/*-
* Copyright (C) 2008 Damien Miller <djm@mindrot.org>
* Copyright (c) 2010 Konstantin Belousov <kib@FreeBSD.org>
* Copyright (c) 2010-2011 Pawel Jakub Dawidek <pawel@dawidek.net>
* Copyright 2012-2013 John-Mark Gurney <jmg@FreeBSD.org>
* Copyright (c) 2014 The FreeBSD Foundation
* All rights reserved.
*
* Portions of this software were developed by John-Mark Gurney
* under sponsorship of the FreeBSD Foundation and
* Rubicon Communications, LLC (Netgate).
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/libkern.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <crypto/aesni/aesni.h>
#include <opencrypto/gmac.h>
#include "aesencdec.h"
#include <smmintrin.h>
MALLOC_DECLARE(M_AESNI);
struct blocks8 {
__m128i blk[8];
} __packed;
void
aesni_encrypt_cbc(int rounds, const void *key_schedule, size_t len,
const uint8_t *from, uint8_t *to, const uint8_t iv[static AES_BLOCK_LEN])
{
__m128i tot, ivreg;
size_t i;
len /= AES_BLOCK_LEN;
ivreg = _mm_loadu_si128((const __m128i *)iv);
for (i = 0; i < len; i++) {
tot = aesni_enc(rounds - 1, key_schedule,
_mm_loadu_si128((const __m128i *)from) ^ ivreg);
ivreg = tot;
_mm_storeu_si128((__m128i *)to, tot);
from += AES_BLOCK_LEN;
to += AES_BLOCK_LEN;
}
}
void
aesni_decrypt_cbc(int rounds, const void *key_schedule, size_t len,
uint8_t *buf, const uint8_t iv[static AES_BLOCK_LEN])
{
__m128i blocks[8];
struct blocks8 *blks;
__m128i ivreg, nextiv;
size_t i, j, cnt;
ivreg = _mm_loadu_si128((const __m128i *)iv);
cnt = len / AES_BLOCK_LEN / 8;
for (i = 0; i < cnt; i++) {
blks = (struct blocks8 *)buf;
aesni_dec8(rounds - 1, key_schedule, blks->blk[0], blks->blk[1],
blks->blk[2], blks->blk[3], blks->blk[4], blks->blk[5],
blks->blk[6], blks->blk[7], &blocks[0]);
for (j = 0; j < 8; j++) {
nextiv = blks->blk[j];
blks->blk[j] = blocks[j] ^ ivreg;
ivreg = nextiv;
}
buf += AES_BLOCK_LEN * 8;
}
i *= 8;
cnt = len / AES_BLOCK_LEN;
for (; i < cnt; i++) {
nextiv = _mm_loadu_si128((void *)buf);
_mm_storeu_si128((void *)buf,
aesni_dec(rounds - 1, key_schedule, nextiv) ^ ivreg);
ivreg = nextiv;
buf += AES_BLOCK_LEN;
}
}
void
aesni_encrypt_ecb(int rounds, const void *key_schedule, size_t len,
const uint8_t *from, uint8_t *to)
{
__m128i tot;
__m128i tout[8];
struct blocks8 *top;
const struct blocks8 *blks;
size_t i, cnt;
cnt = len / AES_BLOCK_LEN / 8;
for (i = 0; i < cnt; i++) {
blks = (const struct blocks8 *)from;
top = (struct blocks8 *)to;
aesni_enc8(rounds - 1, key_schedule, blks->blk[0], blks->blk[1],
blks->blk[2], blks->blk[3], blks->blk[4], blks->blk[5],
blks->blk[6], blks->blk[7], tout);
top->blk[0] = tout[0];
top->blk[1] = tout[1];
top->blk[2] = tout[2];
top->blk[3] = tout[3];
top->blk[4] = tout[4];
top->blk[5] = tout[5];
top->blk[6] = tout[6];
top->blk[7] = tout[7];
from += AES_BLOCK_LEN * 8;
to += AES_BLOCK_LEN * 8;
}
i *= 8;
cnt = len / AES_BLOCK_LEN;
for (; i < cnt; i++) {
tot = aesni_enc(rounds - 1, key_schedule,
_mm_loadu_si128((const __m128i *)from));
_mm_storeu_si128((__m128i *)to, tot);
from += AES_BLOCK_LEN;
to += AES_BLOCK_LEN;
}
}
void
aesni_decrypt_ecb(int rounds, const void *key_schedule, size_t len,
