Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
/*-
 * SPDX-License-Identifier: ISC
 *
 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
 * Copyright (c) 2002-2008 Atheros Communications, Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 * $FreeBSD$
 */
#include "opt_ah.h"

#include "ah.h"
#include "ah_internal.h"

#include "ar5212/ar5212.h"
#include "ar5212/ar5212reg.h"
#include "ar5212/ar5212phy.h"

#include "ah_eeprom_v3.h"

#define AH_5212_2317
#include "ar5212/ar5212.ini"

#define	N(a)	(sizeof(a)/sizeof(a[0]))

typedef	RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2317;
typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2317;
#define PWR_TABLE_SIZE_2317 PWR_TABLE_SIZE_2413

struct ar2317State {
	RF_HAL_FUNCS	base;		/* public state, must be first */
	uint16_t	pcdacTable[PWR_TABLE_SIZE_2317];

	uint32_t	Bank1Data[N(ar5212Bank1_2317)];
	uint32_t	Bank2Data[N(ar5212Bank2_2317)];
	uint32_t	Bank3Data[N(ar5212Bank3_2317)];
	uint32_t	Bank6Data[N(ar5212Bank6_2317)];
	uint32_t	Bank7Data[N(ar5212Bank7_2317)];

	/*
	 * Private state for reduced stack usage.
	 */
	/* filled out Vpd table for all pdGains (chanL) */
	uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
			    [MAX_PWR_RANGE_IN_HALF_DB];
	/* filled out Vpd table for all pdGains (chanR) */
	uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
			    [MAX_PWR_RANGE_IN_HALF_DB];
	/* filled out Vpd table for all pdGains (interpolated) */
	uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
			    [MAX_PWR_RANGE_IN_HALF_DB];
};
#define	AR2317(ah)	((struct ar2317State *) AH5212(ah)->ah_rfHal)

extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
		uint32_t numBits, uint32_t firstBit, uint32_t column);

static void
ar2317WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
	int writes)
{
	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2317, modesIndex, writes);
	HAL_INI_WRITE_ARRAY(ah, ar5212Common_2317, 1, writes);
	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2317, freqIndex, writes);
}

/*
 * Take the MHz channel value and set the Channel value
 *
 * ASSUMES: Writes enabled to analog bus
 */
static HAL_BOOL
ar2317SetChannel(struct ath_hal *ah,  const struct ieee80211_channel *chan)
{
	uint16_t freq = ath_hal_gethwchannel(ah, chan);
	uint32_t channelSel  = 0;
	uint32_t bModeSynth  = 0;
	uint32_t aModeRefSel = 0;
	uint32_t reg32       = 0;

	OS_MARK(ah, AH_MARK_SETCHANNEL, freq);

	if (freq < 4800) {
		uint32_t txctl;
		channelSel = freq - 2272 ;
		channelSel = ath_hal_reverseBits(channelSel, 8);

		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
		if (freq == 2484) {
			/* Enable channel spreading for channel 14 */
			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
		} else {
			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
		}
	} else if ((freq % 20) == 0 && freq >= 5120) {
		channelSel = ath_hal_reverseBits(
			((freq - 4800) / 20 << 2), 8);
		aModeRefSel = ath_hal_reverseBits(3, 2);
	} else if ((freq % 10) == 0) {
		channelSel = ath_hal_reverseBits(
			((freq - 4800) / 10 << 1), 8);
		aModeRefSel = ath_hal_reverseBits(2, 2);
	} else if ((freq % 5) == 0) {
		channelSel = ath_hal_reverseBits(
			(freq - 4800) / 5, 8);
		aModeRefSel = ath_hal_reverseBits(1, 2);
	} else {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
		    __func__, freq);
		return AH_FALSE;
	}

	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
			(1 << 12) | 0x1;
	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);

	reg32 >>= 8;
	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);

	AH_PRIVATE(ah)->ah_curchan = chan;
	return AH_TRUE;
}

/*
 * Reads EEPROM header info from device structure and programs
 * all rf registers
 *
 * REQUIRES: Access to the analog rf device
 */
static HAL_BOOL
ar2317SetRfRegs(struct ath_hal *ah,
	const struct ieee80211_channel *chan,
	uint16_t modesIndex, uint16_t *rfXpdGain)
{
#define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
	int i;								    \
	for (i = 0; i < N(ar5212Bank##_ix##_2317); i++)			    \
		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2317[i][_col];\
} while (0)
	struct ath_hal_5212 *ahp = AH5212(ah);
	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
	uint16_t ob2GHz = 0, db2GHz = 0;
	struct ar2317State *priv = AR2317(ah);
	int regWrites = 0;

