/*-
* SPDX-License-Identifier: ISC
*
* Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ar5212/ar5212.h"
#include "ar5212/ar5212reg.h"
#include "ar5212/ar5212desc.h"
/*
* Note: The key cache hardware requires that each double-word
* pair be written in even/odd order (since the destination is
* a 64-bit register). Don't reorder the writes in this code
* w/o considering this!
*/
#define KEY_XOR 0xaa
#define IS_MIC_ENABLED(ah) \
(AH5212(ah)->ah_staId1Defaults & AR_STA_ID1_CRPT_MIC_ENABLE)
/*
* Return the size of the hardware key cache.
*/
uint32_t
ar5212GetKeyCacheSize(struct ath_hal *ah)
{
return AH_PRIVATE(ah)->ah_caps.halKeyCacheSize;
}
/*
* Return true if the specific key cache entry is valid.
*/
HAL_BOOL
ar5212IsKeyCacheEntryValid(struct ath_hal *ah, uint16_t entry)
{
if (entry < AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
uint32_t val = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
if (val & AR_KEYTABLE_VALID)
return AH_TRUE;
}
return AH_FALSE;
}
/*
* Clear the specified key cache entry and any associated MIC entry.
*/
HAL_BOOL
ar5212ResetKeyCacheEntry(struct ath_hal *ah, uint16_t entry)
{
uint32_t keyType;
if (entry >= AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
__func__, entry);
return AH_FALSE;
}
keyType = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry));
/* XXX why not clear key type/valid bit first? */
OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
if (keyType == AR_KEYTABLE_TYPE_TKIP && IS_MIC_ENABLED(ah)) {
uint16_t micentry = entry+64; /* MIC goes at slot+64 */
HALASSERT(micentry < AH_PRIVATE(ah)->ah_caps.halKeyCacheSize);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
/* NB: key type and MAC are known to be ok */
}
return AH_TRUE;
}
/*
* Sets the mac part of the specified key cache entry (and any
* associated MIC entry) and mark them valid.
*
* Since mac[0] is shifted off and not presented to the hardware,
* it does double duty as a "don't use for unicast, use for multicast
* matching" flag. This interface should later be extended to
* explicitly do that rather than overloading a bit in the MAC
* address.
*/
HAL_BOOL
ar5212SetKeyCacheEntryMac(struct ath_hal *ah, uint16_t entry, const uint8_t *mac)
{
uint32_t macHi, macLo;
uint32_t unicast_flag = AR_KEYTABLE_VALID;
if (entry >= AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
__func__, entry);
return AH_FALSE;
}
/*
* Set MAC address -- shifted right by 1. MacLo is
* the 4 MSBs, and MacHi is the 2 LSBs.
*/
if (mac != AH_NULL) {
/*
* AR_KEYTABLE_VALID indicates that the address is a unicast
* address, which must match the transmitter address for
* decrypting frames.
* Not setting this bit allows the hardware to use the key
* for multicast frame decryption.
*/
if (mac[0] & 0x01)
unicast_flag = 0;
macHi = (mac[5] << 8) | mac[4];
macLo = (mac[3] << 24)| (mac[2] << 16)
| (mac[1] << 8) | mac[0];
macLo >>= 1;
macLo |= (macHi & 1) << 31; /* carry */
macHi >>= 1;
} else {
macLo = macHi = 0;
}
OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
return AH_TRUE;
}
/*
* Sets the contents of the specified key cache entry
* and any associated MIC entry.
*/
HAL_BOOL
ar5212SetKeyCacheEntry(struct ath_hal *ah, uint16_t entry,
const HAL_KEYVAL *k, const uint8_t *mac,
int xorKey)
{
struct ath_hal_5212 *ahp = AH5212(ah);
const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
uint32_t key0, key1, key2, key3, key4;
uint32_t keyType;
uint32_t xorMask = xorKey ?