const uint8_t from[AES_BLOCK_LEN], uint8_t to[AES_BLOCK_LEN])
{
__m128i tot;
__m128i tout[8];
const struct blocks8 *blks;
struct blocks8 *top;
size_t i, cnt;
cnt = len / AES_BLOCK_LEN / 8;
for (i = 0; i < cnt; i++) {
blks = (const struct blocks8 *)from;
top = (struct blocks8 *)to;
aesni_dec8(rounds - 1, key_schedule, blks->blk[0], blks->blk[1],
blks->blk[2], blks->blk[3], blks->blk[4], blks->blk[5],
blks->blk[6], blks->blk[7], tout);
top->blk[0] = tout[0];
top->blk[1] = tout[1];
top->blk[2] = tout[2];
top->blk[3] = tout[3];
top->blk[4] = tout[4];
top->blk[5] = tout[5];
top->blk[6] = tout[6];
top->blk[7] = tout[7];
from += AES_BLOCK_LEN * 8;
to += AES_BLOCK_LEN * 8;
}
i *= 8;
cnt = len / AES_BLOCK_LEN;
for (; i < cnt; i++) {
tot = aesni_dec(rounds - 1, key_schedule,
_mm_loadu_si128((const __m128i *)from));
_mm_storeu_si128((__m128i *)to, tot);
from += AES_BLOCK_LEN;
to += AES_BLOCK_LEN;
}
}
/*
* mixed endian increment, low 64bits stored in hi word to be compatible
* with _icm's BSWAP.
*/
static inline __m128i
nextc(__m128i x)
{
const __m128i ONE = _mm_setr_epi32(0, 0, 1, 0);
const __m128i ZERO = _mm_setzero_si128();
x = _mm_add_epi64(x, ONE);
__m128i t = _mm_cmpeq_epi64(x, ZERO);
t = _mm_unpackhi_epi64(t, ZERO);
x = _mm_sub_epi64(x, t);
return x;
}
void
aesni_encrypt_icm(int rounds, const void *key_schedule, size_t len,
const uint8_t *from, uint8_t *to, const uint8_t iv[static AES_BLOCK_LEN])
{
__m128i tot;
__m128i tmp1, tmp2, tmp3, tmp4;
__m128i tmp5, tmp6, tmp7, tmp8;
__m128i ctr1, ctr2, ctr3, ctr4;
__m128i ctr5, ctr6, ctr7, ctr8;
__m128i BSWAP_EPI64;
__m128i tout[8];
struct blocks8 *top;
const struct blocks8 *blks;
size_t i, cnt;
BSWAP_EPI64 = _mm_set_epi8(8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7);
ctr1 = _mm_loadu_si128((const __m128i *)iv);
ctr1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64);
cnt = len / AES_BLOCK_LEN / 8;
for (i = 0; i < cnt; i++) {
tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64);
ctr2 = nextc(ctr1);
tmp2 = _mm_shuffle_epi8(ctr2, BSWAP_EPI64);
ctr3 = nextc(ctr2);
tmp3 = _mm_shuffle_epi8(ctr3, BSWAP_EPI64);
ctr4 = nextc(ctr3);
tmp4 = _mm_shuffle_epi8(ctr4, BSWAP_EPI64);
ctr5 = nextc(ctr4);
tmp5 = _mm_shuffle_epi8(ctr5, BSWAP_EPI64);
ctr6 = nextc(ctr5);
tmp6 = _mm_shuffle_epi8(ctr6, BSWAP_EPI64);
ctr7 = nextc(ctr6);
tmp7 = _mm_shuffle_epi8(ctr7, BSWAP_EPI64);
ctr8 = nextc(ctr7);
tmp8 = _mm_shuffle_epi8(ctr8, BSWAP_EPI64);
ctr1 = nextc(ctr8);
blks = (const struct blocks8 *)from;
top = (struct blocks8 *)to;
aesni_enc8(rounds - 1, key_schedule, tmp1, tmp2, tmp3, tmp4,
tmp5, tmp6, tmp7, tmp8, tout);
top->blk[0] = blks->blk[0] ^ tout[0];
top->blk[1] = blks->blk[1] ^ tout[1];
top->blk[2] = blks->blk[2] ^ tout[2];
top->blk[3] = blks->blk[3] ^ tout[3];
top->blk[4] = blks->blk[4] ^ tout[4];
top->blk[5] = blks->blk[5] ^ tout[5];
top->blk[6] = blks->blk[6] ^ tout[6];
top->blk[7] = blks->blk[7] ^ tout[7];
from += AES_BLOCK_LEN * 8;
to += AES_BLOCK_LEN * 8;
}
i *= 8;
cnt = len / AES_BLOCK_LEN;
for (; i < cnt; i++) {
tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64);