	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
	    __func__, chan->ic_freq, chan->ic_flags, modesIndex);

	HALASSERT(priv);

	/* Setup rf parameters */
	if (IEEE80211_IS_CHAN_B(chan)) {
		ob2GHz = ee->ee_obFor24;
		db2GHz = ee->ee_dbFor24;
	} else {
		ob2GHz = ee->ee_obFor24g;
		db2GHz = ee->ee_dbFor24g;
	}

	/* Bank 1 Write */
	RF_BANK_SETUP(priv, 1, 1);

	/* Bank 2 Write */
	RF_BANK_SETUP(priv, 2, modesIndex);

	/* Bank 3 Write */
	RF_BANK_SETUP(priv, 3, modesIndex);

	/* Bank 6 Write */
	RF_BANK_SETUP(priv, 6, modesIndex);

	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 193, 0);
	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 190, 0);

	/* Bank 7 Setup */
	RF_BANK_SETUP(priv, 7, modesIndex);

	/* Write Analog registers */
	HAL_INI_WRITE_BANK(ah, ar5212Bank1_2317, priv->Bank1Data, regWrites);
	HAL_INI_WRITE_BANK(ah, ar5212Bank2_2317, priv->Bank2Data, regWrites);
	HAL_INI_WRITE_BANK(ah, ar5212Bank3_2317, priv->Bank3Data, regWrites);
	HAL_INI_WRITE_BANK(ah, ar5212Bank6_2317, priv->Bank6Data, regWrites);
	HAL_INI_WRITE_BANK(ah, ar5212Bank7_2317, priv->Bank7Data, regWrites);	
	/* Now that we have reprogrammed rfgain value, clear the flag. */
	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;

	return AH_TRUE;
#undef	RF_BANK_SETUP
}

/*
 * Return a reference to the requested RF Bank.
 */
static uint32_t *
ar2317GetRfBank(struct ath_hal *ah, int bank)
{
	struct ar2317State *priv = AR2317(ah);

	HALASSERT(priv != AH_NULL);
	switch (bank) {
	case 1: return priv->Bank1Data;
	case 2: return priv->Bank2Data;
	case 3: return priv->Bank3Data;
	case 6: return priv->Bank6Data;
	case 7: return priv->Bank7Data;
	}
	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
	    __func__, bank);
	return AH_NULL;
}

/*
 * Return indices surrounding the value in sorted integer lists.
 *
 * NB: the input list is assumed to be sorted in ascending order
 */
static void
GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
                          uint32_t *vlo, uint32_t *vhi)
{
	int16_t target = v;
	const int16_t *ep = lp+listSize;
	const int16_t *tp;

	/*
	 * Check first and last elements for out-of-bounds conditions.
	 */
	if (target < lp[0]) {
		*vlo = *vhi = 0;
		return;
	}
	if (target >= ep[-1]) {
		*vlo = *vhi = listSize - 1;
		return;
	}

	/* look for value being near or between 2 values in list */
	for (tp = lp; tp < ep; tp++) {
		/*
		 * If value is close to the current value of the list
		 * then target is not between values, it is one of the values
		 */
		if (*tp == target) {
			*vlo = *vhi = tp - (const int16_t *) lp;
			return;
		}
		/*
		 * Look for value being between current value and next value
		 * if so return these 2 values
		 */
		if (target < tp[1]) {
			*vlo = tp - (const int16_t *) lp;
			*vhi = *vlo + 1;
			return;
		}
	}
}

