if (num > availableBlocks)
    {
        num = availableBlocks;
    }

    for (i=0; i < num; i++)
    {
        /* get pointer to block */
        if ((array[i] = MemGet(p_Mem)) == NULL)
        {
            break;
        }

#ifdef DEBUG_MEM_LEAKS
        DebugMemGet(p_Mem, array[i], callerAddr);
#endif /* DEBUG_MEM_LEAKS */
    }
    XX_UnlockIntrSpinlock(p_Mem->h_Spinlock, intFlags);

    return (uint16_t)i;
}


/*****************************************************************************/
t_Error MEM_Put(t_Handle h_Mem, void *p_Block)
{
    t_MemorySegment *p_Mem = (t_MemorySegment *)h_Mem;
    t_Error         rc;
    uint32_t        intFlags;

    ASSERT_COND(h_Mem);

    intFlags = XX_LockIntrSpinlock(p_Mem->h_Spinlock);
    /* check if blocks stack is full */
    if ((rc = MemPut(p_Mem, p_Block)) != E_OK)
    {
        XX_UnlockIntrSpinlock(p_Mem->h_Spinlock, intFlags);
        RETURN_ERROR(MAJOR, rc, NO_MSG);
    }

#ifdef DEBUG_MEM_LEAKS
    DebugMemPut(p_Mem, p_Block);
#endif /* DEBUG_MEM_LEAKS */
    XX_UnlockIntrSpinlock(p_Mem->h_Spinlock, intFlags);

    return E_OK;
}


#ifdef DEBUG_MEM_LEAKS

/*****************************************************************************/
void MEM_CheckLeaks(t_Handle h_Mem)
{
    t_MemorySegment *p_Mem = (t_MemorySegment *)h_Mem;
    t_MemDbg        *p_MemDbg = (t_MemDbg *)p_Mem->p_MemDbg;
    uint8_t         *p_Block;
    int             i;

    ASSERT_COND(h_Mem);

    if (p_Mem->consecutiveMem)
    {
        for (i=0; i < p_Mem->num; i++)
        {
            if (p_MemDbg[i].ownerAddress != ILLEGAL_BASE)
            {
                /* Find the block address */
                p_Block = ((p_Mem->p_Bases[0] + p_Mem->blockOffset) +
                           (i * p_Mem->blockSize));

                XX_Print("MEM leak: 0x%08x, Caller address: 0x%08x\n",
                         p_Block, p_MemDbg[i].ownerAddress);
            }
        }
    }
    else
    {
        for (i=0; i < p_Mem->num; i++)
        {
            if (p_MemDbg[i].ownerAddress != ILLEGAL_BASE)
            {
                /* Find the block address */
                p_Block = p_Mem->p_Bases[i];

                ALIGN_BLOCK(p_Block, p_Mem->prefixSize, p_Mem->alignment);

                if (p_Block == p_Mem->p_Bases[i])
                    p_Block += p_Mem->alignment;

                XX_Print("MEM leak: 0x%08x, Caller address: 0x%08x\n",
                         p_Block, p_MemDbg[i].ownerAddress);
            }
        }
    }
}

#endif /* DEBUG_MEM_LEAKS */


#endif