ctr1 = nextc(ctr1);
tot = aesni_enc(rounds - 1, key_schedule, tmp1);
tot = tot ^ _mm_loadu_si128((const __m128i *)from);
_mm_storeu_si128((__m128i *)to, tot);
from += AES_BLOCK_LEN;
to += AES_BLOCK_LEN;
}
/* handle remaining partial round */
if (len % AES_BLOCK_LEN != 0) {
tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64);
tot = aesni_enc(rounds - 1, key_schedule, tmp1);
tot = tot ^ _mm_loadu_si128((const __m128i *)from);
memcpy(to, &tot, len % AES_BLOCK_LEN);
}
}
#define AES_XTS_BLOCKSIZE 16
#define AES_XTS_IVSIZE 8
#define AES_XTS_ALPHA 0x87 /* GF(2^128) generator polynomial */
static inline __m128i
xts_crank_lfsr(__m128i inp)
{
const __m128i alphamask = _mm_set_epi32(1, 1, 1, AES_XTS_ALPHA);
__m128i xtweak, ret;
/* set up xor mask */
xtweak = _mm_shuffle_epi32(inp, 0x93);
xtweak = _mm_srai_epi32(xtweak, 31);
xtweak &= alphamask;
/* next term */
ret = _mm_slli_epi32(inp, 1);
ret ^= xtweak;
return ret;
}
static void
aesni_crypt_xts_block(int rounds, const __m128i *key_schedule, __m128i *tweak,
const uint8_t *from, uint8_t *to, int do_encrypt)
{
__m128i block;
block = _mm_loadu_si128((const __m128i *)from) ^ *tweak;
if (do_encrypt)
block = aesni_enc(rounds - 1, key_schedule, block);
else
block = aesni_dec(rounds - 1, key_schedule, block);
_mm_storeu_si128((__m128i *)to, block ^ *tweak);
*tweak = xts_crank_lfsr(*tweak);
}
static void
aesni_crypt_xts_block8(int rounds, const __m128i *key_schedule, __m128i *tweak,
const uint8_t *from, uint8_t *to, int do_encrypt)
{
__m128i tmptweak;
__m128i a, b, c, d, e, f, g, h;
__m128i tweaks[8];
__m128i tmp[8];
__m128i *top;
const __m128i *fromp;
tmptweak = *tweak;
/*
* unroll the loop. This lets gcc put values directly in the
* register and saves memory accesses.
*/
fromp = (const __m128i *)from;
#define PREPINP(v, pos) \
do { \
tweaks[(pos)] = tmptweak; \
(v) = _mm_loadu_si128(&fromp[pos]) ^ \
tmptweak; \
tmptweak = xts_crank_lfsr(tmptweak); \
} while (0)
PREPINP(a, 0);
PREPINP(b, 1);
PREPINP(c, 2);
PREPINP(d, 3);
PREPINP(e, 4);
PREPINP(f, 5);
PREPINP(g, 6);
PREPINP(h, 7);
*tweak = tmptweak;
if (do_encrypt)
aesni_enc8(rounds - 1, key_schedule, a, b, c, d, e, f, g, h,
tmp);
else
aesni_dec8(rounds - 1, key_schedule, a, b, c, d, e, f, g, h,
tmp);
top = (__m128i *)to;
_mm_storeu_si128(&top[0], tmp[0] ^ tweaks[0]);
_mm_storeu_si128(&top[1], tmp[1] ^ tweaks[1]);
_mm_storeu_si128(&top[2], tmp[2] ^ tweaks[2]);
_mm_storeu_si128(&top[3], tmp[3] ^ tweaks[3]);
_mm_storeu_si128(&top[4], tmp[4] ^ tweaks[4]);
_mm_storeu_si128(&top[5], tmp[5] ^ tweaks[5]);
_mm_storeu_si128(&top[6], tmp[6] ^ tweaks[6]);
_mm_storeu_si128(&top[7], tmp[7] ^ tweaks[7]);
}
static void
aesni_crypt_xts(int rounds, const __m128i *data_schedule,
const __m128i *tweak_schedule, size_t len, const uint8_t *from,
uint8_t *to, const uint8_t iv[static AES_BLOCK_LEN], int do_encrypt)
{
__m128i tweakreg;
uint8_t tweak[AES_XTS_BLOCKSIZE] __aligned(16);
size_t i, cnt;
/*
* Prepare tweak as E_k2(IV). IV is specified as LE representation
* of a 64-bit block number which we allow to be passed in directly.