/*
 * Fill the Vpdlist for indices Pmax-Pmin
 */
static HAL_BOOL
ar2317FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
		   const int16_t *pwrList, const int16_t *VpdList,
		   uint16_t numIntercepts, uint16_t retVpdList[][64])
{
	uint16_t ii, jj, kk;
	int16_t currPwr = (int16_t)(2*Pmin);
	/* since Pmin is pwr*2 and pwrList is 4*pwr */
	uint32_t  idxL, idxR;

	ii = 0;
	jj = 0;

	if (numIntercepts < 2)
		return AH_FALSE;

	while (ii <= (uint16_t)(Pmax - Pmin)) {
		GetLowerUpperIndex(currPwr, pwrList, numIntercepts, 
					 &(idxL), &(idxR));
		if (idxR < 1)
			idxR = 1;			/* extrapolate below */
		if (idxL == (uint32_t)(numIntercepts - 1))
			idxL = numIntercepts - 2;	/* extrapolate above */
		if (pwrList[idxL] == pwrList[idxR])
			kk = VpdList[idxL];
		else
			kk = (uint16_t)
				(((currPwr - pwrList[idxL])*VpdList[idxR]+ 
				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
				 (pwrList[idxR] - pwrList[idxL]));
		retVpdList[pdGainIdx][ii] = kk;
		ii++;
		currPwr += 2;				/* half dB steps */
	}

	return AH_TRUE;
}

/*
 * Returns interpolated or the scaled up interpolated value
 */
static int16_t
interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
	int16_t targetLeft, int16_t targetRight)
{
	int16_t rv;

	if (srcRight != srcLeft) {
		rv = ((target - srcLeft)*targetRight +
		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
	} else {
		rv = targetLeft;
	}
	return rv;
}

/*
 * Uses the data points read from EEPROM to reconstruct the pdadc power table
 * Called by ar2317SetPowerTable()
 */
static int 
ar2317getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
		const RAW_DATA_STRUCT_2317 *pRawDataset,
		uint16_t pdGainOverlap_t2, 
		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[], 
		uint16_t pPdGainValues[], uint16_t pPDADCValues[]) 
{
	struct ar2317State *priv = AR2317(ah);
#define	VpdTable_L	priv->vpdTable_L
#define	VpdTable_R	priv->vpdTable_R
#define	VpdTable_I	priv->vpdTable_I
	/* XXX excessive stack usage? */
	uint32_t ii, jj, kk;
	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
	uint32_t idxL, idxR;
	uint32_t numPdGainsUsed = 0;
	/* 
	 * If desired to support -ve power levels in future, just
	 * change pwr_I_0 to signed 5-bits.
	 */
	int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
	/* to accommodate -ve power levels later on. */
	int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
	/* to accommodate -ve power levels later on */
	uint16_t numVpd = 0;
	uint16_t Vpd_step;
	int16_t tmpVal ; 
	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;

	/* Get upper lower index */
	GetLowerUpperIndex(channel, pRawDataset->pChannels,
				 pRawDataset->numChannels, &(idxL), &(idxR));

	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
		/* work backwards 'cause highest pdGain for lowest power */
		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
		if (numVpd > 0) {
			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
			}
			Pmin_t2[numPdGainsUsed] = (int16_t)
				(Pmin_t2[numPdGainsUsed] / 2);
			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
				Pmax_t2[numPdGainsUsed] = 
					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
			ar2317FillVpdTable(
					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), 
					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
					   );
			ar2317FillVpdTable(
					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
					   );
			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
				VpdTable_I[numPdGainsUsed][kk] = 
					interpolate_signed(
							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
			}
			/* fill VpdTable_I for this pdGain */
			numPdGainsUsed++;
		}
		/* if this pdGain is used */
	}

	*pMinCalPower = Pmin_t2[0];
	kk = 0; /* index for the final table */
	for (ii = 0; ii < numPdGainsUsed; ii++) {
		if (ii == (numPdGainsUsed - 1))
			pPdGainBoundaries[ii] = Pmax_t2[ii] +
				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
		else 
			pPdGainBoundaries[ii] = (uint16_t)
				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
		if (pPdGainBoundaries[ii] > 63) {
			HALDEBUG(ah, HAL_DEBUG_ANY,
			    "%s: clamp pPdGainBoundaries[%d] %d\n",
			   __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
			pPdGainBoundaries[ii] = 63;
		}

		/* Find starting index for this pdGain */
		if (ii == 0) 
			ss = 0; /* for the first pdGain, start from index 0 */
		else 
			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - 
				pdGainOverlap_t2;
		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
		/*
		 *-ve ss indicates need to extrapolate data below for this pdGain
		 */
		while (ss < 0) {
			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
			ss++;
		}

		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;

		while (ss < (int16_t)maxIndex)
			pPDADCValues[kk++] = VpdTable_I[ii][ss++];