(KEY_XOR << 24 | KEY_XOR << 16 | KEY_XOR << 8 | KEY_XOR) : 0;
if (entry >= pCap->halKeyCacheSize) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
__func__, entry);
return AH_FALSE;
}
switch (k->kv_type) {
case HAL_CIPHER_AES_OCB:
keyType = AR_KEYTABLE_TYPE_AES;
break;
case HAL_CIPHER_AES_CCM:
if (!pCap->halCipherAesCcmSupport) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: AES-CCM not supported by mac rev 0x%x\n",
__func__, AH_PRIVATE(ah)->ah_macRev);
return AH_FALSE;
}
keyType = AR_KEYTABLE_TYPE_CCM;
break;
case HAL_CIPHER_TKIP:
keyType = AR_KEYTABLE_TYPE_TKIP;
if (IS_MIC_ENABLED(ah) && entry+64 >= pCap->halKeyCacheSize) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: entry %u inappropriate for TKIP\n",
__func__, entry);
return AH_FALSE;
}
break;
case HAL_CIPHER_WEP:
if (k->kv_len < 40 / NBBY) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: WEP key length %u too small\n",
__func__, k->kv_len);
return AH_FALSE;
}
if (k->kv_len <= 40 / NBBY)
keyType = AR_KEYTABLE_TYPE_40;
else if (k->kv_len <= 104 / NBBY)
keyType = AR_KEYTABLE_TYPE_104;
else
keyType = AR_KEYTABLE_TYPE_128;
break;
case HAL_CIPHER_CLR:
keyType = AR_KEYTABLE_TYPE_CLR;
break;
default:
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cipher %u not supported\n",
__func__, k->kv_type);
return AH_FALSE;
}
key0 = LE_READ_4(k->kv_val+0) ^ xorMask;
key1 = (LE_READ_2(k->kv_val+4) ^ xorMask) & 0xffff;
key2 = LE_READ_4(k->kv_val+6) ^ xorMask;
key3 = (LE_READ_2(k->kv_val+10) ^ xorMask) & 0xffff;
key4 = LE_READ_4(k->kv_val+12) ^ xorMask;
if (k->kv_len <= 104 / NBBY)
key4 &= 0xff;
/*
* Note: key cache hardware requires that each double-word
* pair be written in even/odd order (since the destination is
* a 64-bit register). Don't reorder these writes w/o
* considering this!
*/
if (keyType == AR_KEYTABLE_TYPE_TKIP && IS_MIC_ENABLED(ah)) {
uint16_t micentry = entry+64; /* MIC goes at slot+64 */
uint32_t mic0, mic1, mic2, mic3, mic4;
/*
* Invalidate the encrypt/decrypt key until the MIC
* key is installed so pending rx frames will fail
* with decrypt errors rather than a MIC error.
*/
OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
(void) ar5212SetKeyCacheEntryMac(ah, entry, mac);
/*
* Write MIC entry according to new or old key layout.
* The MISC_MODE register is assumed already set so
* these writes will be handled properly (happens on
* attach and at every reset).
*/
/* RX mic */
mic0 = LE_READ_4(k->kv_mic+0);
mic2 = LE_READ_4(k->kv_mic+4);
if (ahp->ah_miscMode & AR_MISC_MODE_MIC_NEW_LOC_ENABLE) {
/*
* Both RX and TX mic values can be combined into
* one cache slot entry:
* 8*N + 800 31:0 RX Michael key 0
* 8*N + 804 15:0 TX Michael key 0 [31:16]
* 8*N + 808 31:0 RX Michael key 1
* 8*N + 80C 15:0 TX Michael key 0 [15:0]
* 8*N + 810 31:0 TX Michael key 1
* 8*N + 814 15:0 reserved
* 8*N + 818 31:0 reserved
* 8*N + 81C 14:0 reserved
* 15 key valid == 0
*/
/* TX mic */
mic1 = LE_READ_2(k->kv_txmic+2) & 0xffff;
mic3 = LE_READ_2(k->kv_txmic+0) & 0xffff;
mic4 = LE_READ_4(k->kv_txmic+4);
} else {
mic1 = mic3 = mic4 = 0;
}
OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
AR_KEYTABLE_TYPE_CLR);
/* NB: MIC key is not marked valid and has no MAC address */
OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
/* correct intentionally corrupted key */
OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
} else {
OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
(void) ar5212SetKeyCacheEntryMac(ah, entry, mac);
}
return AH_TRUE;
}