*/
#if BYTE_ORDER == LITTLE_ENDIAN
bcopy(iv, tweak, AES_XTS_IVSIZE);
/* Last 64 bits of IV are always zero. */
bzero(tweak + AES_XTS_IVSIZE, AES_XTS_IVSIZE);
#else
#error Only LITTLE_ENDIAN architectures are supported.
#endif
tweakreg = _mm_loadu_si128((__m128i *)&tweak[0]);
tweakreg = aesni_enc(rounds - 1, tweak_schedule, tweakreg);
cnt = len / AES_XTS_BLOCKSIZE / 8;
for (i = 0; i < cnt; i++) {
aesni_crypt_xts_block8(rounds, data_schedule, &tweakreg,
from, to, do_encrypt);
from += AES_XTS_BLOCKSIZE * 8;
to += AES_XTS_BLOCKSIZE * 8;
}
i *= 8;
cnt = len / AES_XTS_BLOCKSIZE;
for (; i < cnt; i++) {
aesni_crypt_xts_block(rounds, data_schedule, &tweakreg,
from, to, do_encrypt);
from += AES_XTS_BLOCKSIZE;
to += AES_XTS_BLOCKSIZE;
}
}
void
aesni_encrypt_xts(int rounds, const void *data_schedule,
const void *tweak_schedule, size_t len, const uint8_t *from, uint8_t *to,
const uint8_t iv[static AES_BLOCK_LEN])
{
aesni_crypt_xts(rounds, data_schedule, tweak_schedule, len, from, to,
iv, 1);
}
void
aesni_decrypt_xts(int rounds, const void *data_schedule,
const void *tweak_schedule, size_t len, const uint8_t *from, uint8_t *to,
const uint8_t iv[static AES_BLOCK_LEN])
{
aesni_crypt_xts(rounds, data_schedule, tweak_schedule, len, from, to,
iv, 0);
}
int
aesni_cipher_setup_common(struct aesni_session *ses, const uint8_t *key,
int keylen)
{
int decsched;
decsched = 1;
switch (ses->algo) {
case CRYPTO_AES_ICM:
case CRYPTO_AES_NIST_GCM_16:
case CRYPTO_AES_CCM_16:
decsched = 0;
/* FALLTHROUGH */
case CRYPTO_AES_CBC:
switch (keylen) {
case 128:
ses->rounds = AES128_ROUNDS;
break;
case 192:
ses->rounds = AES192_ROUNDS;
break;
case 256:
ses->rounds = AES256_ROUNDS;
break;
default:
CRYPTDEB("invalid CBC/ICM/GCM key length");
return (EINVAL);
}
break;
case CRYPTO_AES_XTS:
switch (keylen) {
case 256:
ses->rounds = AES128_ROUNDS;
break;
case 512:
ses->rounds = AES256_ROUNDS;
break;
default:
CRYPTDEB("invalid XTS key length");
return (EINVAL);
}
break;
default:
return (EINVAL);
}
aesni_set_enckey(key, ses->enc_schedule, ses->rounds);
if (decsched)
aesni_set_deckey(ses->enc_schedule, ses->dec_schedule,
ses->rounds);
if (ses->algo == CRYPTO_AES_XTS)
aesni_set_enckey(key + keylen / 16, ses->xts_schedule,
ses->rounds);
return (0);
}