		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
				       VpdTable_I[ii][sizeCurrVpdTable-2]);
		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);           
		/*
		 * for last gain, pdGainBoundary == Pmax_t2, so will 
		 * have to extrapolate
		 */
		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
			while(ss < (int16_t)tgtIndex) {
				tmpVal = (uint16_t)
					(VpdTable_I[ii][sizeCurrVpdTable-1] + 
					 (ss-maxIndex)*Vpd_step);
				pPDADCValues[kk++] = (tmpVal > 127) ? 
					127 : tmpVal;
				ss++;
			}
		}				/* extrapolated above */
	}					/* for all pdGainUsed */

	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
		ii++;
	}
	while (kk < 128) {
		pPDADCValues[kk] = pPDADCValues[kk-1];
		kk++;
	}

	return numPdGainsUsed;
#undef VpdTable_L
#undef VpdTable_R
#undef VpdTable_I
}

static HAL_BOOL
ar2317SetPowerTable(struct ath_hal *ah,
	int16_t *minPower, int16_t *maxPower,
	const struct ieee80211_channel *chan, 
	uint16_t *rfXpdGain)
{
	struct ath_hal_5212 *ahp = AH5212(ah);
	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
	const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
	uint16_t pdGainOverlap_t2;
	int16_t minCalPower2317_t2;
	uint16_t *pdadcValues = ahp->ah_pcdacTable;
	uint16_t gainBoundaries[4];
	uint32_t reg32, regoffset;
	int i, numPdGainsUsed;
#ifndef AH_USE_INIPDGAIN
	uint32_t tpcrg1;
#endif

	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
	    __func__, chan->ic_freq, chan->ic_flags);

	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
	else if (IEEE80211_IS_CHAN_B(chan))
		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
	else {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
		return AH_FALSE;
	}

	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
    
	numPdGainsUsed = ar2317getGainBoundariesAndPdadcsForPowers(ah,
		chan->channel, pRawDataset, pdGainOverlap_t2,
		&minCalPower2317_t2,gainBoundaries, rfXpdGain, pdadcValues);
	HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);

#ifdef AH_USE_INIPDGAIN
	/*
	 * Use pd_gains curve from eeprom; Atheros always uses
	 * the default curve from the ini file but some vendors
	 * (e.g. Zcomax) want to override this curve and not
	 * honoring their settings results in tx power 5dBm low.
	 */
	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 
			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
#else
	tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
	tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
		  | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
	switch (numPdGainsUsed) {
	case 3:
		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
		tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
		/* fall thru... */
	case 2:
		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
		tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
		/* fall thru... */
	case 1:
		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
		tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
		break;
	}
#ifdef AH_DEBUG
	if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
		    "pd_gains (default 0x%x, calculated 0x%x)\n",
		    __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
#endif
	OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
#endif

	/*
	 * Note the pdadc table may not start at 0 dBm power, could be
	 * negative or greater than 0.  Need to offset the power
	 * values by the amount of minPower for griffin
	 */
	if (minCalPower2317_t2 != 0)
		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2317_t2);
	else
		ahp->ah_txPowerIndexOffset = 0;

	/* Finally, write the power values into the baseband power table */
	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
	for (i = 0; i < 32; i++) {
		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  | 
			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
			((pdadcValues[4*i + 2] & 0xFF) << 16) |
			((pdadcValues[4*i + 3] & 0xFF) << 24) ;        
		OS_REG_WRITE(ah, regoffset, reg32);
		regoffset += 4;
	}

	OS_REG_WRITE(ah, AR_PHY_TPCRG5, 
		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 
		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));

	return AH_TRUE;
}

static int16_t
ar2317GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
{
	uint32_t ii,jj;
	uint16_t Pmin=0,numVpd;

	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
		/* work backwards 'cause highest pdGain for lowest power */
		numVpd = data->pDataPerPDGain[jj].numVpd;
		if (numVpd > 0) {
			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
			return(Pmin);
		}
	}
	return(Pmin);
}

static int16_t
ar2317GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
{
	uint32_t ii;
	uint16_t Pmax=0,numVpd;
	uint16_t vpdmax;
	
	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
		/* work forwards cuase lowest pdGain for highest power */
		numVpd = data->pDataPerPDGain[ii].numVpd;
		if (numVpd > 0) {
			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
			vpdmax = data->pDataPerPDGain[ii].Vpd[numVpd-1];
			return(Pmax);
		}
	}
	return(Pmax);
}

static HAL_BOOL
ar2317GetChannelMaxMinPower(struct ath_hal *ah,
	const struct ieee80211_channel *chan,
	int16_t *maxPow, int16_t *minPow)
{
	uint16_t freq = chan->ic_freq;		/* NB: never mapped */
	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
	const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
	const RAW_DATA_PER_CHANNEL_2317 *data=AH_NULL;
	uint16_t numChannels;
	int totalD,totalF, totalMin,last, i;

	*maxPow = 0;

	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
	else if (IEEE80211_IS_CHAN_B(chan))
		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
	else
		return(AH_FALSE);

	numChannels = pRawDataset->numChannels;
	data = pRawDataset->pDataPerChannel;
	
	/* Make sure the channel is in the range of the TP values 
	 *  (freq piers)
	 */
	if (numChannels < 1)
		return(AH_FALSE);

	if ((freq < data[0].channelValue) ||
	    (freq > data[numChannels-1].channelValue)) {
		if (freq < data[0].channelValue) {
			*maxPow = ar2317GetMaxPower(ah, &data[0]);
			*minPow = ar2317GetMinPower(ah, &data[0]);
			return(AH_TRUE);
		} else {
			*maxPow = ar2317GetMaxPower(ah, &data[numChannels - 1]);
			*minPow = ar2317GetMinPower(ah, &data[numChannels - 1]);
			return(AH_TRUE);
		}
	}

	/* Linearly interpolate the power value now */
	for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
	     last = i++);
	totalD = data[i].channelValue - data[last].channelValue;
	if (totalD > 0) {
		totalF = ar2317GetMaxPower(ah, &data[i]) - ar2317GetMaxPower(ah, &data[last]);
		*maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + 
				     ar2317GetMaxPower(ah, &data[last])*totalD)/totalD);
		totalMin = ar2317GetMinPower(ah, &data[i]) - ar2317GetMinPower(ah, &data[last]);
		*minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
				     ar2317GetMinPower(ah, &data[last])*totalD)/totalD);
		return(AH_TRUE);
	} else {
		if (freq == data[i].channelValue) {
			*maxPow = ar2317GetMaxPower(ah, &data[i]);
			*minPow = ar2317GetMinPower(ah, &data[i]);
			return(AH_TRUE);
		} else
			return(AH_FALSE);
	}
}

/*
 * Free memory for analog bank scratch buffers
 */
static void
ar2317RfDetach(struct ath_hal *ah)
{
	struct ath_hal_5212 *ahp = AH5212(ah);

	HALASSERT(ahp->ah_rfHal != AH_NULL);
	ath_hal_free(ahp->ah_rfHal);
	ahp->ah_rfHal = AH_NULL;
}

/*
 * Allocate memory for analog bank scratch buffers
 * Scratch Buffer will be reinitialized every reset so no need to zero now
 */
static HAL_BOOL
ar2317RfAttach(struct ath_hal *ah, HAL_STATUS *status)
{
	struct ath_hal_5212 *ahp = AH5212(ah);
	struct ar2317State *priv;

	HALASSERT(ah->ah_magic == AR5212_MAGIC);

	HALASSERT(ahp->ah_rfHal == AH_NULL);
	priv = ath_hal_malloc(sizeof(struct ar2317State));
	if (priv == AH_NULL) {
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: cannot allocate private state\n", __func__);
		*status = HAL_ENOMEM;		/* XXX */
		return AH_FALSE;
	}
	priv->base.rfDetach		= ar2317RfDetach;
	priv->base.writeRegs		= ar2317WriteRegs;
	priv->base.getRfBank		= ar2317GetRfBank;
	priv->base.setChannel		= ar2317SetChannel;
	priv->base.setRfRegs		= ar2317SetRfRegs;
	priv->base.setPowerTable	= ar2317SetPowerTable;
	priv->base.getChannelMaxMinPower = ar2317GetChannelMaxMinPower;
	priv->base.getNfAdjust		= ar5212GetNfAdjust;

	ahp->ah_pcdacTable = priv->pcdacTable;
	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
	ahp->ah_rfHal = &priv->base;

	return AH_TRUE;
}

static HAL_BOOL
ar2317Probe(struct ath_hal *ah)
{
	return IS_2317(ah);
}
AH_RF(RF2317, ar2317Probe, ar2317RfAttach);